Seismic wavefields propagate through three-dimensional(3D)space,and their precise characterization is crucial for understanding subsurface structures.Traditional 2D algorithms,due to their limitations,are insufficient...Seismic wavefields propagate through three-dimensional(3D)space,and their precise characterization is crucial for understanding subsurface structures.Traditional 2D algorithms,due to their limitations,are insufficient to fully represent three-dimensional wavefields.The classic 3D Radon transform algorithm assumes that the wavefield's propagation characteristics are consistent in all directions,which often does not hold true in complex underground media.To address this issue,we present an improved 3D three-parameter Radon algorithm that considers the wavefield variation with azimuth and provides a more accurate wavefield description.However,introducing new parameters to describe the azimuthal varia-tion also poses computational challenges.The new Radon transform operator involves five variables and cannot be simply decomposed into small matrices for efficient computation;instead,it requires large matrix multiplication and inversion operations,significantly increasing the computational load.To overcome this challenge,we have integrated the curvature and frequency parameters,simplifying all frequency operators to the same,thereby significantly improving computation efficiency.Furthermore,existing transform algorithms neglect the lateral variation of seismic amplitudes,leading to discrepancies between the estimated multiples and those in the data.To enhance the amplitude preservation of the algorithm,we employ orthogonal polynomial fitting to capture the amplitude spatial variation in 3D seismic data.Combining these improvements,we propose a fast,amplitude-preserving,3D three-parameter Radon transform algorithm.This algorithm not only enhances computational efficiency while maintaining the original wavefield characteristics,but also improves the representation of seismic data by increasing amplitude fidelity.We validated the algorithm in multiple attenuation using both synthetic and real seismic data.The results demonstrate that the new algorithm significantly improves both accuracy and computational efficiency,providing an effective tool for analyzing seismic wavefields in complex subsurface structures.展开更多
To set up a three-parameter method for cell cycle analysis by two-laser flowcy-tometer, which can detect two types of cyclin plus DNA content in one measurement, and thatanalyze unscheduled expression of cyclins. Meth...To set up a three-parameter method for cell cycle analysis by two-laser flowcy-tometer, which can detect two types of cyclin plus DNA content in one measurement, and thatanalyze unscheduled expression of cyclins. Methods: Three-color fluorescence was used for analysisof two types of cyclins and DNA content simultaneously in individual cells by two-laser flowcytometry. MOLT-4 cells were used to study the expression of major cyclins in mammalian cells. ATriton-X100 permeabilization procedure was optimized for detection of two types of cyclins. Onecyclin was stained directly with a FITC-conjugated monoclonal antibody (mAb), and the other,indirectly with RPE-Cy5-conjugated secondary antibody, while DNA was stained with the fluorochromeDAPI. mAMSA and mimosine treated MOLT-4 cells were used to test this three-parameter method.Results: Permeabilization with 0.5% Triton-XlOO in PBS containing 1% BSA for 5 min on ice providedoptimal conditions for the simultaneous labelling of two cyclins plus DNA in single cells. It wasfound that the emission spectrum of the three dyes (DAPI, FITC and RPE-Cy5) could be measured withno compensation. Based on cyclinA/cyclinE/DNA flow cytometric analysis, asynchronously growingMOLT-4 cells could be divided into 6 compartments (G1o, G1e, G1l, S, G2, and M) simultaneously,allowing for analysis of cell cycle phase specific perturbations without the necessity of cellsynchronization. Unscheduled cyclin B1 expression was observed in G1 cells treated with mimosine andcyclin E in G2 cells treated with mAMSA. We found that unscheduled cyclin expression paralleledexpected cyclin expression. Conclusion: Thus, three-color FCM analysis of cells may not only beapplied to measure unscheduled vs. expected cyclin expression but may also be used to estimate thefraction of cycling cells in up to 6 cell populations.展开更多
The existing three-parameter single-step time integration methods, such as the Generalized-a method, improve numerical dissipation by modifying equilibrium equation at time points, which cause them to lose accuracy du...The existing three-parameter single-step time integration methods, such as the Generalized-a method, improve numerical dissipation by modifying equilibrium equation at time points, which cause them to lose accuracy due to the interpolation of load vectors. Moreover, these three-parameter methods do not present an available formulation applied to a general secondorder non linear differential equatio n. To solve these problems, this paper proposes an innovative three-parameter single-step method by introducing an additional variable into update equations. Although the present method is spectrally identical to the Generalized-cx method for undamped systems, it possesses higher accuracy since it strictly satisfies the equilibrium equation at time points, and can be readily used to solve nonlinear equations. By the analysis of accuracy, stability, numerical dissipation and dispersion, the optimal second-order implicit and explicit schemes are generated, which can maximize low-frequency accuracy when high-frequency dissipation is specified. To check the performance of the proposed method, several numerical experiments are conducted and the proposed method is compared with a few up-to-date methods.展开更多
