A new extended distribution called the Odd Exponential Generalized Exponential-Exponential distribution(EOEGE-E)is proposed based on generalization of the odd generalized exponential family(OEGE-E).The statistical pro...A new extended distribution called the Odd Exponential Generalized Exponential-Exponential distribution(EOEGE-E)is proposed based on generalization of the odd generalized exponential family(OEGE-E).The statistical properties of the proposed distribution are derived.The study evaluates the accuracy of six estimation methods under complete samples.Estimation techniques include maximumlikelihood,ordinary least squares,weighted least squares,maximumproduct of spacing,Cramer vonMises,and Anderson-Darling methods.Twomethods of estimation for the involved parameters are considered based on progressively type Ⅱ censored data(PTⅡC).These methods are maximum likelihood and maximum product of spacing.The proposed distribution’s effectiveness was evaluated using different data sets from various fields.The proposed distribution provides a better fit for these datasets than existing probability distributions.展开更多
The estimation of generalized exponential distribution based on progressive censoring with binomial removals is presented, where the number of units removed at each failure time follows a binomial distribution. Maximu...The estimation of generalized exponential distribution based on progressive censoring with binomial removals is presented, where the number of units removed at each failure time follows a binomial distribution. Maximum likelihood estimators of the parameters and their confidence intervals are derived. The expected time required to complete the life test under this censoring scheme is investigated. Finally, the numerical examples are given to illustrate some theoretical results by means of Monte-Carlo simulation.展开更多
This paper deals with the Bayesian estimation of Shannon entropy for the generalized inverse exponential distribution.Assuming that the observed samples are taken from the upper record ranked set sampling(URRSS)and up...This paper deals with the Bayesian estimation of Shannon entropy for the generalized inverse exponential distribution.Assuming that the observed samples are taken from the upper record ranked set sampling(URRSS)and upper record values(URV)schemes.Formulas of Bayesian estimators are derived depending on a gamma prior distribution considering the squared error,linear exponential and precautionary loss functions,in addition,we obtain Bayesian credible intervals.The random-walk Metropolis-Hastings algorithm is handled to generate Markov chain Monte Carlo samples from the posterior distribution.Then,the behavior of the estimates is examined at various record values.The output of the study shows that the entropy Bayesian estimates under URRSS are more convenient than the other estimates under URV in the majority of the situations.Also,the entropy Bayesian estimates perform well as the number of records increases.The obtained results validate the usefulness and efficiency of the URV method.Real data is analyzed for more clarifying purposes which validate the theoretical results.展开更多
In this paper explicit expressions and some recurrence relations are derived for marginal and joint moment generating functions of generalized order statistics from Erlang-truncated exponential distribution. The resul...In this paper explicit expressions and some recurrence relations are derived for marginal and joint moment generating functions of generalized order statistics from Erlang-truncated exponential distribution. The results for k-th record values and order statistics are deduced from the relations derived. Further, a characterizing result of this distribution on using the conditional expectation of function of generalized order statistics is discussed.展开更多
Statistical analysis of lifetime data is a significant topic in social sciences, engineering, reliability, biomedical and others. We use the generalized weighted exponential distribution, as a generator to introduce a...Statistical analysis of lifetime data is a significant topic in social sciences, engineering, reliability, biomedical and others. We use the generalized weighted exponential distribution, as a generator to introduce a new family called generalized weighted exponential-G family, and apply this new generator to provide a new distribution called generalized weighted exponential gombertez distribution. We investigate some of its properties, moment generating function, moments, conditional moments, mean residual lifetime, mean inactivity time, strong mean inactivity time, Rényi entropy, Lorenz curves and Bonferroni. Furthermore, in this model, we estimate the parameters by using maximum likelihood method. We apply this model to a real data-set to show that the new generated distribution can produce a better fit than other classical lifetime models.展开更多
