With the rapid integration of renewable energy sources,modern power systems are increasingly challenged by heightened volatility and uncertainty.Doubly-fed variable-speed pumped storage units(DFVS-PSUs)have emerged as...With the rapid integration of renewable energy sources,modern power systems are increasingly challenged by heightened volatility and uncertainty.Doubly-fed variable-speed pumped storage units(DFVS-PSUs)have emerged as promising technologies for mitigating grid oscillations and enhancing system flexibility.However,the excitation converters in DFVS-PSUs are prone to significant issues such as elevated common-mode voltage(CMV)and neutral-point voltage(NPV)fluctuations,which can lead to electromagnetic interference and degrade transient performance.To address these challenges,an optimized virtual space vector pulse width modulation(OVSVPWM)strategy is proposed,aiming to suppress CMV and NPV simultaneously through coordinated multi-objective control.Specifically,a dynamic feedback mechanism is introduced to adjust the balancing factor of basic vectors in the synthesized virtual small vector in real-time,achieving autonomous balancing of the NPV.To address the excessive switching actions introduced by the OVSVPWM strategy,a phase duty ratio-based sequence reconstruction method is adopted,which reduces the total number of switching actions to half of the original.A zero-level buffering scheme is employed to reconstruct the single-phase voltage-level output sequence,achieving peak CMV suppression down to udc/6.Simulation results demonstrate that the proposed strategy significantly improves electromagnetic compatibility and operational stability while maintaining high power quality.展开更多
Three-level neutral point clamped(NPC)inverters have been widely applied in the high voltage and high power drive fields.The capacitance voltage balancing algorithm is a hot topic that many specialists and scholars ha...Three-level neutral point clamped(NPC)inverters have been widely applied in the high voltage and high power drive fields.The capacitance voltage balancing algorithm is a hot topic that many specialists and scholars have been working on.V arious capacitance voltage balancing strategies have been studied,in which the redundant short vectors are not fully utilized.In order to increase the capacitance voltage control effect of the short vectors,a new algorithm is proposed.展开更多
Capacitor voltage imbalance is a significant problem for three-level inverters.Due to the mid-point modulation of these inverter topologies,the neutral point potential moves up or down depending on the neutral point c...Capacitor voltage imbalance is a significant problem for three-level inverters.Due to the mid-point modulation of these inverter topologies,the neutral point potential moves up or down depending on the neutral point current direction creating imbalanced voltages among the two capacitors.This imbalanced capacitor voltage causes imbalanced voltage stress among the semiconductor devices and causes increase output voltage and current harmonics.This paper introduces a modified voltage balancing strategy using two-level space vector modulation.By decomposing the three-level space vector diagram into two-level space vector diagram and redistributing the dwell times of the two-level zero space vectors,the modified voltage balancing method ensures minimal NP voltage ripple.Compared to the commonly used NP voltage control method(using 3L SVM[9]),the proposed modified NP voltage control method offers a slightly higher neutral-point voltage ripple and output voltage harmonics but,it has much lower switching loss,code size and execution time.展开更多
Metal-insulator-metal aluminium electrolytic capacitors(MIM-AECs)combine high capacity-density and high breakdown field strength of solid AECs with high-frequency responsibility,wide workingtemperature window and wate...Metal-insulator-metal aluminium electrolytic capacitors(MIM-AECs)combine high capacity-density and high breakdown field strength of solid AECs with high-frequency responsibility,wide workingtemperature window and waterproof properties of MIM nanocapacitors.However,interfacial atomic diffusion poses a major obstacle,preventing the high-voltage MIM-AECs exploitation and thereby hampering their potential and advantages in high-power and high-energy-density applications.Here,an innovative high-voltage MIM-AECs were fabricated.The AlPO_(4)buffer layer is formed on AlO(OH)/AAO/Al surface by using H_(3)PO_(4)treatment,then a stable van der Waals(vdW)SnO_(2)/AlPO_(4)/AAO/Al multilayer was constructed via atomic layer deposition(ALD)technology.Due to higher diffusion barrier and lower carrier migration of SnO_(2)/AlPO_(4)/AAO interfaces,Sn atom diffusion is inhibited and carrier acceleration by electric field is weakened,guaranteeing high breakdown field strength of dielectric AAO and avoiding local breakdown risks.Through partial etching to hydrated AlO(OH)by H_(3)PO_(4)treatment,the tunnel was further opened up to facilitate subsequent ALD-SnO_(2)entry,thus obtaining a high SnO_(2)coverage.The SnO_(2)/AlPO_(4)/AAO/Al capacitors show a comprehensive performance in high-voltage(260 V),hightemperature(335℃),high-humidity(100%RH)and high-frequency response(100 k Hz),outperforming commercial solid-state AECs,and high-energy density(8.6μWh/cm^(2)),markedly exceeding previously reported MIM capacitors.The work lays the foundation for next-generation capacitors with highvoltage,high-frequency,high-temperature and high-humidity resistance.展开更多