The inconsistency of lithium-ion cells degrades battery performance,lifetime and even safety.The complexity of the cell reaction mechanism causes an irregular asymmetrical distribution of various cell parameters,such ...The inconsistency of lithium-ion cells degrades battery performance,lifetime and even safety.The complexity of the cell reaction mechanism causes an irregular asymmetrical distribution of various cell parameters,such as capacity and internal resistance,among others.In this study,the Newman electrochemical model was used to simulate the 1 C discharge curves of 100 LiMn2 O4 pouch cells with parameter variations typically produced in manufacturing processes,and the three-parameter Weibull probability model was used to analyze the dispersion and symmetry of the resulting discharge voltage distributions.The results showed that the dispersion of the voltage distribution was related to the rate of decrease in the discharge voltage,and the symmetry was related to the change in the rate of voltage decrease.The effect of the cells’capacity dominated the voltage distribution thermodynamically during discharge,and the phase transformation process significantly skewed the voltage distribution.The effects of the ohmic drop and polarization voltage on the voltage distribution were primarily kinetic.The presence of current returned the right-skewed voltage distribution caused by phase transformation to a more symmetrical distribution.Thus,the Weibull parameters elucidated the electrochemical behavior during the discharge process,and this method can guide the prediction and control of cell inconsistency,as well as detection and control strategies for cell management systems.展开更多
The evaluation problem with three-parameter interval grey number (T-PIGN) widely exists in real world. To select effective evaluation indicators of the problem, this paper puts forward evaluation index system selectio...The evaluation problem with three-parameter interval grey number (T-PIGN) widely exists in real world. To select effective evaluation indicators of the problem, this paper puts forward evaluation index system selection principle of T-PIGN based on distance entropy model, and gives out evaluation index system selection judgment criterion of T-PIGN. Furthermore, for the redundancy of evaluation index system with T-PIGN, a selection method of evaluation index system with T-PIGN is proposed. Finally, the applicability of the proposed method is verified by concrete examples.展开更多
The two-parameter lognormal distribution is a variant of the normal distribution and the three-parameter lognormal distribution is an extension of the two-parameter lognormal distribution by introducing a location par...The two-parameter lognormal distribution is a variant of the normal distribution and the three-parameter lognormal distribution is an extension of the two-parameter lognormal distribution by introducing a location parameter. The Q-Q plot of the three-parameter lognormal distribution is widely used. To obtain the Q-Q plot one needs to iteratively try different values of the shape parameter and subjectively judge the linearity of the Q-Q plot. In this paper,a mathematical method was proposed to determine the value of the shape parameter so as to simplify the generation of the Q-Q plot. Then a new probability plot was proposed,which was more easily obtained and provided more accurate parameter estimates than the Q-Q plot. These are illustrated by three realworld examples.展开更多
The present paper focuses an optimal policy of an inventory model for deteriorating items with generalized demand rate and deterioration rate. Shortages are allowed and partially backlogged. The salvage value is inclu...The present paper focuses an optimal policy of an inventory model for deteriorating items with generalized demand rate and deterioration rate. Shortages are allowed and partially backlogged. The salvage value is included into deteriorated units. The main objective of the model is to minimize the total cost by optimizing the value of the shortage point, cycle length and order quantity. A numerical example is carried out to illustrate the model and sensitivity analyses of major parameters are discussed.展开更多
This paper applies weighted least square method to estimate the three-parameter power function equation of the fatigue life curve, and uses comprehensive fatigue life coefficient to correct the equation, and at the sa...This paper applies weighted least square method to estimate the three-parameter power function equation of the fatigue life curve, and uses comprehensive fatigue life coefficient to correct the equation, and at the same time combines probability statistics method to bring out the prediction method of structure's three- parameter power function P-S-N curve, finally applies the prediction method to a ship's frame-type elevate, based on the fatigue test data of it's material-SA06 aluminium alloy, to obtain it's structure's three-parameter power function P-S-N curve. Compared with the conventional least square method, the presented method can give展开更多
The power sector is an important factor in ensuring the development of the national economy.Scientific simulation and prediction of power consumption help achieve the balance between power generation and power consump...The power sector is an important factor in ensuring the development of the national economy.Scientific simulation and prediction of power consumption help achieve the balance between power generation and power consumption.In this paper,a Multi-strategy Hybrid Coati Optimizer(MCOA)is used to optimize the parameters of the three-parameter combinatorial optimization model TDGM(1,1,r,ξ,Csz)to realize the simulation and prediction of China's daily electricity consumption.Firstly,a novel MCOA is proposed in this paper,by making the following improvements to the Coati Optimization Algorithm(COA):(ⅰ)Introduce improved circle chaotic mapping strategy.(ⅱ)Fusing Aquila Optimizer,to enhance MCOA's exploration capabilities.(ⅲ)Adopt an adaptive optimal neighborhood jitter learning strategy.Effectively improve MCOA escape from local optimal solutions.(ⅳ)Incorporating Differential Evolution to enhance the diversity of the population.Secondly,the superiority of the MCOA algorithm is verified by comparing it with the newly proposed algorithm,the improved optimiza-tion algorithm,and the hybrid algorithm on the CEC2019 and CEC2020 test sets.Finally,in this paper,MCOA is used to optimize the parameters of TDGM(1,1,r,ξ,Csz),and this model is applied to forecast the daily electricity consumption in China and compared with the predictions of 14 models,including seven intelligent algorithm-optimized TDGM(1,1,r,ξ,Csz),and seven forecasting models.The experimental results show that the error of the proposed method is minimized,which verifies the validity of the proposed method.展开更多
Let{Xi,i∈J}be a family of locally dependent non-negative integer-valued random variables with finite expectations and variances.We consider the sum W=∑_(i∈J)X_(i)and apply Stein's method to establish general up...Let{Xi,i∈J}be a family of locally dependent non-negative integer-valued random variables with finite expectations and variances.We consider the sum W=∑_(i∈J)X_(i)and apply Stein's method to establish general upper error bounds for the total variation distance dTV(W,M),where M represents a threeparameter random variable.As a direct consequence,we obtain a discretized normal approximation for W.As applications,we study four well-known examples in detail:counting vertices where all edges point inward,the birthday problem,counting monochromatic edges in uniformly colored graphs,and triangles in the Erdos-Rényi random graph.Through delicate analysis and computation,we obtain sharper upper error bounds than existing results.展开更多
