The three-photon absorption (3PA) properties of two thiophene-fluorene derivatives (abbreviated as MOTFTBr and ATFTBr) have been determined by using a Q-switched Nd:YAG laser pumped with 38ps pulses at 1064nm in ...The three-photon absorption (3PA) properties of two thiophene-fluorene derivatives (abbreviated as MOTFTBr and ATFTBr) have been determined by using a Q-switched Nd:YAG laser pumped with 38ps pulses at 1064nm in DMF. The measured 3PA cross-sections are 152×10^-78cm^6s^2 and 139× 10^-78cm^6s^2, respectively. The optimized structures were obtained by AM1 calculations and the results indicate that these two molecules show nonplanar structures, and attaching different donors has different effects on the molecular structure. The charge density distributions during the excitation were also systematically studied by using AM1 method. In addition, an obvious optical power limiting effect induced by 3PA has been demonstrated for both derivatives.展开更多
Three novel nonlinear chromophores with symmetric D-π-D molecular structure and extended conjugated length were synthesized. Solvatochromism analysis shows great symmetric intramolecular charge transfer occurring in ...Three novel nonlinear chromophores with symmetric D-π-D molecular structure and extended conjugated length were synthesized. Solvatochromism analysis shows great symmetric intramolecular charge transfer occurring in chromophores by the enhancement in the dipole moment between the ground and excited states. The properties of optical power limiting induced by three-photon absorption (3PA) are demonstrated. Large 3PA coefficients and the corresponding molecular cross sections as high as 10^-74 cm^6s^2 were obtained for nanosecond laser pulses at 1.06μm from nonlinear transmission measurements.展开更多
Three-photon absorption(3PA) of a push-pull chromophore,2-(3-cyano-(3-(4-(dimethylamino)styryl)-5,5-dimethylcyclohex- 2-enylidene)methyl)-5,5-dimethylfuran-2-ylidene) malononitrile(CFM) including TCF grou...Three-photon absorption(3PA) of a push-pull chromophore,2-(3-cyano-(3-(4-(dimethylamino)styryl)-5,5-dimethylcyclohex- 2-enylidene)methyl)-5,5-dimethylfuran-2-ylidene) malononitrile(CFM) including TCF group was measured by the nonlinear transmission method using a femto-second Ti:Sapphire oscillator-amplifier laser system.Its three-photon absorption cross-sections at 1300 ran were 36.8×10^-79 cm^6 s^2 in the solution of DMF and 12.3×10^-79 cm^6 s^2 in the solution of CH_2Cl_2,respectively.The large values were got by experiments in this paper,which is a new exploration for these kinds of materials.The molecule has the potential application foreground of 3PA areas and optical power limiting.展开更多
Enhancing the upconversion luminescence of rare earth ions is crucial for their applications in the laser sources,fiber optic communications,color displays,biolabeling,and biomedical sensors.In this paper,we theoretic...Enhancing the upconversion luminescence of rare earth ions is crucial for their applications in the laser sources,fiber optic communications,color displays,biolabeling,and biomedical sensors.In this paper,we theoretically study the resonance-mediated(1+2)-three-photon absorption in Pr^(3+) ions by a rectangle phase modulation.The results show that the resonance-mediated(1+2)-three-photon absorption can be effectively enhanced by properly designing the depth and width of the rectangle phase modulation,which can be attributed to the constructive interference between on-resonant and near-resonant three-photon excitation pathways.Further,the enhancement efficiency of resonance-mediated(1+2)-threephoton absorption can be affected by the pulse width(or spectral bandwidth)of femtosecond laser field,final state transition frequency,and absorption bandwidths.This research can provide a clear physical picture for understanding and controlling the multi-photon absorption in rare-earth ions,and also can provide theoretical guidance for improving the up-conversion luminescence.展开更多
We numerically simulate three-photon absorption spectra in a three-coupled-quantum-well nanostructure interacting with a pump field, a coherent coupling field, and a probe field. We find that the three-photon absorpti...We numerically simulate three-photon absorption spectra in a three-coupled-quantum-well nanostructure interacting with a pump field, a coherent coupling field, and a probe field. We find that the three-photon absorption spectra can be dramatically influenced due to the intensities of the coupling field and pump field changing under the three-photon resonance condition. The effect of the frequency detuning of the pump field on the three-photon absorption spectra is also discussed. The study in our case is much more practical than the study in the case of its atomic counterpart in the sense of flexible design and the wide adjustable parameters. Thus it may open up some new possibilities for technological applications in optoelectronics and solid-state quantum information science.展开更多