Fluoride-based electrolyte exhibits extraordinarily high oxidative stability in high-voltage lithium metal batteries(h-LMBs) due to the inherent low highest occupied molecular orbital(HOMO) of fiuorinated solvents. Ho...Fluoride-based electrolyte exhibits extraordinarily high oxidative stability in high-voltage lithium metal batteries(h-LMBs) due to the inherent low highest occupied molecular orbital(HOMO) of fiuorinated solvents. However, such fascinating properties do not bring long-term cyclability of h-LMBs. One of critical challenges is the interface instability in contacting with the Li metal anode, as fiuorinated solvents are highly susceptible to exceptionally reductive metallic Li attributed to its low lowest unoccupied molecular orbital(LUMO), which leads to significant consumption of the fiuorinated components upon cycling.Herein, attenuating reductive decomposition of fiuorinated electrolytes is proposed to circumvent rapid electrolyte consumption. Specifically, the vinylene carbonate(VC) is selected to tame the reduction decomposition by preferentially forming protective layer on the Li anode. This work, experimentally and computationally, demonstrates the importance of pre-passivation of Li metal anodes at high voltage to attenuate the decomposition of fiuoroethylene carbonate(FEC). It is expected to enrich the understanding of how VC attenuate the reactivity of FEC, thereby extending the cycle life of fiuorinated electrolytes in high-voltage Li-metal batteries.展开更多
Adopting high-voltage Ni-rich cathodes in halide and sulfide-based all-solid-state lithium batteries(ASSLBs)holds great promise for breaking through the 400 Wh kg^(-1)bottleneck.However,both cell configurations are co...Adopting high-voltage Ni-rich cathodes in halide and sulfide-based all-solid-state lithium batteries(ASSLBs)holds great promise for breaking through the 400 Wh kg^(-1)bottleneck.However,both cell configurations are confronted with intricate interfacial challenges in high-voltage regines(>4.5 V),resulting in inadequate cathode utilization and premature cell degradation.Moreover,contrary to previous studies,coupled with LiNi_(0.85)Co_(0.1)Mn_(0.05)O_(2)cathodes,typical halide(Li_(2)ZrCl_(6))-based cells at 4.5 V feature unlimited interfacial degradation and poor long cycle stability,while typical sulfide(Li_(6)PS_(5)Cl)-based cells feature self-limited interfacial degradation and poor initial cycle stability.Herein,this work addresses the high-voltage limitations of Li_(2)ZrCl_(6)and Li_(6)PS_(5)Cl catholyte-based cells by manipulating electrode mass fraction and tailoring interfacial composition,thereby effectively improving interfacial charge-transfer kinetics and(electro)chemical stability within cathodes.After appropriate interface design,both optimized cells at 4.5 V demonstrate remarkably increased initial discharge capacities(>195 mA h g^(-1)at0.1 C),improved cycle stabilities(>80%after 600 cycles at 0.5 C),and enhanced rate performances(>115 mA h g^(-1)at 1.0 C).This work deepens our understanding of high-voltage applications for halide/sulfide electrolytes and provides generalized interfacial design strategies for advancing high-voltage ASSLBs.展开更多
Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In p...Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes.展开更多
Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive cont...Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive control(MPC),which utilizes an extensive mathe-matical model of the voltage regulation system to optimize the control actions over a defined prediction horizon.This predictive feature enables MPC to minimize voltage deviations while accounting for operational constraints,thereby improving stability and performance under dynamic conditions.Thefindings were compared with those derived from an optimal proportional integral derivative(PID)con-troller designed using the artificial bee colony(ABC)algorithm.Although the ABC-PID method adjusts the PID parameters based on historical data,it may be difficult to adapt to real-time changes in system dynamics under constraints.Comprehensive simulations assessed both frameworks,emphasizing performance metrics such as disturbance rejection,response to load changes,and resilience to uncertainties.The results show that both MPC and ABC-PID methods effectively achieved accurate voltage regulation;however,MPC excelled in controlling overshoot and settling time—recording 0.0%and 0.25 s,respectively.This demonstrates greater robustness compared to conventional control methods that optimize PID parameters based on performance criteria derived from actual system behavior,which exhibited settling times and overshoots exceeding 0.41 s and 5.0%,respectively.The controllers were implemented using MATLAB/Simulink software,indicating a significant advancement for power plant engineers pursuing state-of-the-art automatic voltage regulations.展开更多
A new modulation approach was presented for the control of neutral-point (NP) voltage variation in the three-level NP-clamped voltage source inverter, and the average NP current model was established based on vector...A new modulation approach was presented for the control of neutral-point (NP) voltage variation in the three-level NP-clamped voltage source inverter, and the average NP current model was established based on vector diagram partition. Thus, theory base was built for balancing control of NP potential. Theoretical analysis and experimental results indicate that the proposed method for NP balancing control vector synthe- sizing concept based can make the average NP current zero, and do not influence NP potential within every sample period. The effectiveness of proposed research approach was verified by simulative and experimental results.展开更多