This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. Th...This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. The method of 3D-VLE was developed to analyze the effects of concrete creep behavior on CFT structures. After the evaluation of the parameters in the proposed creep model, experimental measurements of two prestressed reinforced concrete beams were used to investigate the creep phenomenon of three CFT columns under long-term axial and eccentric load was investigated. The experimentally obtained time-dependent creep behaviour accorded well with the cu~'es obtained from the proposed method. Many factors (such as ratio of long-term load to strength, slenderness ratio, steel ratio, and eccentricity ratio) were considered to obtain the regularity of influence of concrete creep on CFT structures. The analytical results can be consulted in the engineering practice and design.展开更多
Based on the consistency-viscoplastic constitutive model,the static William-Warnke model with three-parameters is modified and a consistency-viscoplastic William-Warnke model with three-parameters is developed that co...Based on the consistency-viscoplastic constitutive model,the static William-Warnke model with three-parameters is modified and a consistency-viscoplastic William-Warnke model with three-parameters is developed that considers the effect of strain rates. Then,the tangent modulus of the consistency viscoplastic model is introduced and an implicit backward Elure iterative algorithm is developed. Comparisons between the numerical simulations and experimental data show that the consistency model properly provides the uniaxial and biaxial dynamic behaviors of concrete. To study the effect of strain rates on the dynamic response of concrete structures,the proposed model is used in the analysis of the dynamic response of a simply-supported beam and the results show that the strain rate has a significant effect on the displacement and stress magnitudes and distributions. Finally,the seismic responses of a 278 m high arch dam are obtained and compared by using the linear elastic model,as well as rate-independent and rate-dependent William-Warnke three-parameter models. The results indicate that the strain rate affects the first principal stresses,and the maximal equivalent viscoplastic strain rate of the arch dam. Numerical calculations and analyses reveal that considering the strain rate is important in the safety assessments of arch dams located in seismically active areas.展开更多
Cutterhead loads are the key mechanical parameters for the strength design of the full face hard rock tunnel boring machine(TBM).Due to the brittle rock-breaking mechanism,the excavation loads acting on cutters fluctu...Cutterhead loads are the key mechanical parameters for the strength design of the full face hard rock tunnel boring machine(TBM).Due to the brittle rock-breaking mechanism,the excavation loads acting on cutters fluctuate strongly and show some randomness.The conventional method that using combinations of some special static loads to perform the strength design of TBM cutterhead may lead to strength failure during working practice.In this paper,a three-dimensional finite element model for coupled Cutterhead–Rock is developed to determine the cutterhead loads.Then the distribution characteristics and the influence factors of cutterhead loads are analyzed based on the numerical results.It is found that,as time changes,the normal and tangential forces acting on cutters and the total torque acting on the cutterhead approximately distribute log normally,while the total thrusts acting on the cutterhead approximately show a normal distribution.Furthermore,the statistical average values of cutterhead loads are proportional to the uniaxial compressive strength(UCS)of cutting rocks.The values also change with the penetration and the diameter of cutterhead following a power function.Based on these findings,we propose a three-parameter model for the mean of cutterhead loads and a method of generating the random cutter forces.Then the strength properties of a typical cutterhead are analyzed in detail using loads generated by the new method.The optimized cutterhead has been successfully applied in engineering.The method in this paper may provide a useful reference for the strength design of TBM cutterhead.展开更多
The dynamic system control circuit board(DSCCB)is one of the most important components for dynamic system of pure electric vehicles. The current detection of the DSCCB is done manually, which is not only inefficient i...The dynamic system control circuit board(DSCCB)is one of the most important components for dynamic system of pure electric vehicles. The current detection of the DSCCB is done manually, which is not only inefficient in the detection but also difficult to guarantee the data accuracy. In order to improve the detection efficiency and accuracy, a new testing system is designed by Labview. The total test time can be further reduced by about 75% compared with the results of the manual detection. In this paper, the three-parameter sine wave curve-fit algorithm theory is applied to the phase delay detection of the current sensor sampling circuit on the DSCCB. This method solves the problem of big error in the phase delay detection.展开更多
The maximum predicting error of the commonly used passive truncated mooring system method may reach 30%due to the difference of dynamic characteristics between the truncated and full-depth mooring line.In this paper,t...The maximum predicting error of the commonly used passive truncated mooring system method may reach 30%due to the difference of dynamic characteristics between the truncated and full-depth mooring line.In this paper,the experimental strategy called three-parameter(displacement,velocity and acceleration)active control method at the truncated point of mooring line is established to implement the synchronous equivalent of motion and force,and the realization of active truncated mooring system for model test is studied theoretically.The influences of threeparameter and one-parameter(displacement)active control strategies on the compensation effects are compared by numerical study.The results show that the established three-parameter active control method can feasibly realize the static and dynamic equivalent of truncated and full-depth mooring system,laying a good foundation for the following physical model test of active truncated mooring system.展开更多