In this paper, we introduce a new extension of the power Lindley distribution, called the exponentiated generalized power Lindley distribution. Several mathematical properties of the new model such as the shapes of th...In this paper, we introduce a new extension of the power Lindley distribution, called the exponentiated generalized power Lindley distribution. Several mathematical properties of the new model such as the shapes of the density and hazard rate functions, the quantile function, moments, mean deviations, Bonferroni and Lorenz curves and order statistics are derived. Moreover, we discuss the parameter estimation of the new distribution using the maximum likelihood and diagonally weighted least squares methods. A simulation study is performed to evaluate the estimators. We use two real data sets to illustrate the applicability of the new model. Empirical findings show that the proposed model provides better fits than some other well-known extensions of Lindley distributions.展开更多
Inference are considered for the dependence competing risks model by using the Marshal-Olkin bivariate exponential distribution. Under generalized progressively hybrid censoring with partially observed failure causes,...Inference are considered for the dependence competing risks model by using the Marshal-Olkin bivariate exponential distribution. Under generalized progressively hybrid censoring with partially observed failure causes, the maximum likelihood estimators are established, and the approximate confidence intervals are also constructed via the observed Fisher information matrix.Moreover, Bayes estimates and highest probability density credible intervals are presented and the importance sampling technique is used to compute corresponding results. Finally, the numerical analysis is proposed for illustration.展开更多
This paper is on a distribution question of Ⅰ type in the combinatorics (see: 'Ke Zhao, Wei WanDi, combinatorial theory, science press, 1981. '). Suppose n distrinct balls, m distinct boxes. The capacity set...This paper is on a distribution question of Ⅰ type in the combinatorics (see: 'Ke Zhao, Wei WanDi, combinatorial theory, science press, 1981. '). Suppose n distrinct balls, m distinct boxes. The capacity set of every box is Now,place the n balls into the m boxes. Thenumber of distinct placed ways is expressed by , and simply by And it is called the distribution number.Main result is:Theorem The exponential generating function of sequence isThus .there is the recurrence relationhere (integer set).展开更多
A new generalized linear exponential distribution (NCLED) is considered in this paper which can be deemed as a new and more flexible extension of linear exponential distribution. Some statistical properties for the ...A new generalized linear exponential distribution (NCLED) is considered in this paper which can be deemed as a new and more flexible extension of linear exponential distribution. Some statistical properties for the NGLED such as the hazard rate function, moments, quantiles are given. The maximum likelihood estimations (MLE) of unknown parameters are also discussed. A simulation study and two real data analyzes are carried out to illustrate that the new distribution is more flexible and effective than other popular distributions in modeling lifetime data.展开更多
It is necessary to test for varying dispersion in generalized nonlinear models.Wei,et al(1998) developed a likelihood ratio test,a score test and their adjustments to test for varying dispersion in continuous exponent...It is necessary to test for varying dispersion in generalized nonlinear models.Wei,et al(1998) developed a likelihood ratio test,a score test and their adjustments to test for varying dispersion in continuous exponential family nonlinear models.This type of problem in the framework of general discrete exponential family nonlinear models is discussed.Two types of varying dispersion,which are random coefficients model and random effects model,are proposed,and corresponding score test statistics are constructed and expressed in simple,easy to use,matrix formulas.展开更多
Generalized exponential distribution is a class of important distribution in lifedata analysis,especially in some skewed lifedata.The Parameter estimation problem for generalized exponential distribution model with gr...Generalized exponential distribution is a class of important distribution in lifedata analysis,especially in some skewed lifedata.The Parameter estimation problem for generalized exponential distribution model with grouped and right-censored data is considered.The maximum likelihood estimators are obtained using the EM algorithm.Some simulations are carried out to illustrate that the proposed algorithm is effective for the model.Finally,a set of medicine data is analyzed by generalized exponential distribution.展开更多
Stochastic weather generators are statistical models that produce random numbers that resemble the observed weather data on which they have been fitted; they are widely used in meteorological and hydrologi- cal simula...Stochastic weather generators are statistical models that produce random numbers that resemble the observed weather data on which they have been fitted; they are widely used in meteorological and hydrologi- cal simulations. For modeling daily precipitation in weather generators, first-order Markov chain–dependent exponential, gamma, mixed-exponential, and lognormal distributions can be used. To examine the perfor- mance of these four distributions for precipitation simulation, they were fitted to observed data collected at 10 stations in the watershed of Yishu River. The parameters of these models were estimated using a maximum-likelihood technique performed using genetic algorithms. Parameters for each calendar month and the Fourier series describing parameters for the whole year were estimated separately. Bayesian infor- mation criterion, simulated monthly mean, maximum daily value, and variance were tested and compared to evaluate the fitness and performance of these models. The results indicate that the lognormal and mixed-exponential distributions give smaller BICs, but their stochastic simulations have overestimation and underestimation respectively, while the gamma and exponential distributions give larger BICs, but their stochastic simulations produced monthly mean precipitation very well. When these distributions were fitted using Fourier series, they all underestimated the above statistics for the months of June, July and August.展开更多