The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis...The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.展开更多
Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage...Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage transformer errors, particularly minor variations in multi-channel setups, remains challenging. This paper proposes a method for online error tracking of multi-channel capacitive voltage transformers using a Co-Prediction Matrix. The approach leverages the strong correlation between in-phase channels, particularly the invariance of the signal proportions among them. By establishing a co-prediction matrix based on these proportional relationships, The influence of voltage changes on the primary measurements is mitigated. Analyzing the relationships between the co-prediction matrices over time allows for inferring true measurement errors. Experimental validation with real-world data confirms the effectiveness of the method, demonstrating its capability to continuously track capacitive voltage transformer measurement errors online with precision over extended durations.展开更多
This study examines the influence of magnetic field and temperature on the transient voltage of a polycrystalline silicon radial junction solar cell in a dynamic regime under multispectral illumination. Radial junctio...This study examines the influence of magnetic field and temperature on the transient voltage of a polycrystalline silicon radial junction solar cell in a dynamic regime under multispectral illumination. Radial junction solar cells represent a major advancement in photovoltaic technologies, as they optimize light absorption and charge collection efficiency. The focus is on the impact of the magnetic field and temperature on the decay of transient voltage, which provides crucial information on recombination processes and the lifetime of minority carriers. The results reveal that the magnetic field tends to increase the transient voltage by directly affecting the transient electron density. Indeed, for B > 7 × 10−5 T, the magnetic field prolongs the relaxation time by increasing the transient voltage amplitude. Additionally, rising temperatures accelerate (ranging from 290 K to 450 K) recombination processes, thereby reducing the transient voltage, although this effect is moderated by the presence of a magnetic field. The study highlights the complex interaction between magnetic field and temperature, with significant impacts on the transient behaviour.展开更多
Severe injuries due to electricity are rare,but when they occur,they may cause life-threatening conditions.In order to define the severity of electrical injuries,the most widely used classification is voltage power.In...Severe injuries due to electricity are rare,but when they occur,they may cause life-threatening conditions.In order to define the severity of electrical injuries,the most widely used classification is voltage power.Injuries are mainly classified into two categories as low voltage electrical injuries(LVEI)(<1000 V)and high voltage electrical injuries(>1000 V).Fatal injuries have been reported mostly after high-voltage electric shock.Low-voltage electricity current rarely causes severe trauma and complications.展开更多
This paper explores the impact of back-gate bias (V_(soi)) and supply voltage (V_(DD)) on the single-event upset (SEU) cross section of 0.18μm configurable silicon-on-insulator static random-access memory (SRAM) unde...This paper explores the impact of back-gate bias (V_(soi)) and supply voltage (V_(DD)) on the single-event upset (SEU) cross section of 0.18μm configurable silicon-on-insulator static random-access memory (SRAM) under high linear energy transfer heavyion experimentation.The experimental findings demonstrate that applying a negative back-gate bias to NMOS and a positive back-gate bias to PMOS enhances the SEU resistance of SRAM.Specifically,as the back-gate bias for N-type transistors(V_(nsoi)) decreases from 0 to-10 V,the SEU cross section decreases by 93.23%,whereas an increase in the back-gate bias for P-type transistors (V_(psoi)) from 0 to 10 V correlates with an 83.7%reduction in SEU cross section.Furthermore,a significant increase in the SEU cross section was observed with increase in supply voltage,as evidenced by a 159%surge at V_(DD)=1.98 V compared with the nominal voltage of 1.8 V.To explore the physical mechanisms underlying these experimental data,we analyzed the dependence of the critical charge of the circuit and the collected charge on the bias voltage by simulating SEUs using technology computer-aided design.展开更多
In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law t...In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law that brings the output voltage to the desired level. Due to infinite switching occurring at the desired level, we enhanced the switching control law by allowing a sizeable output voltage ripple. We derived mathematical models that allow one to choose the desired switching frequency. In practice, the existence of the non-ideal properties of the Zeta converter results in steady-state output voltage error. By analyzing the power loss in the zeta converter, we proposed an improved switching control law that eliminates the steady-state output voltage error. The effectiveness of the proposed method is illustrated with simulation results.展开更多