Multiple myeloma (MM) is a type of cancer that remains incurable. In the last decade, most research into MM has focused on investigating the improvement in the therapeutic strategy. Our study assesses the survival pro...Multiple myeloma (MM) is a type of cancer that remains incurable. In the last decade, most research into MM has focused on investigating the improvement in the therapeutic strategy. Our study assesses the survival probability of 48 patients diagnosed with MM based on parametric and non-parametric techniques. We performed parametric survival analysis and found a well-def- ined probability distribution of the survival time to follow three-parameter lognormal. We then estimated the survival probability and compared it with the commonly used non-parametric Kaplan-Meier survival analysis of the survival times. The comparison of the survival probability estimates of the two methods revealed a better survival probability estimate by the parametric method than the Kaplan-Meier. The parametric survival analysis is more robust and efficient because it is based on a well-defined parametric probabilistic distribution, hence preferred over the non-parametric Kaplan-Meier. This study offers therapeutic significance for further enhancement in the treatment strategy of multiple myeloma cancer.展开更多
Using the asymptotic iteration method, we obtain the S-wave solution for a short-range three-parameter central potential with 1/r singularity and with a non-orbital barrier. To the best of our knowledge, this is the f...Using the asymptotic iteration method, we obtain the S-wave solution for a short-range three-parameter central potential with 1/r singularity and with a non-orbital barrier. To the best of our knowledge, this is the first attempt at calculating the energy spectrum for this potential, which was introduced by H. Bahlouli and A. D. Alhaidari and for which they obtained the “potential parameter spectrum”. Our results are also independently verified using a direct method of diagonalizing the Hamiltonian matrix in the J-matrix basis.展开更多
The limitations of using one-parameter to describe the crack-tip fields have prompted investigators to consider better descriptions of the crack tip fields. The two-parameter descriptions, such as J-Q theory, have bee...The limitations of using one-parameter to describe the crack-tip fields have prompted investigators to consider better descriptions of the crack tip fields. The two-parameter descriptions, such as J-Q theory, have been an important development in this field. But under the consideration of plane strain and three-dimensional problem, the effects of the out-of-plane stress can not be neglected In this paper, effects of the in-plane constraint as well as the out-of-plane constraint are studied by aid of the finite element method on the plane strain condition. It is obvious that both the in-plane constraint (Q factor) and the out-of-plane constraint (Tz = σzz/(σxx + σyy) ) affect the crack tip fields.Several important features of the out-of-plane constraint are described out based on the simulation results. At the end of this paper, a three-parameter formulation is proposed, in which both the in-plane constraint and the out-of-plane constraint are considered. Comparing with the results of the FEM numerical simulation, the three-parameter description can provide a better prediction near the crack tip.展开更多
Three-parameter Weibull distribution is one of the preferable distribution models to describe product life. However, it is difficult to estimate its location parameter in the situation of a small size of sample. This ...Three-parameter Weibull distribution is one of the preferable distribution models to describe product life. However, it is difficult to estimate its location parameter in the situation of a small size of sample. This paper presents a stochastic simulation method to estimate the Weibull location parameters according to a small size of sample of product life observations and a large amount of statistically simulated life date. Big data technique is applied to find the relationship between the minimal observation in a product life sample of size <em>n</em> (<em>n</em> ≥ 3) and the Weibull location parameter. An example is presented to demonstrate the applicability and the value of the big data based stochastic simulation method. Comparing with other methods, the stochastic simulation method can be applied to very small size of sample such as the sample size of three, and it is easy to apply.展开更多
Rotation is antisymmetric and therefore is not a coherent element of the classical elastic theory, which is characterized by symmetry. A new theory of linear elasticity is developed from the concept of asymmetric stra...Rotation is antisymmetric and therefore is not a coherent element of the classical elastic theory, which is characterized by symmetry. A new theory of linear elasticity is developed from the concept of asymmetric strain, which is defined as the transpose of the deformation gradient tensor to involve rotation as well as symmetric strain. The new theory basically differs from the prevailing micropolar theory or couple stress theory in that it maintains the same basis as the classical theory of linear elasticity and does not need extra concepts, such as “microrotation” and “couple stresses”. The constitutive relation of the new theory, the three-parameter Hooke’s law, comes from the theorem about isotropic asymmetric linear elastic materials. Concise differential equations of translational motion are derived consequently giving the same velocity formula for P-wave and a different one for S-wave. Differential equations of rotational motion are derived with the introduction of spin, which has an intrinsic connection with rotation. According to the new theory, S-wave essentially has rotation as large as deviatoric strain and should be referred to as “shear wave” in the context of asymmetric strain. There are nine partial differential equations for the deformation harmony condition in the new theory;these are given with the first spatial differentiations of asymmetric strain. Formulas for rotation energy, in addition to those for (symmetric) strain energy, are derived to form a complete set of formulas for the total mechanical energy.展开更多
基金supported in part by National Natural Science Foundation of China(NSFC)under grant 42274139in part by the R&D Department of China National Petroleum Corporation(Investigations on fundamental experiments and advanced theoretical methods in geophysical prospecting applications,2022DQ0604-03).
