It is of great importance to obtain precise trace data,as traces are frequently the sole visible and measurable parameter in most outcrops.The manual recognition and detection of traces on high-resolution three-dimens...It is of great importance to obtain precise trace data,as traces are frequently the sole visible and measurable parameter in most outcrops.The manual recognition and detection of traces on high-resolution three-dimensional(3D)models are relatively straightforward but time-consuming.One potential solution to enhance this process is to use machine learning algorithms to detect the 3D traces.In this study,a unique pixel-wise texture mapper algorithm generates a dense point cloud representation of an outcrop with the precise resolution of the original textured 3D model.A virtual digital image rendering was then employed to capture virtual images of selected regions.This technique helps to overcome limitations caused by the surface morphology of the rock mass,such as restricted access,lighting conditions,and shading effects.After AI-powered trace detection on two-dimensional(2D)images,a 3D data structuring technique was applied to the selected trace pixels.In the 3D data structuring,the trace data were structured through 2D thinning,3D reprojection,clustering,segmentation,and segment linking.Finally,the linked segments were exported as 3D polylines,with each polyline in the output corresponding to a trace.The efficacy of the proposed method was assessed using a 3D model of a real-world case study,which was used to compare the results of artificial intelligence(AI)-aided and human intelligence trace detection.Rosette diagrams,which visualize the distribution of trace orientations,confirmed the high similarity between the automatically and manually generated trace maps.In conclusion,the proposed semi-automatic method was easy to use,fast,and accurate in detecting the dominant jointing system of the rock mass.展开更多
The textures and microstructures of hot-and cold-rolled sheets of an AA 5454 aluminium alloy were studied,with special attention paid to comparing the texture development for the symmetric and asymmetric cold rolling....The textures and microstructures of hot-and cold-rolled sheets of an AA 5454 aluminium alloy were studied,with special attention paid to comparing the texture development for the symmetric and asymmetric cold rolling.Scanning electron microscopy with electron-backscatter diffraction was used to monitor the development of the microstructure in the differently deformed and additionally annealed samples.Details of the formations and transformations of individual texture components occurring during the rolling processes were observed and discussed.The average grain sizes,textures and mechanical properties were correlated and explained for the symmetric and asymmetric cold-rolled samples.The asymmetric rolling is beneficial in terms of deep drawability because it reduces the planar anisotropy of the annealed material due to the decrease of the Cube,Goss,rotated-Cube and η-fibre texture components and at the same time strengthens X1-and X2-fibre texture components which are shear texture components and improve deep drawability.During the asymmetric cold rolling,the temperature increases due to friction,triggering recrystallisation processes and leading to larger grains.It is also confirmed that asymmetric cold rolling uses less rolling force and consequently less energy to produce a final material with better formability,particularly earing.展开更多
Hot deformation with high strain rate has been paid more attention due to its high efficiency and low cost,however,the strain rate dependent dynamic recrystallization(DRX)and texture evolution in hot deformation proce...Hot deformation with high strain rate has been paid more attention due to its high efficiency and low cost,however,the strain rate dependent dynamic recrystallization(DRX)and texture evolution in hot deformation process,which affect the formability of metals,are lack of study.In this work,the DRX behavior and texture evolution of Mg-8Gd-1Er-0.5Zr alloy hot compressed with strain rates of 0.1 s^(−1),1 s^(−1),10 s^(−1) and 50 s^(−1) are studied,and the corresponding dominant mechanisms for DRX and texture weakening are discussed.Results indicated the DRX fraction was 20%and the whole texture intensity was 16.89 MRD when the strain rate was 0.1 s^(−1),but they were 76%and 6.55 MRD,respectively,when the strain rate increased to 50 s^(−1).The increment of DRX fraction is suggested to result from the reduced DRX critical strain and the increased dislocation density as well as velocity,while the weakened whole texture is attributed to the increased DRX grains.At the low strain rate of 0.1 s^(−1),discontinuous DRX(DDRX)was the dominant,but the whole texture was controlled by the deformed grains with the preferred orientation of{0001}⊥CD,because the number of DDRX grains was limited.At the high strain rate of 50 s^(−1),continuous DRX(CDRX)and twin-induced DRX(TDRX)were promoted,and more DRX grains resulted in orientation randomization.The whole texture was mainly weakened by CDRX and TDRX grains,in which CDRX plays a major role.The results of present work are significant for understanding the hot workability of Mg-RE alloys with a high strain rate.展开更多