In this letter,we demonstrate the effect ofγirradiation on the lateral AlGaN/GaN Schottky barrier diodes(SBDs)with self-terminated recessed anode structure and low work-function metal tungsten(W)as anode.For a compre...In this letter,we demonstrate the effect ofγirradiation on the lateral AlGaN/GaN Schottky barrier diodes(SBDs)with self-terminated recessed anode structure and low work-function metal tungsten(W)as anode.For a comprehensive evaluation of the radiation-resistance performance of the device,the total dose ofγirradiation is up to 100 kGy with irradiation time of 20 h.Attributed to the barrier lowering effect of the W/GaN interface induced byγirradiation observed in the experiment,the extracted turnon voltage(VON)defined at anode forward current of 1 mA decreases from 0.47 to 0.43 V.Meanwhile,benefiting from the reinforced Schottky interface treated by post-anode-annealing,a high breakdown voltage(BV)of 1.75 kV is obtained for theγ-irradiated AlGaN/GaN SBD,which shows the promising application for the deep-space radiation environment and promotes the development of radiation-resistance research for GaN SBDs.展开更多
The active equalization of lithium-ion batteries involves transferring energy from high-voltage cells to low-voltage cells,ensuring consistent voltage levels across the battery pack and maintaining safety.This paper p...The active equalization of lithium-ion batteries involves transferring energy from high-voltage cells to low-voltage cells,ensuring consistent voltage levels across the battery pack and maintaining safety.This paper presents a voltage balancing circuit and control method.First,a single capacitor method is used to design the circuit topology for energy transfer.Next,real-time voltage detection and control are employed to balance energy between cells.Finally,simulation and experimental results demonstrate the effectiveness of the proposed method,achieving balanced voltages of 3.97 V from initial voltages of 4.10,3.97,and 3.90 V.The proposed circuit is simple,reliable,and effectively prevents overcharge and overdischarge.展开更多
Voltage substrate mapping is a promising tool for the treatment of atrial fibrillation(AF).It is helpful to detect atrial fibrosis,which includes areas with low bipolar voltage,heterogeneous conduction properties,and ...Voltage substrate mapping is a promising tool for the treatment of atrial fibrillation(AF).It is helpful to detect atrial fibrosis,which includes areas with low bipolar voltage,heterogeneous conduction properties,and shortened effective refractory period.The voltage amplitude is typically defined as the maximal peakto-peak level within a specified time window of interest.Contemporary electroanatomic mapping platforms now enable many thousands of data points to be mapped,so that a geometric model of the atrial endocardium is constructable over a short period of time.This mapping procedure is often done with bipolar electrodes to cancel the far-field signal.The recording site coordinates are projected onto an atrial shell,with interpolation of the voltage data across the shell surface.The amplitude of the recorded bipolar electrogram depicted on the threedimensional shell provides detailed information for substrate mapping.Wherever there are areas of low peak-to-peak voltage,it is thought to mark the presence of abnormal tissue properties and conduction.However,uncontrolled variables and environmental factors affecting voltage level include the oncoming electrical activation wavefront direction,the catheter incidence angle,the force applied to the catheter,and the region-variable shape and structure of atrial tissue.Techniques and settings to acquire atrial voltage data for AF analysis have not been standardized.Methods to characterize atrial electrograms are also presently limited.These factors affect quality and reproducibility of the mapping results.Herein,voltage substrate mapping and its variables pertaining to AF and radiofrequency ablation are described and discussed,with suggestions for future work efforts.展开更多
Efficient battery charging requires a power conversion system capable of providing precise voltage regulation tailored to the battery’s needs.This study develops a buck converter with a 36 V input for charging a 14 V...Efficient battery charging requires a power conversion system capable of providing precise voltage regulation tailored to the battery’s needs.This study develops a buck converter with a 36 V input for charging a 14 V battery using the Constant Voltage(CV)method.The system is designed to ensure safe and efficient charging while protecting the battery from overcharging and extending its lifespan.In the proposed design,the converter maintains a constant output voltage while the charging current decreases as the battery approaches full capacity.Pulse Width Modulation(PWM)is used as a control strategy to modify the duty cycle of the converter.This keeps the voltage output stable whenever the load changes.The design process involves simulation and experimental validation to evaluate the system’s performance and efficiency.The test results show the significant impact of Proportional-Integral-Derivative(PID)control on the stability of the output voltage to meet the requirements for 14 V battery charging and the efficiency of the battery charging process.The output voltage becomes more stable,with reduced oscillation and minimal steadystate error.The State of Charge(SOC)increases more stably,controllably,and efficiently thanks to the PID controller’s ability to adjust the duty cycle in real time based on system feedback.This dynamic adjustment ensures that the output current and voltage remain within the optimal range,which directly improves the battery charging process.In addition,PID control significantly improves the dynamic response of the system,reducing overshoot and settling time while maintaining precise voltage regulation.This speeds up the battery charging process and contributes to better energy efficiency,reduced power loss,and extended battery life.This research provides a reliable and cost-effective solution for applications in electric vehicles,renewable energy systems,and other battery-powered devices.展开更多