The development of nonlinear optical materials with strong multiphoton absorption(MPA)is crucial for the design of ultrafast nonlinear optical devices,such as optical limiters and all-optical switchers.In this study,w...The development of nonlinear optical materials with strong multiphoton absorption(MPA)is crucial for the design of ultrafast nonlinear optical devices,such as optical limiters and all-optical switchers.In this study,we present the wavelengthdependent coefficients of two-photon absorption(2PA)and three-photon absorption(3PA)in a Ga S film across a broad range of wavelengths from 540 to 1600 nm.The observed dispersions in the 2PA and 3PA coefficients align well with the widely used two-band approximation model applied to direct bandgap semiconductors.Notably,the Ga S film exhibits exceptional MPA properties with a maximum 2PA coefficient of 19.89 cm/GW at 620 nm and a maximum 3PA coefficient of4.88 cm^(3)/GW2at 1500 nm.The Ga S film surpasses those found in traditional wide-bandgap semiconductors like β-Ga_(2)O_(3),Ga N,Zn O,and Zn S while remaining comparable to monolayer Mo S_(2),Cs Pb Br_(3),and(C_(4)H_(9)NH_(3))_(2)Pb Br_(4) perovskites.By employing a simplified two-energy-level model analysis,our results indicate that these large MPA coefficients are primarily determined by the remarkable absorption cross sections,which are approximately 4.82×10^(-52)·cm^(4)·s·photon^(-1)at 620 nm for 2PAand 8.17×10^(-80)·cm^(6)·s^(2)·photon^(-2)at 1500 nm for 3PA.Our findings demonstrate significant potential for utilizing Ga S films in nonlinear optical applications.展开更多
Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the...Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the shielding effectiveness of the composite structure.Firstly,the effect of the pyrolysis temperature on the shielding effectiveness of biochar was investigated.Secondly,biochars combined with YIG nanocrystals with different contents and shielding effectiveness of the composites were investigated.The electromagnetic effectiveness of the samples was investigated within the X band(8-12 GHz).The findings indicate that biochar demonstrates enhanced absorption properties with elevated pyrolysis temperatures.Biochars demonstrated an approximate 40 d B shielding effectiveness,while YIG exhibited approximately 7 d B,corresponding to absorption at 8 GHz.However,the combination of biochar and YIG exhibited exceptional absorption,reaching 67.12 d B at 8 GHz.展开更多
The escalating demand for electromagnetic protection against increasingly severe electromagnetic pollution is making the development of advanced electromagnetic wave absorbing material systems imperative.MXene-based e...The escalating demand for electromagnetic protection against increasingly severe electromagnetic pollution is making the development of advanced electromagnetic wave absorbing material systems imperative.MXene-based electromagnetic wave absorbing fillers demonstrate advantages of lightweight and high efficiency.However,their microscale dimensions hinder the formation of interconnected networks within matrices,resulting in limited electromagnetic(EM)loss mechanisms and narrow effective absorption bandwidths.Herein,we employ wet spinning combined with molten salt-assisted in-situ synthesis to fabricate MAX@rGO(rGMAX_(n))fibrous absorbers featuring a hierarchical structure of“columnar cactus covered with MAX spheres”.Precise regulation of MAX phase content enables controlled tuning of the electromagnetic properties of rGMAX_(n) fibers.Moreover,subsequent in-situ etching further enhances their EM performance,yielding MXene@rGO(rGMX_(n))fibers with a hierarchical structure of“columnar cactus decorated with MXene nanosheet clusters”.Freeze-drying is utilized to modulate fiber filling content,and fibrous felts with conductive networks are obtained,which exhibit excellent electromagnetic wave absorption performance.Among them,the as-prepared rGMX_(10) fibrous felt exhibits good electromagnetic wave absorption performance at a low filling content(10 wt.%)with the RL_(max) of 54.4 dB and an effective absorption bandwidth of 5.31 GHz.This enhancement originates from improved impedance matching characteristics through fiber-interconnected networks and multiple electromagnetic loss mechanisms enabled by the hierarchical structure.The strategy of in-situ growing hierarchical MXene@rGO fibers establishes a novel approach for developing MXene-based fibrous absorbing materials.展开更多
The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbi...The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbide nanowires using lignite and waste silicon powder as raw materials through carbothermal reduction.The staggered structure of nanowires promotes the creation of interfacial polarization,impedance matching,and multiple loss mechanisms,leading to enhanced electromagnetic absorption performance.The silicon carbide nanowires demonstrate outstanding electromagnetic absorption capabilities with the minimum reflection loss of-48.09 d B at10.08 GHz and an effective absorption bandwidth(the reflection loss less than-10 d B)ranging from 8.54 to 16.68 GHz with a thickness of 2.17 mm.This research presents an innovative approach for utilizing solid waste in an environmentally friendly manner to produce broadband silicon carbide composite absorbers.展开更多
