Micro-robots have the characteristics of small size,light weight and flexible movement.To design a micro three-legged crawling robot with multiple motion directions,a novel driving scheme based on the inverse piezoele...Micro-robots have the characteristics of small size,light weight and flexible movement.To design a micro three-legged crawling robot with multiple motion directions,a novel driving scheme based on the inverse piezoelectric effect of piezoelectric ceramics was proposed.The three legs of the robot were equipped with piezoelectric bimorphs as drivers,respectively.The motion principles were analyzed and the overall force analysis was carried out with the theoretical mechanics method.The natural frequency,mode shape and amplitude were analyzed with simulation software COMSOL Multiphysics,the optimal size was determined through parametric analysis,and then the micro three-legged crawling robot was manufactured.The effects of different driving voltages,different driving frequencies,different motion bases and different loads on the motion speed of the robot were tested.It is shown that the maximum speed of single-leg driving was 35.41 cm/s,the switching ability between different motion directions was measured,and the movements in six different directions were achieved.It is demonstrated the feasibility of multi-directional motion of the structure.The research may provide a reference for the design and development of miniature piezoelectric three-legged crawling robots.展开更多
The aim of this work is to demonstrate that interphase power regulators (I</span></span><span style="white-space:normal;"><span style="font-family:"">PR) bring new...The aim of this work is to demonstrate that interphase power regulators (I</span></span><span style="white-space:normal;"><span style="font-family:"">PR) bring new and interesting ultra-solutions that complement those already taken into account by the FACTS (Flexible Alternative Transmission System) in the resolution of the problems related to the power flow in the AC transmission networks. In order to facilitate the understanding of this work, a comparative study of the performances of the two technologies between the UPFC (Unified Power Flow Controller) and RPI was carried out and at the end of which we were able to highlight the preponderance of RPI compared to the UPFC in the bypassing of the short-circuit fault insofar as the latter allows, in particular, an increase in the transformation capacity without an increase in the level of the short-circuit. The decoupled watt-var method has been used to control the UPFC while the RPI is controlled by phase shift. The simulation results are obtained in the Matlab Simulink environment and show the flexibility of the RPI compared to the UPFC in limiting strong contingencies.展开更多
基金supported by the National Natural Science Foundation of China (grant no.51505133)by Key Research Project in Colleges and Universities of Henan Province (23A460010)by Opening Project of Henan Engineering Laboratory of Photoelectric Sensor and Intelligent Measurement and Control,Henan Polytechnic University (grant no.HELPSIMC-2020-006).
文摘Micro-robots have the characteristics of small size,light weight and flexible movement.To design a micro three-legged crawling robot with multiple motion directions,a novel driving scheme based on the inverse piezoelectric effect of piezoelectric ceramics was proposed.The three legs of the robot were equipped with piezoelectric bimorphs as drivers,respectively.The motion principles were analyzed and the overall force analysis was carried out with the theoretical mechanics method.The natural frequency,mode shape and amplitude were analyzed with simulation software COMSOL Multiphysics,the optimal size was determined through parametric analysis,and then the micro three-legged crawling robot was manufactured.The effects of different driving voltages,different driving frequencies,different motion bases and different loads on the motion speed of the robot were tested.It is shown that the maximum speed of single-leg driving was 35.41 cm/s,the switching ability between different motion directions was measured,and the movements in six different directions were achieved.It is demonstrated the feasibility of multi-directional motion of the structure.The research may provide a reference for the design and development of miniature piezoelectric three-legged crawling robots.
文摘The aim of this work is to demonstrate that interphase power regulators (I</span></span><span style="white-space:normal;"><span style="font-family:"">PR) bring new and interesting ultra-solutions that complement those already taken into account by the FACTS (Flexible Alternative Transmission System) in the resolution of the problems related to the power flow in the AC transmission networks. In order to facilitate the understanding of this work, a comparative study of the performances of the two technologies between the UPFC (Unified Power Flow Controller) and RPI was carried out and at the end of which we were able to highlight the preponderance of RPI compared to the UPFC in the bypassing of the short-circuit fault insofar as the latter allows, in particular, an increase in the transformation capacity without an increase in the level of the short-circuit. The decoupled watt-var method has been used to control the UPFC while the RPI is controlled by phase shift. The simulation results are obtained in the Matlab Simulink environment and show the flexibility of the RPI compared to the UPFC in limiting strong contingencies.