文摘With the rapid integration of renewable energy sources,modern power systems are increasingly challenged by heightened volatility and uncertainty.Doubly-fed variable-speed pumped storage units(DFVS-PSUs)have emerged as promising technologies for mitigating grid oscillations and enhancing system flexibility.However,the excitation converters in DFVS-PSUs are prone to significant issues such as elevated common-mode voltage(CMV)and neutral-point voltage(NPV)fluctuations,which can lead to electromagnetic interference and degrade transient performance.To address these challenges,an optimized virtual space vector pulse width modulation(OVSVPWM)strategy is proposed,aiming to suppress CMV and NPV simultaneously through coordinated multi-objective control.Specifically,a dynamic feedback mechanism is introduced to adjust the balancing factor of basic vectors in the synthesized virtual small vector in real-time,achieving autonomous balancing of the NPV.To address the excessive switching actions introduced by the OVSVPWM strategy,a phase duty ratio-based sequence reconstruction method is adopted,which reduces the total number of switching actions to half of the original.A zero-level buffering scheme is employed to reconstruct the single-phase voltage-level output sequence,achieving peak CMV suppression down to udc/6.Simulation results demonstrate that the proposed strategy significantly improves electromagnetic compatibility and operational stability while maintaining high power quality.
文摘Three-level neutral point clamped(NPC)inverters have been widely applied in the high voltage and high power drive fields.The capacitance voltage balancing algorithm is a hot topic that many specialists and scholars have been working on.V arious capacitance voltage balancing strategies have been studied,in which the redundant short vectors are not fully utilized.In order to increase the capacitance voltage control effect of the short vectors,a new algorithm is proposed.
文摘Capacitor voltage imbalance is a significant problem for three-level inverters.Due to the mid-point modulation of these inverter topologies,the neutral point potential moves up or down depending on the neutral point current direction creating imbalanced voltages among the two capacitors.This imbalanced capacitor voltage causes imbalanced voltage stress among the semiconductor devices and causes increase output voltage and current harmonics.This paper introduces a modified voltage balancing strategy using two-level space vector modulation.By decomposing the three-level space vector diagram into two-level space vector diagram and redistributing the dwell times of the two-level zero space vectors,the modified voltage balancing method ensures minimal NP voltage ripple.Compared to the commonly used NP voltage control method(using 3L SVM[9]),the proposed modified NP voltage control method offers a slightly higher neutral-point voltage ripple and output voltage harmonics but,it has much lower switching loss,code size and execution time.
基金supported by the National Natural Science Foundation of China(52477221,52202296)the Natural Science Foundation of Shaanxi Province(2023KXJ-246,2022JQ-048)。
文摘Metal-insulator-metal aluminium electrolytic capacitors(MIM-AECs)combine high capacity-density and high breakdown field strength of solid AECs with high-frequency responsibility,wide workingtemperature window and waterproof properties of MIM nanocapacitors.However,interfacial atomic diffusion poses a major obstacle,preventing the high-voltage MIM-AECs exploitation and thereby hampering their potential and advantages in high-power and high-energy-density applications.Here,an innovative high-voltage MIM-AECs were fabricated.The AlPO_(4)buffer layer is formed on AlO(OH)/AAO/Al surface by using H_(3)PO_(4)treatment,then a stable van der Waals(vdW)SnO_(2)/AlPO_(4)/AAO/Al multilayer was constructed via atomic layer deposition(ALD)technology.Due to higher diffusion barrier and lower carrier migration of SnO_(2)/AlPO_(4)/AAO interfaces,Sn atom diffusion is inhibited and carrier acceleration by electric field is weakened,guaranteeing high breakdown field strength of dielectric AAO and avoiding local breakdown risks.Through partial etching to hydrated AlO(OH)by H_(3)PO_(4)treatment,the tunnel was further opened up to facilitate subsequent ALD-SnO_(2)entry,thus obtaining a high SnO_(2)coverage.The SnO_(2)/AlPO_(4)/AAO/Al capacitors show a comprehensive performance in high-voltage(260 V),hightemperature(335℃),high-humidity(100%RH)and high-frequency response(100 k Hz),outperforming commercial solid-state AECs,and high-energy density(8.6μWh/cm^(2)),markedly exceeding previously reported MIM capacitors.The work lays the foundation for next-generation capacitors with highvoltage,high-frequency,high-temperature and high-humidity resistance.