Low-velocity impact tests are carried out to explore the energy absorption characteristics of bio-inspired lattices,mimicking the architecture of the marine sponge organism Euplectella aspergillum.These sea sponge-ins...Low-velocity impact tests are carried out to explore the energy absorption characteristics of bio-inspired lattices,mimicking the architecture of the marine sponge organism Euplectella aspergillum.These sea sponge-inspired lattice structures feature a square-grid 2D lattice with double diagonal bracings and are additively manufactured via digital light processing(DLP).The collapse strength and energy absorption capacity of sea sponge lattice structures are evaluated under various impact conditions and are compared to those of their constituent square-grid and double diagonal lattices.This study demonstrates that sea sponge lattices can achieve an 11-fold increase in energy absorption compared to the square-grid lattice,due to the stabilizing effect of the double diagonal bracings prompting the structure to collapse layer-bylayer under impact.By adjusting the thickness ratio in the sea sponge lattice,up to 76.7%increment in energy absorption is attained.It is also shown that sea-sponge lattices outperform well-established energy-absorbing materials of equal weight,such as hexagonal honeycombs,confirming their significant potential for impact mitigation.Additionally,this research highlights the enhancements in energy absorption achieved by adding a small amount(0.015 phr)of Multi-Walled Carbon Nanotubes(MWCNTs)to the photocurable resin,thus unlocking new possibilities for the design of innovative lightweight structures with multifunctional attributes.展开更多
Directional three-dimensional carbon-based foams are emerging as highly attractive candidates for promising electromagnetic wave absorbing materials(EWAMs)thanks to their unique architecture,but their construction usu...Directional three-dimensional carbon-based foams are emerging as highly attractive candidates for promising electromagnetic wave absorbing materials(EWAMs)thanks to their unique architecture,but their construction usually involves complex procedures and extremely depends on unidirectional freezing technique.Herein,we propose a groundbreaking approach that leverages the assemblies of salting-out protein induced by ammonium metatungstate(AM)as the precursor,and then acquire directional three-dimensional carbon-based foams through simple pyrolysis.The electrostatic interaction between AM and protein ensures well dispersion of WC_(1−x)nanoparticles on carbon frameworks.The content of WC_(1−x)nanoparticles can be rationally regulated by AM dosage,and it also affects the electromagnetic(EM)properties of final carbon-based foams.The optimized foam exhibits exceptional EM absorption performance,achieving a remarkable minimum reflection loss of−72.0 dB and an effective absorption bandwidth of 6.3 GHz when EM wave propagates parallel to the directional pores.Such performance benefits from the synergistic effects of macroporous architecture and compositional design.Although there is a directional dependence of EM absorption,radar stealth simulation demonstrates that these foams can still promise considerable reduction in radar cross section with the change of incident angle.Moreover,COMSOL simulation further identifies their good performance in preventing EM interference among different electronic components.展开更多
Designing materials with both structural load-bearing capacity and broadband electromagnetic(EM)wave absorption properties remains a significant challenge.In this work,SiOC/SiC/SiO_(2)composite with gyroid structures ...Designing materials with both structural load-bearing capacity and broadband electromagnetic(EM)wave absorption properties remains a significant challenge.In this work,SiOC/SiC/SiO_(2)composite with gyroid structures were prepared through digital light processing(DLP)3D printing,polymer-derived ceramics(PDCs),chemical vapor infiltration(CVI),and oxidation technologies.The incorporation of the CVISiC phase effectively increases the dissipation capability,while the synergistic interaction between the gyroid structure and SiO_(2)phase significantly improves impedance matching performance.The SiOC/SiC/SiO_(2)composite achieved a minimum reflection loss(RL min)of-62.2 d B at 4.3 mm,and the effective absorption bandwidth(EAB)covered the X-band,with a thickness range of 4.1 mm-4.65 mm.The CST simulation results explain the broadband and low-frequency absorption characteristics,with an EAB of 8.4 GHz(9.6-18 GHz)and an RL min of-21.5 dB at 5 GHz.The excellent EM wave attenuation performance is associated primarily with polarization loss,conduction loss,the gyroid structure's enhancement of multiple reflections and scattering of EM waves,and the resonance effect between the structural units.The SiOC/SiC/SiO_(2)composite also demonstrated strong mechanical properties,with a maximum compressive failure strength of 31.6 MPa in the height direction.This work opens novel prospects for the development of multifunctional structural wave-absorbing materials suitable for broadband microwave absorption and load-bearing properties.展开更多
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how...Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.展开更多
Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR clo...Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR cloaking mechanisms and functional integration limitations.Here,we propose a multiscale hierarchical structure design,integrating wrinkled MXene IR shielding layer and flexible Fe_(3)O_(4)@C/PDMS microwave absorption layer.The top wrinkled MXene layer induces the intensive diffuse reflection effect,shielding IR radiation signals while allowing microwave to pass through.Meanwhile,the permeable microwaves are assimilated into the bottom Fe_(3)O_(4)@C/PDMS layer via strong magneto-electric synergy.Through theoretical and experimental optimization,the assembled stealth devices realize a near-perfect stealth capability in both X-band(8–12 GHz)and long-wave infrared(8–14μm)wavelength ranges.Specifically,it delivers a radar cross-section reduction of−20 dB m^(2),a large apparent temperature modulation range(ΔT=70℃),and a low average IR emissivity of 0.35.Additionally,the optimal device demonstrates exceptional curved surface conformability,self-cleaning capability(contact angle≈129°),and abrasion resistance(recovery time≈5 s).This design strategy promotes the development of multispectral stealth technology and reinforces its applicability and durability in complex and hostile environments.展开更多
Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band ...Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band structure of graphene,regulating its bandgap and electrical properties by introducing heteroatoms is considered a feasible solution.Herein,metal-nitrogen doping reduced graphene oxide(M–N-RGO)was prepared by embedding a series of single metal atoms M–N_(4) sites(M=Mn,Fe,Co,Ni,Cu,Zn,Nb,Cd,and Sn)in RGO using an N-coordination atom-assisted strategy.These composites had adjustable conductivity and polarization to optimize dielectric loss and impedance matching for efficient EMWA performance.The results showed that the minimum reflection loss(RL_(min))of Fe–N-RGO reaches−74.05 dB(2.0 mm)and the maximum effective absorption bandwidth(EAB_(max))is 7.05 GHz(1.89 mm)even with a low filler loading of only 1 wt%.Combined with X-ray absorption spectra(XAFS),atomic force microscopy,and density functional theory calculation analysis,the Fe–N_(4) can be used as the polarization center to increase dipole polarization,interface polarization and defect-induced polarization due to d-p orbital hybridization and structural distortion.Moreover,electron migration within the Fe further leads to conduction loss,thereby synergistically promoting energy attenuation.This study demonstrates the effectiveness of metal-nitrogen doping in regulating the graphene′s dielectric properties,which provides an important basis for further investigation of the loss mechanism.展开更多
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con...Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.展开更多
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h...With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.展开更多
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan...Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.展开更多
This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with t...This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.展开更多
Metal foams are a fascinating group of materials that possess distinct physicochEMIcal properties and interconnected strut features with high surface area-to-volume ratios, high specific strength and lightweight natur...Metal foams are a fascinating group of materials that possess distinct physicochEMIcal properties and interconnected strut features with high surface area-to-volume ratios, high specific strength and lightweight nature. These characteristics make them ideal for applications in vibration damping, heat insulation and weight reduction. In recent years, there has been increasing interest in the application of interfering energy conversion such as electromagnetic wave (EMW) and sound, where the metal foams could emerge as a solution. This paper will present a comprehensive review of the preparation methods as well as the interference energy converting mechanisms for metal foams. Typically, the progress and prospective aspects of metal foams for EMW absorption, electromagnetic interference (EMI) shielding and sound absorption have been emphasized. Through this review, we aspire to offer valuable insights for the development of multifunctional applications with metal foam materials.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60207005) and the Shanghai Science & Technology Development Foundation (Grant No 012261068).
文摘The three-photon absorption (3PA) properties of two thiophene-fluorene derivatives (abbreviated as MOTFTBr and ATFTBr) have been determined by using a Q-switched Nd:YAG laser pumped with 38ps pulses at 1064nm in DMF. The measured 3PA cross-sections are 152×10^-78cm^6s^2 and 139× 10^-78cm^6s^2, respectively. The optimized structures were obtained by AM1 calculations and the results indicate that these two molecules show nonplanar structures, and attaching different donors has different effects on the molecular structure. The charge density distributions during the excitation were also systematically studied by using AM1 method. In addition, an obvious optical power limiting effect induced by 3PA has been demonstrated for both derivatives.
基金This work was supported by the National Natural Science Foundation of China (No.90201016).