文摘Seismic wavefields propagate through three-dimensional(3D)space,and their precise characterization is crucial for understanding subsurface structures.Traditional 2D algorithms,due to their limitations,are insufficient to fully represent three-dimensional wavefields.The classic 3D Radon transform algorithm assumes that the wavefield's propagation characteristics are consistent in all directions,which often does not hold true in complex underground media.To address this issue,we present an improved 3D three-parameter Radon algorithm that considers the wavefield variation with azimuth and provides a more accurate wavefield description.However,introducing new parameters to describe the azimuthal varia-tion also poses computational challenges.The new Radon transform operator involves five variables and cannot be simply decomposed into small matrices for efficient computation;instead,it requires large matrix multiplication and inversion operations,significantly increasing the computational load.To overcome this challenge,we have integrated the curvature and frequency parameters,simplifying all frequency operators to the same,thereby significantly improving computation efficiency.Furthermore,existing transform algorithms neglect the lateral variation of seismic amplitudes,leading to discrepancies between the estimated multiples and those in the data.To enhance the amplitude preservation of the algorithm,we employ orthogonal polynomial fitting to capture the amplitude spatial variation in 3D seismic data.Combining these improvements,we propose a fast,amplitude-preserving,3D three-parameter Radon transform algorithm.This algorithm not only enhances computational efficiency while maintaining the original wavefield characteristics,but also improves the representation of seismic data by increasing amplitude fidelity.We validated the algorithm in multiple attenuation using both synthetic and real seismic data.The results demonstrate that the new algorithm significantly improves both accuracy and computational efficiency,providing an effective tool for analyzing seismic wavefields in complex subsurface structures.
基金This project was supported by grants from China Key Basic Research Program Grant (No. G1998051212) the National Natural Sciences Foundation of China (No. 39670265, 39730270 and 39725027) grants from the Science Foundation of Ministry of Public Health, China (No. 202-01-06).
文摘To set up a three-parameter method for cell cycle analysis by two-laser flowcy-tometer, which can detect two types of cyclin plus DNA content in one measurement, and thatanalyze unscheduled expression of cyclins. Methods: Three-color fluorescence was used for analysisof two types of cyclins and DNA content simultaneously in individual cells by two-laser flowcytometry. MOLT-4 cells were used to study the expression of major cyclins in mammalian cells. ATriton-X100 permeabilization procedure was optimized for detection of two types of cyclins. Onecyclin was stained directly with a FITC-conjugated monoclonal antibody (mAb), and the other,indirectly with RPE-Cy5-conjugated secondary antibody, while DNA was stained with the fluorochromeDAPI. mAMSA and mimosine treated MOLT-4 cells were used to test this three-parameter method.Results: Permeabilization with 0.5% Triton-XlOO in PBS containing 1% BSA for 5 min on ice providedoptimal conditions for the simultaneous labelling of two cyclins plus DNA in single cells. It wasfound that the emission spectrum of the three dyes (DAPI, FITC and RPE-Cy5) could be measured withno compensation. Based on cyclinA/cyclinE/DNA flow cytometric analysis, asynchronously growingMOLT-4 cells could be divided into 6 compartments (G1o, G1e, G1l, S, G2, and M) simultaneously,allowing for analysis of cell cycle phase specific perturbations without the necessity of cellsynchronization. Unscheduled cyclin B1 expression was observed in G1 cells treated with mimosine andcyclin E in G2 cells treated with mAMSA. We found that unscheduled cyclin expression paralleledexpected cyclin expression. Conclusion: Thus, three-color FCM analysis of cells may not only beapplied to measure unscheduled vs. expected cyclin expression but may also be used to estimate thefraction of cycling cells in up to 6 cell populations.
基金the National NaturalScience Foundation of China (11672019, 11372021. and 37686003).