文摘A new extended distribution called the Odd Exponential Generalized Exponential-Exponential distribution(EOEGE-E)is proposed based on generalization of the odd generalized exponential family(OEGE-E).The statistical properties of the proposed distribution are derived.The study evaluates the accuracy of six estimation methods under complete samples.Estimation techniques include maximumlikelihood,ordinary least squares,weighted least squares,maximumproduct of spacing,Cramer vonMises,and Anderson-Darling methods.Twomethods of estimation for the involved parameters are considered based on progressively type Ⅱ censored data(PTⅡC).These methods are maximum likelihood and maximum product of spacing.The proposed distribution’s effectiveness was evaluated using different data sets from various fields.The proposed distribution provides a better fit for these datasets than existing probability distributions.
基金supported by the National Natural Science Foundation of China(70471057)
文摘The estimation of generalized exponential distribution based on progressive censoring with binomial removals is presented, where the number of units removed at each failure time follows a binomial distribution. Maximum likelihood estimators of the parameters and their confidence intervals are derived. The expected time required to complete the life test under this censoring scheme is investigated. Finally, the numerical examples are given to illustrate some theoretical results by means of Monte-Carlo simulation.
基金A.R.A.Alanzi would like to thank the Deanship of Scientific Research at Majmaah University for financial support and encouragement.
文摘This paper deals with the Bayesian estimation of Shannon entropy for the generalized inverse exponential distribution.Assuming that the observed samples are taken from the upper record ranked set sampling(URRSS)and upper record values(URV)schemes.Formulas of Bayesian estimators are derived depending on a gamma prior distribution considering the squared error,linear exponential and precautionary loss functions,in addition,we obtain Bayesian credible intervals.The random-walk Metropolis-Hastings algorithm is handled to generate Markov chain Monte Carlo samples from the posterior distribution.Then,the behavior of the estimates is examined at various record values.The output of the study shows that the entropy Bayesian estimates under URRSS are more convenient than the other estimates under URV in the majority of the situations.Also,the entropy Bayesian estimates perform well as the number of records increases.The obtained results validate the usefulness and efficiency of the URV method.Real data is analyzed for more clarifying purposes which validate the theoretical results.
文摘In this paper explicit expressions and some recurrence relations are derived for marginal and joint moment generating functions of generalized order statistics from Erlang-truncated exponential distribution. The results for k-th record values and order statistics are deduced from the relations derived. Further, a characterizing result of this distribution on using the conditional expectation of function of generalized order statistics is discussed.
文摘Statistical analysis of lifetime data is a significant topic in social sciences, engineering, reliability, biomedical and others. We use the generalized weighted exponential distribution, as a generator to introduce a new family called generalized weighted exponential-G family, and apply this new generator to provide a new distribution called generalized weighted exponential gombertez distribution. We investigate some of its properties, moment generating function, moments, conditional moments, mean residual lifetime, mean inactivity time, strong mean inactivity time, Rényi entropy, Lorenz curves and Bonferroni. Furthermore, in this model, we estimate the parameters by using maximum likelihood method. We apply this model to a real data-set to show that the new generated distribution can produce a better fit than other classical lifetime models.
文摘In this paper, we introduce a new extension of the power Lindley distribution, called the exponentiated generalized power Lindley distribution. Several mathematical properties of the new model such as the shapes of the density and hazard rate functions, the quantile function, moments, mean deviations, Bonferroni and Lorenz curves and order statistics are derived. Moreover, we discuss the parameter estimation of the new distribution using the maximum likelihood and diagonally weighted least squares methods. A simulation study is performed to evaluate the estimators. We use two real data sets to illustrate the applicability of the new model. Empirical findings show that the proposed model provides better fits than some other well-known extensions of Lindley distributions.