基金supported by the National Natural Science Foundation of China (Nos. 22379121, 62005216)Basic Public Welfare Research Program of Zhejiang (No. LQ22F050013)+1 种基金Zhejiang Province Key Laboratory of Flexible Electronics Open Fund (2023FE005)Shenzhen Foundation Research Program (No. JCYJ20220530112812028)。
文摘Fluoride-based electrolyte exhibits extraordinarily high oxidative stability in high-voltage lithium metal batteries(h-LMBs) due to the inherent low highest occupied molecular orbital(HOMO) of fiuorinated solvents. However, such fascinating properties do not bring long-term cyclability of h-LMBs. One of critical challenges is the interface instability in contacting with the Li metal anode, as fiuorinated solvents are highly susceptible to exceptionally reductive metallic Li attributed to its low lowest unoccupied molecular orbital(LUMO), which leads to significant consumption of the fiuorinated components upon cycling.Herein, attenuating reductive decomposition of fiuorinated electrolytes is proposed to circumvent rapid electrolyte consumption. Specifically, the vinylene carbonate(VC) is selected to tame the reduction decomposition by preferentially forming protective layer on the Li anode. This work, experimentally and computationally, demonstrates the importance of pre-passivation of Li metal anodes at high voltage to attenuate the decomposition of fiuoroethylene carbonate(FEC). It is expected to enrich the understanding of how VC attenuate the reactivity of FEC, thereby extending the cycle life of fiuorinated electrolytes in high-voltage Li-metal batteries.
基金supported by the National Key R&D Program of China(2022YFB3803505)National Natural Scientific Foundation of China(U21A2080&22479009)National Related Project and the Fundamental Research Funds for the Central Universities(FRF-TP-22-01C2)。
文摘Adopting high-voltage Ni-rich cathodes in halide and sulfide-based all-solid-state lithium batteries(ASSLBs)holds great promise for breaking through the 400 Wh kg^(-1)bottleneck.However,both cell configurations are confronted with intricate interfacial challenges in high-voltage regines(>4.5 V),resulting in inadequate cathode utilization and premature cell degradation.Moreover,contrary to previous studies,coupled with LiNi_(0.85)Co_(0.1)Mn_(0.05)O_(2)cathodes,typical halide(Li_(2)ZrCl_(6))-based cells at 4.5 V feature unlimited interfacial degradation and poor long cycle stability,while typical sulfide(Li_(6)PS_(5)Cl)-based cells feature self-limited interfacial degradation and poor initial cycle stability.Herein,this work addresses the high-voltage limitations of Li_(2)ZrCl_(6)and Li_(6)PS_(5)Cl catholyte-based cells by manipulating electrode mass fraction and tailoring interfacial composition,thereby effectively improving interfacial charge-transfer kinetics and(electro)chemical stability within cathodes.After appropriate interface design,both optimized cells at 4.5 V demonstrate remarkably increased initial discharge capacities(>195 mA h g^(-1)at0.1 C),improved cycle stabilities(>80%after 600 cycles at 0.5 C),and enhanced rate performances(>115 mA h g^(-1)at 1.0 C).This work deepens our understanding of high-voltage applications for halide/sulfide electrolytes and provides generalized interfacial design strategies for advancing high-voltage ASSLBs.
基金financial support by National Natural Science Foundation(NNSF)of China(Nos.52202269,52002248,U23B2069,22309162)Shenzhen Science and Technology program(No.20220810155330003)+1 种基金Shenzhen Basic Research Project(No.JCYJ20190808163005631)Xiangjiang Lab(22XJ01007).
文摘Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes.
文摘Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive control(MPC),which utilizes an extensive mathe-matical model of the voltage regulation system to optimize the control actions over a defined prediction horizon.This predictive feature enables MPC to minimize voltage deviations while accounting for operational constraints,thereby improving stability and performance under dynamic conditions.Thefindings were compared with those derived from an optimal proportional integral derivative(PID)con-troller designed using the artificial bee colony(ABC)algorithm.Although the ABC-PID method adjusts the PID parameters based on historical data,it may be difficult to adapt to real-time changes in system dynamics under constraints.Comprehensive simulations assessed both frameworks,emphasizing performance metrics such as disturbance rejection,response to load changes,and resilience to uncertainties.The results show that both MPC and ABC-PID methods effectively achieved accurate voltage regulation;however,MPC excelled in controlling overshoot and settling time—recording 0.0%and 0.25 s,respectively.This demonstrates greater robustness compared to conventional control methods that optimize PID parameters based on performance criteria derived from actual system behavior,which exhibited settling times and overshoots exceeding 0.41 s and 5.0%,respectively.The controllers were implemented using MATLAB/Simulink software,indicating a significant advancement for power plant engineers pursuing state-of-the-art automatic voltage regulations.