文摘Three novel nonlinear chromophores with symmetric D-π-D molecular structure and extended conjugated length were synthesized. Solvatochromism analysis shows great symmetric intramolecular charge transfer occurring in chromophores by the enhancement in the dipole moment between the ground and excited states. The properties of optical power limiting induced by three-photon absorption (3PA) are demonstrated. Large 3PA coefficients and the corresponding molecular cross sections as high as 10^-74 cm^6s^2 were obtained for nanosecond laser pulses at 1.06μm from nonlinear transmission measurements.
基金the National Natural Science Foundation of China(No.61178057)for financial support
文摘Three-photon absorption(3PA) of a push-pull chromophore,2-(3-cyano-(3-(4-(dimethylamino)styryl)-5,5-dimethylcyclohex- 2-enylidene)methyl)-5,5-dimethylfuran-2-ylidene) malononitrile(CFM) including TCF group was measured by the nonlinear transmission method using a femto-second Ti:Sapphire oscillator-amplifier laser system.Its three-photon absorption cross-sections at 1300 ran were 36.8×10^-79 cm^6 s^2 in the solution of DMF and 12.3×10^-79 cm^6 s^2 in the solution of CH_2Cl_2,respectively.The large values were got by experiments in this paper,which is a new exploration for these kinds of materials.The molecule has the potential application foreground of 3PA areas and optical power limiting.
基金supported by the National Natural Science Foundation of China(Grant Nos.12004238 and 11764036)the Natural Science Foundation of Henan Province,China(Grant No.222102230068)the Open Subject of the Key Laboratory of Weak Light Nonlinear Photonics of Nankai University(Grant No.OS 21-3)。
文摘Enhancing the upconversion luminescence of rare earth ions is crucial for their applications in the laser sources,fiber optic communications,color displays,biolabeling,and biomedical sensors.In this paper,we theoretically study the resonance-mediated(1+2)-three-photon absorption in Pr^(3+) ions by a rectangle phase modulation.The results show that the resonance-mediated(1+2)-three-photon absorption can be effectively enhanced by properly designing the depth and width of the rectangle phase modulation,which can be attributed to the constructive interference between on-resonant and near-resonant three-photon excitation pathways.Further,the enhancement efficiency of resonance-mediated(1+2)-threephoton absorption can be affected by the pulse width(or spectral bandwidth)of femtosecond laser field,final state transition frequency,and absorption bandwidths.This research can provide a clear physical picture for understanding and controlling the multi-photon absorption in rare-earth ions,and also can provide theoretical guidance for improving the up-conversion luminescence.
基金Project supported by the Natural Science Foundation of Jiangxi,China (Grant No. 2008GQW0017)the Scientific Research Foundation of Jiangxi Provincial Department of Education (Grant No. GJJ09504)the Foundation of Talent of Jinggang of Jiangxi Province,China (Grant No. 2008DQ00400)
文摘We numerically simulate three-photon absorption spectra in a three-coupled-quantum-well nanostructure interacting with a pump field, a coherent coupling field, and a probe field. We find that the three-photon absorption spectra can be dramatically influenced due to the intensities of the coupling field and pump field changing under the three-photon resonance condition. The effect of the frequency detuning of the pump field on the three-photon absorption spectra is also discussed. The study in our case is much more practical than the study in the case of its atomic counterpart in the sense of flexible design and the wide adjustable parameters. Thus it may open up some new possibilities for technological applications in optoelectronics and solid-state quantum information science.
基金supported by the National Natural Science Foundation of China(Nos.12261141662 and 12074311)the 2023 Graduate Education Comprehensive Reform Research and Practice Project(No.ZG2023009)。
文摘The development of nonlinear optical materials with strong multiphoton absorption(MPA)is crucial for the design of ultrafast nonlinear optical devices,such as optical limiters and all-optical switchers.In this study,we present the wavelengthdependent coefficients of two-photon absorption(2PA)and three-photon absorption(3PA)in a Ga S film across a broad range of wavelengths from 540 to 1600 nm.The observed dispersions in the 2PA and 3PA coefficients align well with the widely used two-band approximation model applied to direct bandgap semiconductors.Notably,the Ga S film exhibits exceptional MPA properties with a maximum 2PA coefficient of 19.89 cm/GW at 620 nm and a maximum 3PA coefficient of4.88 cm^(3)/GW2at 1500 nm.The Ga S film surpasses those found in traditional wide-bandgap semiconductors like β-Ga_(2)O_(3),Ga N,Zn O,and Zn S while remaining comparable to monolayer Mo S_(2),Cs Pb Br_(3),and(C_(4)H_(9)NH_(3))_(2)Pb Br_(4) perovskites.By employing a simplified two-energy-level model analysis,our results indicate that these large MPA coefficients are primarily determined by the remarkable absorption cross sections,which are approximately 4.82×10^(-52)·cm^(4)·s·photon^(-1)at 620 nm for 2PAand 8.17×10^(-80)·cm^(6)·s^(2)·photon^(-2)at 1500 nm for 3PA.Our findings demonstrate significant potential for utilizing Ga S films in nonlinear optical applications.