Conventional rolled Mg-Al alloy sheets typically exhibit strong basal textures that remain and may even strengthen after recrystallization annealing due to the preferential growth of basal-oriented grains,resulting in...Conventional rolled Mg-Al alloy sheets typically exhibit strong basal textures that remain and may even strengthen after recrystallization annealing due to the preferential growth of basal-oriented grains,resulting in poor formability at room temperature.Therefore,the knowledge of recrystallization and grain growth is critical for modifying textures of Mg-Al alloy sheets.The static recrystallization and texture evolution in a cold-rolled dilute Mg-1Al(wt.%)alloy during various annealed temperatures ranging from 300℃ to 450℃,have been investigated using the quasi in-situ electron backscatter diffraction(EBSD)method.The as-rolled Mg-1Al alloy shows a dominant basal texture,which weakens and broadens in the rolling direction(RD)during the subsequent annealing,accompanied by the formation of{1010}texture component.Particularly,the {1010} texture component is more pronounced after annealing at high temperatures.The quasi in-situ EBSD results show that recrystallized grains are mainly induced by shear bands,which exhibit a wide spectrum of orientations with c-axis tilt angles ranging 20°-45°from the normal direction(ND).Orientations of shear band-induced recrystallized grains are retained during the entire recrystallization process,resulting in a reduction in the texture intensity.Moreover,recrystallized grains belonging to the {1010}texture component grow preferentially compared to those with other orientations,which is attributed to low energy grain boundaries,especially grain boundaries with∼30°misorientation angles.Furthermore,the high temperature annealing facilitates the rapid growth of grain boundaries having a 30°misorientation angle,leading to the occurrence of distinct {1010} texture after annealing at 450℃ for 1 h.The results provide insights for texture modification of rare earth-free low-alloyed Mg alloys by controlling annealing parameters.展开更多
Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environ...Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environmental science research,ecological and environmental monitoring projects,disaster response,and emergency management.A key method employed in these vehicles for achieving high-precision positioning is LiDAR(lightlaser detection and ranging)-Visual Simultaneous Localization and Mapping(SLAM).However,maintaining highprecision localization in complex scenarios,such as degraded environments or when dynamic objects are present,remains a significant challenge.To address this issue,we integrate both semantic and texture information from LiDAR and cameras to enhance the robustness and efficiency of data registration.Specifically,semantic information simplifies the modeling of scene elements,reducing the reliance on dense point clouds,which can be less efficient.Meanwhile,visual texture information complements LiDAR-Visual localization by providing additional contextual details.By incorporating semantic and texture details frompaired images and point clouds,we significantly improve the quality of data association,thereby increasing the success rate of localization.This approach not only enhances the operational capabilities of ecological monitoring vehicles in complex environments but also contributes to improving the overall efficiency and effectiveness of ecological monitoring and environmental protection efforts.展开更多
To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D lea...To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.展开更多
Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma ...Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.展开更多