文摘A new modulation approach was presented for the control of neutral-point (NP) voltage variation in the three-level NP-clamped voltage source inverter, and the average NP current model was established based on vector diagram partition. Thus, theory base was built for balancing control of NP potential. Theoretical analysis and experimental results indicate that the proposed method for NP balancing control vector synthe- sizing concept based can make the average NP current zero, and do not influence NP potential within every sample period. The effectiveness of proposed research approach was verified by simulative and experimental results.
基金funded by the State Grid Corporation Science and Technology Project(5108-202218280A-2-391-XG).
文摘The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.
文摘Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage transformer errors, particularly minor variations in multi-channel setups, remains challenging. This paper proposes a method for online error tracking of multi-channel capacitive voltage transformers using a Co-Prediction Matrix. The approach leverages the strong correlation between in-phase channels, particularly the invariance of the signal proportions among them. By establishing a co-prediction matrix based on these proportional relationships, The influence of voltage changes on the primary measurements is mitigated. Analyzing the relationships between the co-prediction matrices over time allows for inferring true measurement errors. Experimental validation with real-world data confirms the effectiveness of the method, demonstrating its capability to continuously track capacitive voltage transformer measurement errors online with precision over extended durations.
文摘This study examines the influence of magnetic field and temperature on the transient voltage of a polycrystalline silicon radial junction solar cell in a dynamic regime under multispectral illumination. Radial junction solar cells represent a major advancement in photovoltaic technologies, as they optimize light absorption and charge collection efficiency. The focus is on the impact of the magnetic field and temperature on the decay of transient voltage, which provides crucial information on recombination processes and the lifetime of minority carriers. The results reveal that the magnetic field tends to increase the transient voltage by directly affecting the transient electron density. Indeed, for B > 7 × 10−5 T, the magnetic field prolongs the relaxation time by increasing the transient voltage amplitude. Additionally, rising temperatures accelerate (ranging from 290 K to 450 K) recombination processes, thereby reducing the transient voltage, although this effect is moderated by the presence of a magnetic field. The study highlights the complex interaction between magnetic field and temperature, with significant impacts on the transient behaviour.
文摘Severe injuries due to electricity are rare,but when they occur,they may cause life-threatening conditions.In order to define the severity of electrical injuries,the most widely used classification is voltage power.Injuries are mainly classified into two categories as low voltage electrical injuries(LVEI)(<1000 V)and high voltage electrical injuries(>1000 V).Fatal injuries have been reported mostly after high-voltage electric shock.Low-voltage electricity current rarely causes severe trauma and complications.
基金supported by the National Key Laboratory of Materials Behavior and Evaluation Technology in Space Environment(No.6142910220208)National Natural Science Foundation of China(Nos.12105341 and 12035019)the opening fund of Key Laboratory of Silicon Device and Technology,Chinese Academy of Sciences(No.KLSDTJJ2022-3).
文摘This paper explores the impact of back-gate bias (V_(soi)) and supply voltage (V_(DD)) on the single-event upset (SEU) cross section of 0.18μm configurable silicon-on-insulator static random-access memory (SRAM) under high linear energy transfer heavyion experimentation.The experimental findings demonstrate that applying a negative back-gate bias to NMOS and a positive back-gate bias to PMOS enhances the SEU resistance of SRAM.Specifically,as the back-gate bias for N-type transistors(V_(nsoi)) decreases from 0 to-10 V,the SEU cross section decreases by 93.23%,whereas an increase in the back-gate bias for P-type transistors (V_(psoi)) from 0 to 10 V correlates with an 83.7%reduction in SEU cross section.Furthermore,a significant increase in the SEU cross section was observed with increase in supply voltage,as evidenced by a 159%surge at V_(DD)=1.98 V compared with the nominal voltage of 1.8 V.To explore the physical mechanisms underlying these experimental data,we analyzed the dependence of the critical charge of the circuit and the collected charge on the bias voltage by simulating SEUs using technology computer-aided design.
文摘In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law that brings the output voltage to the desired level. Due to infinite switching occurring at the desired level, we enhanced the switching control law by allowing a sizeable output voltage ripple. We derived mathematical models that allow one to choose the desired switching frequency. In practice, the existence of the non-ideal properties of the Zeta converter results in steady-state output voltage error. By analyzing the power loss in the zeta converter, we proposed an improved switching control law that eliminates the steady-state output voltage error. The effectiveness of the proposed method is illustrated with simulation results.
基金supported in part by the Key Research and Development Projects of Shaanxi Province(Grant No.2024GX-YBXM-082)in part by the Natural Science Basic Research Program of Shaanxi Province(Grant No.2023-JC-JQ-56)+2 种基金in part by the Fundamental Research Funds for the Central Universities(Grant Nos.QTZX23076,XJSJ25014)in part by the funding of the National Key Research and Development Program of China(Grant No.2022YFB3604400)in part by the China Postdoctoral Science Foundation(Grant No.2021TQ0256).
