The Jurassic Lianggaoshan Formation in eastern Sichuan Basin is a key target for shale oil exploration.It faces challenges in three-pressure prediction due to complex structural and sedimentary interactions,as well as...The Jurassic Lianggaoshan Formation in eastern Sichuan Basin is a key target for shale oil exploration.It faces challenges in three-pressure prediction due to complex structural and sedimentary interactions,as well as strong reservoir anisotropy.These issues often lead to wellbore instability and gas logging anomalies during drilling.This study presents an integrated workflow that combines residual moveout correction using correlation-based dynamic time warping(CDTW),high-resolution seismic waveform indication inversion,and three-pressure prediction of jointing well-seismic data.Applied to the LT1 well block,the workflow effectively corrects anisotropic residual moveout in image gathers,leading to a signal strength increase of over 10%in frequency bands above 30 Hz and enhancing event continuity.High-resolution rock mechanical parameters are obtained through seismic waveform inversion and regional calibration,enabling the prediction of three-dimensional pore pressure,collapse pressure and fracture pressure.The results are consistent with actual drilling gas shows and core data,confirming the method's accuracy and supporting mud weight planning and wellbore stability efforts.This cost-effective and technically robust approach proves highly reliable in complex environments with significant heterogeneity and anisotropy,assisting drilling decisions and risk management in eastern Sichuan and similar challenging geological settings.展开更多
基金supported by Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(No.2020CX010202).
文摘The Jurassic Lianggaoshan Formation in eastern Sichuan Basin is a key target for shale oil exploration.It faces challenges in three-pressure prediction due to complex structural and sedimentary interactions,as well as strong reservoir anisotropy.These issues often lead to wellbore instability and gas logging anomalies during drilling.This study presents an integrated workflow that combines residual moveout correction using correlation-based dynamic time warping(CDTW),high-resolution seismic waveform indication inversion,and three-pressure prediction of jointing well-seismic data.Applied to the LT1 well block,the workflow effectively corrects anisotropic residual moveout in image gathers,leading to a signal strength increase of over 10%in frequency bands above 30 Hz and enhancing event continuity.High-resolution rock mechanical parameters are obtained through seismic waveform inversion and regional calibration,enabling the prediction of three-dimensional pore pressure,collapse pressure and fracture pressure.The results are consistent with actual drilling gas shows and core data,confirming the method's accuracy and supporting mud weight planning and wellbore stability efforts.This cost-effective and technically robust approach proves highly reliable in complex environments with significant heterogeneity and anisotropy,assisting drilling decisions and risk management in eastern Sichuan and similar challenging geological settings.