Impact of texture type on the magnetic properties of ultrahigh density perpendicular magnetic recording media L1_(0)-FePt thin film was investigated,so were the texture formation and evolution mechanism.Reuss,Voigt,an...Impact of texture type on the magnetic properties of ultrahigh density perpendicular magnetic recording media L1_(0)-FePt thin film was investigated,so were the texture formation and evolution mechanism.Reuss,Voigt,and Hill models were used to determine the anisotropic elastic modulus of L1_(0)-FePt thin film with fiber texture.Then,the elastic strain energies of thin films under various stress conditions were calculated.Results reveal that the stress condition has a significant influence on the fiber texture evolution.When the L1_(0)-FePt thin film is subjected to compressive in-plane strain prior to ordering phase transformation,the formation of{100}fiber texture is promoted.On the contrary,the ordering phase transformation under tensile in-plane strain promotes the{001}fiber texture formation.展开更多
Efficient tool condition monitoring techniques help to realize intelligent management of tool life and reduce tool usage costs.In this paper,the influence of different wear degrees of ball-end milling cutters on the t...Efficient tool condition monitoring techniques help to realize intelligent management of tool life and reduce tool usage costs.In this paper,the influence of different wear degrees of ball-end milling cutters on the texture shape of machining tool marks is investigated,and a method is proposed for predicting the wear state(including the position and degree of tool wear)of ball-end milling cutters based on entropy measurement of tool mark texture images.Firstly,data samples are prepared through wear experiments,and the change law of the tool mark texture shape with the tool wear state is analyzed.Then,a two-dimensional sample entropy algorithm is developed to quantify the texture morphology.Finally,the processing parameters and tool attitude are integrated into the prediction process to predict the wear value and wear position of the ball end milling cutter.After testing,the correlation between the predicted value and the standard value of the proposed tool condition monitoring method reaches 95.32%,and the accuracy reaches 82.73%,indicating that the proposed method meets the requirement of tool condition monitoring.展开更多
The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated cata...The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP.展开更多
In this work,a good balance of strength and ductility(a yield strength of 185 MPa and a uniform elongation of 20%)has been obtained in a dilute Mg-1.8Zn-0.3Y-0.3Ca-0.3Zr(wt.%)alloy using hard plate rolling(HPR)followe...In this work,a good balance of strength and ductility(a yield strength of 185 MPa and a uniform elongation of 20%)has been obtained in a dilute Mg-1.8Zn-0.3Y-0.3Ca-0.3Zr(wt.%)alloy using hard plate rolling(HPR)followed by annealing,with a low anisotropy in mechanical properties.More importantly,the HPR-annealed alloy shows an excellent formability at the same time,i.e.,the index Erichsen(I.E.)value reaches 7.9 mm(the Erichsen cupping test)at room temperature,which is higher compared with the Mg-1.8Zn-0.3Y-0.3Ca0.3Zr alloy produced by conventional multi-pass rolling(CR)followed by annealing.The excellent synergy of strength and formability of the HPR-annealed alloy is mainly attributed to a weak elliptical ring texture,as well as finer and denser Zn_(2)Zr_(3)precipitates.The formation of weak elliptical ring texture is related to the preferential co-segregation of Zn and Ca elements at boundaries of basal grains with smal misorientation angles during annealing,which inhibits the growth of basal grains and promotes the preferential growth of non-basal grains At the same time,in comparison with the CR-annealed alloy,the HPR-annealed alloy contains finer and denser Zn_(2)Zr_(3)precipitates that ar less likely to become sources of cracks,leading to the higher strength and formability of the HPR-annealed alloy.The results in this work can provide reference for the development of high strength Mg alloy sheets with excellent room temperature formability,which also shed light on mitigating planar anisotropy in mechanical properties for Mg alloy sheets.展开更多
Molecular dynamics(MD)simulation is employed to investigate the deformation behavior under various loading paths and strain rates of nanocrystalline magnesium(NC Mg)with[0001]texture.Atomic-scale structural evolution ...Molecular dynamics(MD)simulation is employed to investigate the deformation behavior under various loading paths and strain rates of nanocrystalline magnesium(NC Mg)with[0001]texture.Atomic-scale structural evolution of NC Mg was performed under uniaxial and biaxial loadings.In tension process,compression twins and basal slip dominate,while the compression process is dominated by tension twins.The activation mechanism of twinning is highly sensitive to the loading path and grain orientation.Meanwhile,the