基金support provided by the Center for Fabrication and Application of Electronic Materials at Dokuz Eylül University,Türkiye。
文摘Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the shielding effectiveness of the composite structure.Firstly,the effect of the pyrolysis temperature on the shielding effectiveness of biochar was investigated.Secondly,biochars combined with YIG nanocrystals with different contents and shielding effectiveness of the composites were investigated.The electromagnetic effectiveness of the samples was investigated within the X band(8-12 GHz).The findings indicate that biochar demonstrates enhanced absorption properties with elevated pyrolysis temperatures.Biochars demonstrated an approximate 40 d B shielding effectiveness,while YIG exhibited approximately 7 d B,corresponding to absorption at 8 GHz.However,the combination of biochar and YIG exhibited exceptional absorption,reaching 67.12 d B at 8 GHz.
基金granted by the National Key R&D Program of China(No.2024YFB3409900).
文摘The escalating demand for electromagnetic protection against increasingly severe electromagnetic pollution is making the development of advanced electromagnetic wave absorbing material systems imperative.MXene-based electromagnetic wave absorbing fillers demonstrate advantages of lightweight and high efficiency.However,their microscale dimensions hinder the formation of interconnected networks within matrices,resulting in limited electromagnetic(EM)loss mechanisms and narrow effective absorption bandwidths.Herein,we employ wet spinning combined with molten salt-assisted in-situ synthesis to fabricate MAX@rGO(rGMAX_(n))fibrous absorbers featuring a hierarchical structure of“columnar cactus covered with MAX spheres”.Precise regulation of MAX phase content enables controlled tuning of the electromagnetic properties of rGMAX_(n) fibers.Moreover,subsequent in-situ etching further enhances their EM performance,yielding MXene@rGO(rGMX_(n))fibers with a hierarchical structure of“columnar cactus decorated with MXene nanosheet clusters”.Freeze-drying is utilized to modulate fiber filling content,and fibrous felts with conductive networks are obtained,which exhibit excellent electromagnetic wave absorption performance.Among them,the as-prepared rGMX_(10) fibrous felt exhibits good electromagnetic wave absorption performance at a low filling content(10 wt.%)with the RL_(max) of 54.4 dB and an effective absorption bandwidth of 5.31 GHz.This enhancement originates from improved impedance matching characteristics through fiber-interconnected networks and multiple electromagnetic loss mechanisms enabled by the hierarchical structure.The strategy of in-situ growing hierarchical MXene@rGO fibers establishes a novel approach for developing MXene-based fibrous absorbing materials.
基金supported by the National Natural Science Foundation of China(No.52436008)the Inner Mongolia Science and Technology Projects,China(Nos.JMRHZX20210003 and 2023YFCY0009)+3 种基金the Huaneng Group Co Ltd.,China(No.HNKJ23-H50)the National Natural Science Foundation of China(No.22408044)the China Postdoctoral Science Foundation(No.2024M761877)the National Key R&D Program of China(No.SQ2024YFD2200039)。
文摘The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures.This study introduces a sustainable and high value-added method for synthesizing silicon carbide nanowires using lignite and waste silicon powder as raw materials through carbothermal reduction.The staggered structure of nanowires promotes the creation of interfacial polarization,impedance matching,and multiple loss mechanisms,leading to enhanced electromagnetic absorption performance.The silicon carbide nanowires demonstrate outstanding electromagnetic absorption capabilities with the minimum reflection loss of-48.09 d B at10.08 GHz and an effective absorption bandwidth(the reflection loss less than-10 d B)ranging from 8.54 to 16.68 GHz with a thickness of 2.17 mm.This research presents an innovative approach for utilizing solid waste in an environmentally friendly manner to produce broadband silicon carbide composite absorbers.
基金supported by the Khalifa University of Science and Technology internal grants(Nos.2021-CIRA-109,2020-CIRA-007,and 2020-CIRA-024).