基金supported by the National Natural Science Foundation of China(11501433)the Fundamental Research Funds for the Central Universities(JB180711)
文摘Inference are considered for the dependence competing risks model by using the Marshal-Olkin bivariate exponential distribution. Under generalized progressively hybrid censoring with partially observed failure causes, the maximum likelihood estimators are established, and the approximate confidence intervals are also constructed via the observed Fisher information matrix.Moreover, Bayes estimates and highest probability density credible intervals are presented and the importance sampling technique is used to compute corresponding results. Finally, the numerical analysis is proposed for illustration.
文摘This paper is on a distribution question of Ⅰ type in the combinatorics (see: 'Ke Zhao, Wei WanDi, combinatorial theory, science press, 1981. '). Suppose n distrinct balls, m distinct boxes. The capacity set of every box is Now,place the n balls into the m boxes. Thenumber of distinct placed ways is expressed by , and simply by And it is called the distribution number.Main result is:Theorem The exponential generating function of sequence isThus .there is the recurrence relationhere (integer set).
基金Partially supported by National Natural Science Foundation of China(No.11271368)Beijing Philosophy and Social Science Foundation Grant(No.12JGB051)+2 种基金Project of Ministry of Education supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20130004110007)The Key Program of National Philosophy and Social Science Foundation Grant(No.13AZD064)China Statistical Research Project(No.2011LZ031)
文摘A new generalized linear exponential distribution (NCLED) is considered in this paper which can be deemed as a new and more flexible extension of linear exponential distribution. Some statistical properties for the NGLED such as the hazard rate function, moments, quantiles are given. The maximum likelihood estimations (MLE) of unknown parameters are also discussed. A simulation study and two real data analyzes are carried out to illustrate that the new distribution is more flexible and effective than other popular distributions in modeling lifetime data.
基金Supported by the National Natural Science Foundations of China( 1 9631 0 4 0 ) and SSFC( o2 BTJ0 0 1 ) .
文摘It is necessary to test for varying dispersion in generalized nonlinear models.Wei,et al(1998) developed a likelihood ratio test,a score test and their adjustments to test for varying dispersion in continuous exponential family nonlinear models.This type of problem in the framework of general discrete exponential family nonlinear models is discussed.Two types of varying dispersion,which are random coefficients model and random effects model,are proposed,and corresponding score test statistics are constructed and expressed in simple,easy to use,matrix formulas.
文摘Generalized exponential distribution is a class of important distribution in lifedata analysis,especially in some skewed lifedata.The Parameter estimation problem for generalized exponential distribution model with grouped and right-censored data is considered.The maximum likelihood estimators are obtained using the EM algorithm.Some simulations are carried out to illustrate that the proposed algorithm is effective for the model.Finally,a set of medicine data is analyzed by generalized exponential distribution.
基金supported by the National Key Developing Program for Basic Sciences of China (GrantNo. 2010CB951404)Chinese Nature Science Foundation(Grant No. 40971024)the Special Meteorology Project[GYHY(QX)2007-6-1]
文摘Stochastic weather generators are statistical models that produce random numbers that resemble the observed weather data on which they have been fitted; they are widely used in meteorological and hydrologi- cal simulations. For modeling daily precipitation in weather generators, first-order Markov chain–dependent exponential, gamma, mixed-exponential, and lognormal distributions can be used. To examine the perfor- mance of these four distributions for precipitation simulation, they were fitted to observed data collected at 10 stations in the watershed of Yishu River. The parameters of these models were estimated using a maximum-likelihood technique performed using genetic algorithms. Parameters for each calendar month and the Fourier series describing parameters for the whole year were estimated separately. Bayesian infor- mation criterion, simulated monthly mean, maximum daily value, and variance were tested and compared to evaluate the fitness and performance of these models. The results indicate that the lognormal and mixed-exponential distributions give smaller BICs, but their stochastic simulations have overestimation and underestimation respectively, while the gamma and exponential distributions give larger BICs, but their stochastic simulations produced monthly mean precipitation very well. When these distributions were fitted using Fourier series, they all underestimated the above statistics for the months of June, July and August.