effect of strain rate on the structural evolution of NC Mg was investigated.It is found that the effect of strain rate on the plastic deformation of NC Mg is reflected through the plasticity delays and the way to release the stress.As the strain rate decreases,the plastic deformation mechanism gradually changes from intragranular to grain boundary.Some significant potential deformation mechanisms in the loading process were studied.It is observed that{1121}twins nucleated inside the grains,and the thickening process is completed by basal〈a〉slip of the twin boundary.The strain compatibility between twins is automatically optimized with loading.Moreover,the detwinning mechanism caused by the interaction between twins and basal stacking faults is clarified.展开更多
Gallium nitride(GaN),as a third-generation semiconductor,is highly attractive due to its exceptional physical and chemical properties.Laser direct writing offers an efficient method for the precise processing of hard ...Gallium nitride(GaN),as a third-generation semiconductor,is highly attractive due to its exceptional physical and chemical properties.Laser direct writing offers an efficient method for the precise processing of hard and brittle materials.In this work,various types of surface microtexture were processed on GaN epilayers using a femtosecond laser with a wavelength of 1030 nm.The effects of the laser energy,singlepulse interval,number of pulses,and number of scan passes on groove machining were investigated with a view to achieving high-quality micromachining.The depth,width,surface morphology,and roughness of the grooves were analyzed using scanning electron microscopy,laser scanning confocal microscopy,and atomic force microscopy.Damage and stress were characterized at the microscale using Raman spectroscopy.High-quality precision machining of different types of periodic surface microtexture at 40 mW laser power was achieved by controlling the process parameters and laser trajectory.Finally,an initial exploration was conducted to examine vector-light-based microand nanostructure processing.The findings demonstrate the potential of femtosecond lasers for efficient micromachining of hard and brittle materials without the creation of heat-affected zones or microcracks.The high-quality textured structures achieved through this processing technique have broad and promising applications in optoelectronic devices and tribology.展开更多
The microstructure and texture evolution of Mg-xAl-1Zn-1Y-0.1Mn alloys are systematically analyzed.There is no effect of Al addition on grain refinement in the Mg-1Zn-1Y-0.1Mn alloy,but the addition of 0.5 wt.%or more...The microstructure and texture evolution of Mg-xAl-1Zn-1Y-0.1Mn alloys are systematically analyzed.There is no effect of Al addition on grain refinement in the Mg-1Zn-1Y-0.1Mn alloy,but the addition of 0.5 wt.%or more Al element dramatically changes texture from a weak texture to a strong basal texture.The predominant second phase particle of Mg_(3)Zn_(3)Y_(2) phase in the Mg-1Zn-1Y-0.1Mn alloy changes to Al_(2)Y phase by the addition of only 0.1 wt.%Al element,and the concentrations of dissolved Y element in the 0Al,0.1Al,0.3Al,0.5Al and 1Al alloys are 0.50,0.31,0.23,0.15 and 0.06 wt.%,respectively.Although the 0.5 wt.%or more Al-added alloys have higher Schmid factor for prismatic(a)slip than the 0.3 wt.%or less Al-added alloys,the lower Al containing alloys show much higher activity of prismatic (a)slip than the higher Al containing alloys.It demonstrates that the addition of high amount of Al element in Mg-Zn-RE alloy dramatically decrease the dissolved Y element,resulting in a significant deterioration of activity of prismaticslip and consequently a poor formability at room temperature.展开更多
This study examines the development of painting techniques of Chinese ink wash landscape paintings,pays attention to its unique brush and ink language and features of the representation of elements,and deeply analyzes...This study examines the development of painting techniques of Chinese ink wash landscape paintings,pays attention to its unique brush and ink language and features of the representation of elements,and deeply analyzes the artistic characteristics of digital ink wash texture materials.The research focuses on key aspects such as the ink brushstrokes with the combination of emptiness and reality,the profound and serene ink wash space,and the extremely ingenious position layout.It proposes a construction path of digital ink wash texture materials based on the Blender material node system.This method makes use of the flexibility of the Blender material node system to successfully simulate highly realistic digital ink wash textures.It can not only construct static ink wash textures but also realize the dynamic transformation of static ink wash works through animation nodes and procedural control,thereby enhancing the artistic expression of digital ink wash works.The proposal and implementation of this method expand the application scope of the Blender material node system,help deeply explore the potential of digital ink wash art,and open up a brand new research path for constructing digital ink wash textures.展开更多