文摘Low-velocity impact tests are carried out to explore the energy absorption characteristics of bio-inspired lattices,mimicking the architecture of the marine sponge organism Euplectella aspergillum.These sea sponge-inspired lattice structures feature a square-grid 2D lattice with double diagonal bracings and are additively manufactured via digital light processing(DLP).The collapse strength and energy absorption capacity of sea sponge lattice structures are evaluated under various impact conditions and are compared to those of their constituent square-grid and double diagonal lattices.This study demonstrates that sea sponge lattices can achieve an 11-fold increase in energy absorption compared to the square-grid lattice,due to the stabilizing effect of the double diagonal bracings prompting the structure to collapse layer-bylayer under impact.By adjusting the thickness ratio in the sea sponge lattice,up to 76.7%increment in energy absorption is attained.It is also shown that sea-sponge lattices outperform well-established energy-absorbing materials of equal weight,such as hexagonal honeycombs,confirming their significant potential for impact mitigation.Additionally,this research highlights the enhancements in energy absorption achieved by adding a small amount(0.015 phr)of Multi-Walled Carbon Nanotubes(MWCNTs)to the photocurable resin,thus unlocking new possibilities for the design of innovative lightweight structures with multifunctional attributes.
基金financially supported by the National Natural Science Foundation of China(Nos.22475057 and No.52373262).
文摘Directional three-dimensional carbon-based foams are emerging as highly attractive candidates for promising electromagnetic wave absorbing materials(EWAMs)thanks to their unique architecture,but their construction usually involves complex procedures and extremely depends on unidirectional freezing technique.Herein,we propose a groundbreaking approach that leverages the assemblies of salting-out protein induced by ammonium metatungstate(AM)as the precursor,and then acquire directional three-dimensional carbon-based foams through simple pyrolysis.The electrostatic interaction between AM and protein ensures well dispersion of WC_(1−x)nanoparticles on carbon frameworks.The content of WC_(1−x)nanoparticles can be rationally regulated by AM dosage,and it also affects the electromagnetic(EM)properties of final carbon-based foams.The optimized foam exhibits exceptional EM absorption performance,achieving a remarkable minimum reflection loss of−72.0 dB and an effective absorption bandwidth of 6.3 GHz when EM wave propagates parallel to the directional pores.Such performance benefits from the synergistic effects of macroporous architecture and compositional design.Although there is a directional dependence of EM absorption,radar stealth simulation demonstrates that these foams can still promise considerable reduction in radar cross section with the change of incident angle.Moreover,COMSOL simulation further identifies their good performance in preventing EM interference among different electronic components.
基金financially supported by National Natural Science Foundation of China(Grant Nos.12141203,52202083,W2421013)the Natural Science Foundation Project of Shaanxi Province(Grant No.2024JC-YBMS-450)+1 种基金the Sichuan Science and Technology Program(Grant No.2024YFHZ0265)the Open Project of High-end Equipment Advanced Materials and Manufacturing Technology Laboratory(Grant No.2023KFKT0005)。
文摘Designing materials with both structural load-bearing capacity and broadband electromagnetic(EM)wave absorption properties remains a significant challenge.In this work,SiOC/SiC/SiO_(2)composite with gyroid structures were prepared through digital light processing(DLP)3D printing,polymer-derived ceramics(PDCs),chemical vapor infiltration(CVI),and oxidation technologies.The incorporation of the CVISiC phase effectively increases the dissipation capability,while the synergistic interaction between the gyroid structure and SiO_(2)phase significantly improves impedance matching performance.The SiOC/SiC/SiO_(2)composite achieved a minimum reflection loss(RL min)of-62.2 d B at 4.3 mm,and the effective absorption bandwidth(EAB)covered the X-band,with a thickness range of 4.1 mm-4.65 mm.The CST simulation results explain the broadband and low-frequency absorption characteristics,with an EAB of 8.4 GHz(9.6-18 GHz)and an RL min of-21.5 dB at 5 GHz.The excellent EM wave attenuation performance is associated primarily with polarization loss,conduction loss,the gyroid structure's enhancement of multiple reflections and scattering of EM waves,and the resonance effect between the structural units.The SiOC/SiC/SiO_(2)composite also demonstrated strong mechanical properties,with a maximum compressive failure strength of 31.6 MPa in the height direction.This work opens novel prospects for the development of multifunctional structural wave-absorbing materials suitable for broadband microwave absorption and load-bearing properties.
基金financially supported by the National Natural Science Foundation of China(Grants nos.62201411,62371378,22205168,52302150 and 62304171)the China Postdoctoral Science Foundation(2022M722500)+1 种基金the Fundamental Research Funds for the Central Universities(Grants nos.ZYTS2308 and 20103237929)Startup Foundation of Xidian University(10251220001).
文摘Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.
基金financial support from the National Nature Science Foundation of China(No.52273247)the National Science and Technology Major Project of China(J2019-VI-0017-0132).