文摘The existing three-parameter single-step time integration methods, such as the Generalized-a method, improve numerical dissipation by modifying equilibrium equation at time points, which cause them to lose accuracy due to the interpolation of load vectors. Moreover, these three-parameter methods do not present an available formulation applied to a general secondorder non linear differential equatio n. To solve these problems, this paper proposes an innovative three-parameter single-step method by introducing an additional variable into update equations. Although the present method is spectrally identical to the Generalized-cx method for undamped systems, it possesses higher accuracy since it strictly satisfies the equilibrium equation at time points, and can be readily used to solve nonlinear equations. By the analysis of accuracy, stability, numerical dissipation and dispersion, the optimal second-order implicit and explicit schemes are generated, which can maximize low-frequency accuracy when high-frequency dissipation is specified. To check the performance of the proposed method, several numerical experiments are conducted and the proposed method is compared with a few up-to-date methods.
基金financially supported by the National Natural Science Foundation of China(No.U156405)the GRINM Youth Foundation funded project
文摘The inconsistency of lithium-ion cells degrades battery performance,lifetime and even safety.The complexity of the cell reaction mechanism causes an irregular asymmetrical distribution of various cell parameters,such as capacity and internal resistance,among others.In this study,the Newman electrochemical model was used to simulate the 1 C discharge curves of 100 LiMn2 O4 pouch cells with parameter variations typically produced in manufacturing processes,and the three-parameter Weibull probability model was used to analyze the dispersion and symmetry of the resulting discharge voltage distributions.The results showed that the dispersion of the voltage distribution was related to the rate of decrease in the discharge voltage,and the symmetry was related to the change in the rate of voltage decrease.The effect of the cells’capacity dominated the voltage distribution thermodynamically during discharge,and the phase transformation process significantly skewed the voltage distribution.The effects of the ohmic drop and polarization voltage on the voltage distribution were primarily kinetic.The presence of current returned the right-skewed voltage distribution caused by phase transformation to a more symmetrical distribution.Thus,the Weibull parameters elucidated the electrochemical behavior during the discharge process,and this method can guide the prediction and control of cell inconsistency,as well as detection and control strategies for cell management systems.
文摘The evaluation problem with three-parameter interval grey number (T-PIGN) widely exists in real world. To select effective evaluation indicators of the problem, this paper puts forward evaluation index system selection principle of T-PIGN based on distance entropy model, and gives out evaluation index system selection judgment criterion of T-PIGN. Furthermore, for the redundancy of evaluation index system with T-PIGN, a selection method of evaluation index system with T-PIGN is proposed. Finally, the applicability of the proposed method is verified by concrete examples.
基金National Natural Science Foundation of China(No.71371035)
文摘The two-parameter lognormal distribution is a variant of the normal distribution and the three-parameter lognormal distribution is an extension of the two-parameter lognormal distribution by introducing a location parameter. The Q-Q plot of the three-parameter lognormal distribution is widely used. To obtain the Q-Q plot one needs to iteratively try different values of the shape parameter and subjectively judge the linearity of the Q-Q plot. In this paper,a mathematical method was proposed to determine the value of the shape parameter so as to simplify the generation of the Q-Q plot. Then a new probability plot was proposed,which was more easily obtained and provided more accurate parameter estimates than the Q-Q plot. These are illustrated by three realworld examples.
文摘The present paper focuses an optimal policy of an inventory model for deteriorating items with generalized demand rate and deterioration rate. Shortages are allowed and partially backlogged. The salvage value is included into deteriorated units. The main objective of the model is to minimize the total cost by optimizing the value of the shortage point, cycle length and order quantity. A numerical example is carried out to illustrate the model and sensitivity analyses of major parameters are discussed.
文摘This paper applies weighted least square method to estimate the three-parameter power function equation of the fatigue life curve, and uses comprehensive fatigue life coefficient to correct the equation, and at the same time combines probability statistics method to bring out the prediction method of structure's three- parameter power function P-S-N curve, finally applies the prediction method to a ship's frame-type elevate, based on the fatigue test data of it's material-SA06 aluminium alloy, to obtain it's structure's three-parameter power function P-S-N curve. Compared with the conventional least square method, the presented method can give
基金supported by the National Natural Science Foundation of China(Grant Nos.52375264 and 62376212).
文摘The power sector is an important factor in ensuring the development of the national economy.Scientific simulation and prediction of power consumption help achieve the balance between power generation and power consumption.In this paper,a Multi-strategy Hybrid Coati Optimizer(MCOA)is used to optimize the parameters of the three-parameter combinatorial optimization model TDGM(1,1,r,ξ,Csz)to realize the simulation and prediction of China's daily electricity consumption.Firstly,a novel MCOA is proposed in this paper,by making the following improvements to the Coati Optimization Algorithm(COA):(ⅰ)Introduce improved circle chaotic mapping strategy.(ⅱ)Fusing Aquila Optimizer,to enhance MCOA's exploration capabilities.(ⅲ)Adopt an adaptive optimal neighborhood jitter learning strategy.Effectively improve MCOA escape from local optimal solutions.(ⅳ)Incorporating Differential Evolution to enhance the diversity of the population.Secondly,the superiority of the MCOA algorithm is verified by comparing it with the newly proposed algorithm,the improved optimiza-tion algorithm,and the hybrid algorithm on the CEC2019 and CEC2020 test sets.Finally,in this paper,MCOA is used to optimize the parameters of TDGM(1,1,r,ξ,Csz),and this model is applied to forecast the daily electricity consumption in China and compared with the predictions of 14 models,including seven intelligent algorithm-optimized TDGM(1,1,r,ξ,Csz),and seven forecasting models.The experimental results show that the error of the proposed method is minimized,which verifies the validity of the proposed method.