In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring t...In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring the scientific development trend and research hotspots in this field.The results show that the number of published documents shows a fluctuating upward trend,and the significant growth rate reflects the role of policy orientation in promoting the concept of compact city.The co-occurrence analysis of keywords reveals the research hotspots of“compact city”,“recreation space”and“urban park”,while the emergence of new keywords such as“vertical city”and“spatial justice”indicates the new trend of recent research.The cluster analysis and timeline map further show the evolution of research themes,with“compact city”being the largest cluster and having rich connections with other themes such as“urban design”and“urban park”.展开更多
The effect of hot band annealing processes—batch annealing and continuous annealing—on the texture evolution and ridging performance of ferritic stainless steel was investigated.The surface and central layers of the...The effect of hot band annealing processes—batch annealing and continuous annealing—on the texture evolution and ridging performance of ferritic stainless steel was investigated.The surface and central layers of the hot band exhibited strong shear and plane deformation textures,respectively.After batch annealing,the texture intensity of the hot-rolled sheet texture significantly decreased,and a weak recrystallization texture appeared,while fully recrystallized grains occurred after continuous annealing.A complete recrystallized{111}texture was obtained after recrystallization annealing.The sheet subjected to continuous annealing exhibited the highest intensity of{111}texture,which was accompanied by a dispersed grain orientation distribution,resulting in the lowest ridging height.展开更多
Early detection of convective clouds is vital for minimizing hazardous impacts.Forecasting convective initiation(CI)using current multispectral geostationary meteorological satellites is often challenged by high false...Early detection of convective clouds is vital for minimizing hazardous impacts.Forecasting convective initiation(CI)using current multispectral geostationary meteorological satellites is often challenged by high false-alarm rates and missed detections caused by limited resolution.In contrast,high-resolution earth observation satellites offer more detailed texture information,improving early detection capabilities.The authors propose a novel methodology that integrates the advanced features of China’s latest-generation satellites,Gaofen-4(GF-4)and Fengyun-4A(FY-4A).This fusion method retains GF’s high-resolution details and FY-4A’s multispectral information.Two cases from different observational scenarios and weather conditions under GF-4’s staring mode were carried out to compare the CI forecast results based on fused data and solely on FY-4A data.The fused data demonstrated superior performance in detecting smaller-scale convective clouds,enabling earlier forecasting with a lead time of 15–30 minutes,and more accurate location identification.Integrating high-resolution earth observation satellites into early convective cloud detection provides valuable insights for forecasters and decision-makers,particularly given the current resolution limitations of geostationary meteorological satellites.展开更多
The tension-compression asymmetry presents notable challenges for the application of magnesium alloys in many fields.In this study,the solid-solution treated Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy's tension-compression a...The tension-compression asymmetry presents notable challenges for the application of magnesium alloys in many fields.In this study,the solid-solution treated Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy's tension-compression asymmetry was examined using optical microscope(OM),x-ray diffraction(XRD),viscoplastic self-consistent(VPSC)modeling,and electron backscatter diffraction(EBSD).The VPSC hardening parameters were significantly adjusted based on the Schmid factor of deformation modes in rare earth magnesium(Mg-RE)alloy,which came from the EBSD data.Excellent agreement