文摘In this letter,we demonstrate the effect ofγirradiation on the lateral AlGaN/GaN Schottky barrier diodes(SBDs)with self-terminated recessed anode structure and low work-function metal tungsten(W)as anode.For a comprehensive evaluation of the radiation-resistance performance of the device,the total dose ofγirradiation is up to 100 kGy with irradiation time of 20 h.Attributed to the barrier lowering effect of the W/GaN interface induced byγirradiation observed in the experiment,the extracted turnon voltage(VON)defined at anode forward current of 1 mA decreases from 0.47 to 0.43 V.Meanwhile,benefiting from the reinforced Schottky interface treated by post-anode-annealing,a high breakdown voltage(BV)of 1.75 kV is obtained for theγ-irradiated AlGaN/GaN SBD,which shows the promising application for the deep-space radiation environment and promotes the development of radiation-resistance research for GaN SBDs.
基金funded by the Basic Science(Natural Science)Research Project of Colleges and Universities in Jiangsu Province,Grant Number 22KJD470002.
文摘The active equalization of lithium-ion batteries involves transferring energy from high-voltage cells to low-voltage cells,ensuring consistent voltage levels across the battery pack and maintaining safety.This paper presents a voltage balancing circuit and control method.First,a single capacitor method is used to design the circuit topology for energy transfer.Next,real-time voltage detection and control are employed to balance energy between cells.Finally,simulation and experimental results demonstrate the effectiveness of the proposed method,achieving balanced voltages of 3.97 V from initial voltages of 4.10,3.97,and 3.90 V.The proposed circuit is simple,reliable,and effectively prevents overcharge and overdischarge.
文摘Voltage substrate mapping is a promising tool for the treatment of atrial fibrillation(AF).It is helpful to detect atrial fibrosis,which includes areas with low bipolar voltage,heterogeneous conduction properties,and shortened effective refractory period.The voltage amplitude is typically defined as the maximal peakto-peak level within a specified time window of interest.Contemporary electroanatomic mapping platforms now enable many thousands of data points to be mapped,so that a geometric model of the atrial endocardium is constructable over a short period of time.This mapping procedure is often done with bipolar electrodes to cancel the far-field signal.The recording site coordinates are projected onto an atrial shell,with interpolation of the voltage data across the shell surface.The amplitude of the recorded bipolar electrogram depicted on the threedimensional shell provides detailed information for substrate mapping.Wherever there are areas of low peak-to-peak voltage,it is thought to mark the presence of abnormal tissue properties and conduction.However,uncontrolled variables and environmental factors affecting voltage level include the oncoming electrical activation wavefront direction,the catheter incidence angle,the force applied to the catheter,and the region-variable shape and structure of atrial tissue.Techniques and settings to acquire atrial voltage data for AF analysis have not been standardized.Methods to characterize atrial electrograms are also presently limited.These factors affect quality and reproducibility of the mapping results.Herein,voltage substrate mapping and its variables pertaining to AF and radiofrequency ablation are described and discussed,with suggestions for future work efforts.
文摘Efficient battery charging requires a power conversion system capable of providing precise voltage regulation tailored to the battery’s needs.This study develops a buck converter with a 36 V input for charging a 14 V battery using the Constant Voltage(CV)method.The system is designed to ensure safe and efficient charging while protecting the battery from overcharging and extending its lifespan.In the proposed design,the converter maintains a constant output voltage while the charging current decreases as the battery approaches full capacity.Pulse Width Modulation(PWM)is used as a control strategy to modify the duty cycle of the converter.This keeps the voltage output stable whenever the load changes.The design process involves simulation and experimental validation to evaluate the system’s performance and efficiency.The test results show the significant impact of Proportional-Integral-Derivative(PID)control on the stability of the output voltage to meet the requirements for 14 V battery charging and the efficiency of the battery charging process.The output voltage becomes more stable,with reduced oscillation and minimal steadystate error.The State of Charge(SOC)increases more stably,controllably,and efficiently thanks to the PID controller’s ability to adjust the duty cycle in real time based on system feedback.This dynamic adjustment ensures that the output current and voltage remain within the optimal range,which directly improves the battery charging process.In addition,PID control significantly improves the dynamic response of the system,reducing overshoot and settling time while maintaining precise voltage regulation.This speeds up the battery charging process and contributes to better energy efficiency,reduced power loss,and extended battery life.This research provides a reliable and cost-effective solution for applications in electric vehicles,renewable energy systems,and other battery-powered devices.