基金supported by National Natural Science Foundation of China(Grant Nos.12271475 and U23A2064)。
文摘Let{Xi,i∈J}be a family of locally dependent non-negative integer-valued random variables with finite expectations and variances.We consider the sum W=∑_(i∈J)X_(i)and apply Stein's method to establish general upper error bounds for the total variation distance dTV(W,M),where M represents a threeparameter random variable.As a direct consequence,we obtain a discretized normal approximation for W.As applications,we study four well-known examples in detail:counting vertices where all edges point inward,the birthday problem,counting monochromatic edges in uniformly colored graphs,and triangles in the Erdos-Rényi random graph.Through delicate analysis and computation,we obtain sharper upper error bounds than existing results.
文摘This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. The method of 3D-VLE was developed to analyze the effects of concrete creep behavior on CFT structures. After the evaluation of the parameters in the proposed creep model, experimental measurements of two prestressed reinforced concrete beams were used to investigate the creep phenomenon of three CFT columns under long-term axial and eccentric load was investigated. The experimentally obtained time-dependent creep behaviour accorded well with the cu~'es obtained from the proposed method. Many factors (such as ratio of long-term load to strength, slenderness ratio, steel ratio, and eccentricity ratio) were considered to obtain the regularity of influence of concrete creep on CFT structures. The analytical results can be consulted in the engineering practice and design.
基金Naitonal Natural Science Foundation of China Under Grant No.90815026Foundation of National Seismic Bureau Under Grant No.200808074
文摘Based on the consistency-viscoplastic constitutive model,the static William-Warnke model with three-parameters is modified and a consistency-viscoplastic William-Warnke model with three-parameters is developed that considers the effect of strain rates. Then,the tangent modulus of the consistency viscoplastic model is introduced and an implicit backward Elure iterative algorithm is developed. Comparisons between the numerical simulations and experimental data show that the consistency model properly provides the uniaxial and biaxial dynamic behaviors of concrete. To study the effect of strain rates on the dynamic response of concrete structures,the proposed model is used in the analysis of the dynamic response of a simply-supported beam and the results show that the strain rate has a significant effect on the displacement and stress magnitudes and distributions. Finally,the seismic responses of a 278 m high arch dam are obtained and compared by using the linear elastic model,as well as rate-independent and rate-dependent William-Warnke three-parameter models. The results indicate that the strain rate affects the first principal stresses,and the maximal equivalent viscoplastic strain rate of the arch dam. Numerical calculations and analyses reveal that considering the strain rate is important in the safety assessments of arch dams located in seismically active areas.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2013CB035042)the National Natural Science Foundation of China(Grant No.11672202)
文摘Cutterhead loads are the key mechanical parameters for the strength design of the full face hard rock tunnel boring machine(TBM).Due to the brittle rock-breaking mechanism,the excavation loads acting on cutters fluctuate strongly and show some randomness.The conventional method that using combinations of some special static loads to perform the strength design of TBM cutterhead may lead to strength failure during working practice.In this paper,a three-dimensional finite element model for coupled Cutterhead–Rock is developed to determine the cutterhead loads.Then the distribution characteristics and the influence factors of cutterhead loads are analyzed based on the numerical results.It is found that,as time changes,the normal and tangential forces acting on cutters and the total torque acting on the cutterhead approximately distribute log normally,while the total thrusts acting on the cutterhead approximately show a normal distribution.Furthermore,the statistical average values of cutterhead loads are proportional to the uniaxial compressive strength(UCS)of cutting rocks.The values also change with the penetration and the diameter of cutterhead following a power function.Based on these findings,we propose a three-parameter model for the mean of cutterhead loads and a method of generating the random cutter forces.Then the strength properties of a typical cutterhead are analyzed in detail using loads generated by the new method.The optimized cutterhead has been successfully applied in engineering.The method in this paper may provide a useful reference for the strength design of TBM cutterhead.
基金"863"program-saving and new energy vehicles of major projects funded project(2008AA11A154)
文摘The dynamic system control circuit board(DSCCB)is one of the most important components for dynamic system of pure electric vehicles. The current detection of the DSCCB is done manually, which is not only inefficient in the detection but also difficult to guarantee the data accuracy. In order to improve the detection efficiency and accuracy, a new testing system is designed by Labview. The total test time can be further reduced by about 75% compared with the results of the manual detection. In this paper, the three-parameter sine wave curve-fit algorithm theory is applied to the phase delay detection of the current sensor sampling circuit on the DSCCB. This method solves the problem of big error in the phase delay detection.