was found between the modified VPSC model's calculation results,especially the stress-strain curves and pole figures.The alloy exhibited good strength with a negligible tension-compression asymmetry and an impressive 0.98 ratio of compressive yield strength to tensile yield strength(CYS/TYS).The main cause could be attributed to the unusual texture of(11-20)<0001>in alloy,which eliminated the imbalance in tension and compression deformation by having a negative effect on the activation of{10-12}twinning in tensile and a positive effect in compressive deformation.The activation level of{10-12}twinning was 0.37 and 0.40calculated by VPSC model,in the plastic deformation of tension and compression,respectively;in the tensile and compression samples,the EBSD data indicated that approximately 31.9%and 31.1%(area proportion)of the grains were deformed with twins,respectively.Both tension and compression deformation showed the{10-12}twinning in the early stage of deformation,which transformed to{11-22}twinning in the later stage.The considerable activation of pyramidal during the later stages of deformation endowed the alloy with good ductility.展开更多
BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major...BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major blood vessels remains a substantial clinical challenge.Traditionally,these cases often require open abdominal surgery or combined organ resections,and in some instances,the tumors are considered unresectable.Currently,no reports have described the resection of such tumors via laparoscopy.CASE SUMMARY A 35-year-old woman was admitted to our hospital after the incidental discovery of a retroperitoneal space-occupying lesion.Imaging revealed a mass with the celiac axis and superior mesenteric artery passing through it.A neurogenic tumor was suspected,with ganglioneuroma being the most likely diagnosis.Following comprehensive preoperative preparation,the retroperitoneal tumor was resected using a three-dimensional laparoscopy combined with an organ suspension technique.The surgical approach involved incising the tumor along the vascular axis and conducting meticulous,vascular-preserving tumor excision.The operation lasted approximately 458 minutes,with an estimated blood loss of 50 mL.The patient was discharged on the 8th postoperative day.A transient liver injury occurred after surgery but improved rapidly.After 11 months of postoperative follow-up,no complications or tumor recurrence were observed.CONCLUSION This case illustrates the feasibility of minimally invasive laparoscopic resection for retroperitoneal ganglioneuromas encasing major blood vessels.展开更多
基金supported by grants from the Human Resources Development program (Grant No.20204010600250)the Training Program of CCUS for the Green Growth (Grant No.20214000000500)by the Korea Institute of Energy Technology Evaluation and Planning (KETEP)funded by the Ministry of Trade,Industry,and Energy of the Korean Government (MOTIE).
文摘It is of great importance to obtain precise trace data,as traces are frequently the sole visible and measurable parameter in most outcrops.The manual recognition and detection of traces on high-resolution three-dimensional(3D)models are relatively straightforward but time-consuming.One potential solution to enhance this process is to use machine learning algorithms to detect the 3D traces.In this study,a unique pixel-wise texture mapper algorithm generates a dense point cloud representation of an outcrop with the precise resolution of the original textured 3D model.A virtual digital image rendering was then employed to capture virtual images of selected regions.This technique helps to overcome limitations caused by the surface morphology of the rock mass,such as restricted access,lighting conditions,and shading effects.After AI-powered trace detection on two-dimensional(2D)images,a 3D data structuring technique was applied to the selected trace pixels.In the 3D data structuring,the trace data were structured through 2D thinning,3D reprojection,clustering,segmentation,and segment linking.Finally,the linked segments were exported as 3D polylines,with each polyline in the output corresponding to a trace.The efficacy of the proposed method was assessed using a 3D model of a real-world case study,which was used to compare the results of artificial intelligence(AI)-aided and human intelligence trace detection.Rosette diagrams,which visualize the distribution of trace orientations,confirmed the high similarity between the automatically and manually generated trace maps.In conclusion,the proposed semi-automatic method was easy to use,fast,and accurate in detecting the dominant jointing system of the rock mass.