文摘Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR cloaking mechanisms and functional integration limitations.Here,we propose a multiscale hierarchical structure design,integrating wrinkled MXene IR shielding layer and flexible Fe_(3)O_(4)@C/PDMS microwave absorption layer.The top wrinkled MXene layer induces the intensive diffuse reflection effect,shielding IR radiation signals while allowing microwave to pass through.Meanwhile,the permeable microwaves are assimilated into the bottom Fe_(3)O_(4)@C/PDMS layer via strong magneto-electric synergy.Through theoretical and experimental optimization,the assembled stealth devices realize a near-perfect stealth capability in both X-band(8–12 GHz)and long-wave infrared(8–14μm)wavelength ranges.Specifically,it delivers a radar cross-section reduction of−20 dB m^(2),a large apparent temperature modulation range(ΔT=70℃),and a low average IR emissivity of 0.35.Additionally,the optimal device demonstrates exceptional curved surface conformability,self-cleaning capability(contact angle≈129°),and abrasion resistance(recovery time≈5 s).This design strategy promotes the development of multispectral stealth technology and reinforces its applicability and durability in complex and hostile environments.
基金supported by National Natural Science Foundation of China(NSFC 52432002,52372041,52302087)Heilongjiang Touyan Team Program,the Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2021003)the Shanghai Aerospace Science and Technology Innovation Fund(SAST2022-60).
文摘Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band structure of graphene,regulating its bandgap and electrical properties by introducing heteroatoms is considered a feasible solution.Herein,metal-nitrogen doping reduced graphene oxide(M–N-RGO)was prepared by embedding a series of single metal atoms M–N_(4) sites(M=Mn,Fe,Co,Ni,Cu,Zn,Nb,Cd,and Sn)in RGO using an N-coordination atom-assisted strategy.These composites had adjustable conductivity and polarization to optimize dielectric loss and impedance matching for efficient EMWA performance.The results showed that the minimum reflection loss(RL_(min))of Fe–N-RGO reaches−74.05 dB(2.0 mm)and the maximum effective absorption bandwidth(EAB_(max))is 7.05 GHz(1.89 mm)even with a low filler loading of only 1 wt%.Combined with X-ray absorption spectra(XAFS),atomic force microscopy,and density functional theory calculation analysis,the Fe–N_(4) can be used as the polarization center to increase dipole polarization,interface polarization and defect-induced polarization due to d-p orbital hybridization and structural distortion.Moreover,electron migration within the Fe further leads to conduction loss,thereby synergistically promoting energy attenuation.This study demonstrates the effectiveness of metal-nitrogen doping in regulating the graphene′s dielectric properties,which provides an important basis for further investigation of the loss mechanism.
基金financially supported by the National Natural Science Foundation of China(No.52377026 and No.52301192)Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)+4 种基金Postdoctoral Fellowship Program of CPSF under Grant Number(No.GZB20240327)Shandong Postdoctoral Science Foundation(No.SDCXZG-202400275)Qingdao Postdoctoral Application Research Project(No.QDBSH20240102023)China Postdoctoral Science Foundation(No.2024M751563)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).
文摘Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.
基金sponsored by National Natural Science Foundation of China(No.52302121,No.52203386)Shanghai Sailing Program(No.23YF1454700)+1 种基金Shanghai Natural Science Foundation(No.23ZR1472700)Shanghai Post-doctoral Excellent Program(No.2022664).
文摘With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.
基金financially supported by the National Natural Science Foundation of China(52373271)Science,Technology and Innovation Commission of Shenzhen Municipality under Grant(KCXFZ20201221173004012)+1 种基金National Key Research and Development Program of Shaanxi Province(No.2023-YBNY-271)Open Testing Foundation of the Analytical&Testing Center of Northwestern Polytechnical University(2023T019).
文摘Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.
基金financially supported by the National Natural Science Foundation of China(Nos.21171018 and 51271021)the State Key Laboratory for Advanced Metals and Materials。
文摘This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.
基金supported by the National Natural Science Foundation of China(No.52271180)the Leading Goose R&D Program of Zhejiang Province(2022C01110).
文摘Metal foams are a fascinating group of materials that possess distinct physicochEMIcal properties and interconnected strut features with high surface area-to-volume ratios, high specific strength and lightweight nature. These characteristics make them ideal for applications in vibration damping, heat insulation and weight reduction. In recent years, there has been increasing interest in the application of interfering energy conversion such as electromagnetic wave (EMW) and sound, where the metal foams could emerge as a solution. This paper will present a comprehensive review of the preparation methods as well as the interference energy converting mechanisms for metal foams. Typically, the progress and prospective aspects of metal foams for EMW absorption, electromagnetic interference (EMI) shielding and sound absorption have been emphasized. Through this review, we aspire to offer valuable insights for the development of multifunctional applications with metal foam materials.