基金financially supported by the National Natural Science Foundation of China(Grant No.51979030)the Natural Science Foundation of Liaoning Province(Grant No.2021-KF-16-01)the Fundamental Research Funds for the Central Universities。
文摘The maximum predicting error of the commonly used passive truncated mooring system method may reach 30%due to the difference of dynamic characteristics between the truncated and full-depth mooring line.In this paper,the experimental strategy called three-parameter(displacement,velocity and acceleration)active control method at the truncated point of mooring line is established to implement the synchronous equivalent of motion and force,and the realization of active truncated mooring system for model test is studied theoretically.The influences of threeparameter and one-parameter(displacement)active control strategies on the compensation effects are compared by numerical study.The results show that the established three-parameter active control method can feasibly realize the static and dynamic equivalent of truncated and full-depth mooring system,laying a good foundation for the following physical model test of active truncated mooring system.
文摘Multiple myeloma (MM) is a type of cancer that remains incurable. In the last decade, most research into MM has focused on investigating the improvement in the therapeutic strategy. Our study assesses the survival probability of 48 patients diagnosed with MM based on parametric and non-parametric techniques. We performed parametric survival analysis and found a well-def- ined probability distribution of the survival time to follow three-parameter lognormal. We then estimated the survival probability and compared it with the commonly used non-parametric Kaplan-Meier survival analysis of the survival times. The comparison of the survival probability estimates of the two methods revealed a better survival probability estimate by the parametric method than the Kaplan-Meier. The parametric survival analysis is more robust and efficient because it is based on a well-defined parametric probabilistic distribution, hence preferred over the non-parametric Kaplan-Meier. This study offers therapeutic significance for further enhancement in the treatment strategy of multiple myeloma cancer.
文摘Using the asymptotic iteration method, we obtain the S-wave solution for a short-range three-parameter central potential with 1/r singularity and with a non-orbital barrier. To the best of our knowledge, this is the first attempt at calculating the energy spectrum for this potential, which was introduced by H. Bahlouli and A. D. Alhaidari and for which they obtained the “potential parameter spectrum”. Our results are also independently verified using a direct method of diagonalizing the Hamiltonian matrix in the J-matrix basis.
文摘The limitations of using one-parameter to describe the crack-tip fields have prompted investigators to consider better descriptions of the crack tip fields. The two-parameter descriptions, such as J-Q theory, have been an important development in this field. But under the consideration of plane strain and three-dimensional problem, the effects of the out-of-plane stress can not be neglected In this paper, effects of the in-plane constraint as well as the out-of-plane constraint are studied by aid of the finite element method on the plane strain condition. It is obvious that both the in-plane constraint (Q factor) and the out-of-plane constraint (Tz = σzz/(σxx + σyy) ) affect the crack tip fields.Several important features of the out-of-plane constraint are described out based on the simulation results. At the end of this paper, a three-parameter formulation is proposed, in which both the in-plane constraint and the out-of-plane constraint are considered. Comparing with the results of the FEM numerical simulation, the three-parameter description can provide a better prediction near the crack tip.
文摘Three-parameter Weibull distribution is one of the preferable distribution models to describe product life. However, it is difficult to estimate its location parameter in the situation of a small size of sample. This paper presents a stochastic simulation method to estimate the Weibull location parameters according to a small size of sample of product life observations and a large amount of statistically simulated life date. Big data technique is applied to find the relationship between the minimal observation in a product life sample of size <em>n</em> (<em>n</em> ≥ 3) and the Weibull location parameter. An example is presented to demonstrate the applicability and the value of the big data based stochastic simulation method. Comparing with other methods, the stochastic simulation method can be applied to very small size of sample such as the sample size of three, and it is easy to apply.
文摘Rotation is antisymmetric and therefore is not a coherent element of the classical elastic theory, which is characterized by symmetry. A new theory of linear elasticity is developed from the concept of asymmetric strain, which is defined as the transpose of the deformation gradient tensor to involve rotation as well as symmetric strain. The new theory basically differs from the prevailing micropolar theory or couple stress theory in that it maintains the same basis as the classical theory of linear elasticity and does not need extra concepts, such as “microrotation” and “couple stresses”. The constitutive relation of the new theory, the three-parameter Hooke’s law, comes from the theorem about isotropic asymmetric linear elastic materials. Concise differential equations of translational motion are derived consequently giving the same velocity formula for P-wave and a different one for S-wave. Differential equations of rotational motion are derived with the introduction of spin, which has an intrinsic connection with rotation. According to the new theory, S-wave essentially has rotation as large as deviatoric strain and should be referred to as “shear wave” in the context of asymmetric strain. There are nine partial differential equations for the deformation harmony condition in the new theory;these are given with the first spatial differentiations of asymmetric strain. Formulas for rotation energy, in addition to those for (symmetric) strain energy, are derived to form a complete set of formulas for the total mechanical energy.