文摘The textures and microstructures of hot-and cold-rolled sheets of an AA 5454 aluminium alloy were studied,with special attention paid to comparing the texture development for the symmetric and asymmetric cold rolling.Scanning electron microscopy with electron-backscatter diffraction was used to monitor the development of the microstructure in the differently deformed and additionally annealed samples.Details of the formations and transformations of individual texture components occurring during the rolling processes were observed and discussed.The average grain sizes,textures and mechanical properties were correlated and explained for the symmetric and asymmetric cold-rolled samples.The asymmetric rolling is beneficial in terms of deep drawability because it reduces the planar anisotropy of the annealed material due to the decrease of the Cube,Goss,rotated-Cube and η-fibre texture components and at the same time strengthens X1-and X2-fibre texture components which are shear texture components and improve deep drawability.During the asymmetric cold rolling,the temperature increases due to friction,triggering recrystallisation processes and leading to larger grains.It is also confirmed that asymmetric cold rolling uses less rolling force and consequently less energy to produce a final material with better formability,particularly earing.
基金supported by the Nation Key Research and Development Program of China(No.2021YFB3701100).
文摘Hot deformation with high strain rate has been paid more attention due to its high efficiency and low cost,however,the strain rate dependent dynamic recrystallization(DRX)and texture evolution in hot deformation process,which affect the formability of metals,are lack of study.In this work,the DRX behavior and texture evolution of Mg-8Gd-1Er-0.5Zr alloy hot compressed with strain rates of 0.1 s^(−1),1 s^(−1),10 s^(−1) and 50 s^(−1) are studied,and the corresponding dominant mechanisms for DRX and texture weakening are discussed.Results indicated the DRX fraction was 20%and the whole texture intensity was 16.89 MRD when the strain rate was 0.1 s^(−1),but they were 76%and 6.55 MRD,respectively,when the strain rate increased to 50 s^(−1).The increment of DRX fraction is suggested to result from the reduced DRX critical strain and the increased dislocation density as well as velocity,while the weakened whole texture is attributed to the increased DRX grains.At the low strain rate of 0.1 s^(−1),discontinuous DRX(DDRX)was the dominant,but the whole texture was controlled by the deformed grains with the preferred orientation of{0001}⊥CD,because the number of DDRX grains was limited.At the high strain rate of 50 s^(−1),continuous DRX(CDRX)and twin-induced DRX(TDRX)were promoted,and more DRX grains resulted in orientation randomization.The whole texture was mainly weakened by CDRX and TDRX grains,in which CDRX plays a major role.The results of present work are significant for understanding the hot workability of Mg-RE alloys with a high strain rate.
基金by National Natural Science Foundation of China(Nos.52271103,52334010 and 52271031)Jilin Scientific and Technological Development Program(Nos.20220301026GX,20210201115GX and 20210301041GX).
文摘Conventional rolled Mg-Al alloy sheets typically exhibit strong basal textures that remain and may even strengthen after recrystallization annealing due to the preferential growth of basal-oriented grains,resulting in poor formability at room temperature.Therefore,the knowledge of recrystallization and grain growth is critical for modifying textures of Mg-Al alloy sheets.The static recrystallization and texture evolution in a cold-rolled dilute Mg-1Al(wt.%)alloy during various annealed temperatures ranging from 300℃ to 450℃,have been investigated using the quasi in-situ electron backscatter diffraction(EBSD)method.The as-rolled Mg-1Al alloy shows a dominant basal texture,which weakens and broadens in the rolling direction(RD)during the subsequent annealing,accompanied by the formation of{1010}texture component.Particularly,the {1010} texture component is more pronounced after annealing at high temperatures.The quasi in-situ EBSD results show that recrystallized grains are mainly induced by shear bands,which exhibit a wide spectrum of orientations with c-axis tilt angles ranging 20°-45°from the normal direction(ND).Orientations of shear band-induced recrystallized grains are retained during the entire recrystallization process,resulting in a reduction in the texture intensity.Moreover,recrystallized grains belonging to the {1010}texture component grow preferentially compared to those with other orientations,which is attributed to low energy grain boundaries,especially grain boundaries with∼30°misorientation angles.Furthermore,the high temperature annealing facilitates the rapid growth of grain boundaries having a 30°misorientation angle,leading to the occurrence of distinct {1010} texture after annealing at 450℃ for 1 h.The results provide insights for texture modification of rare earth-free low-alloyed Mg alloys by controlling annealing parameters.
基金supported by the project“GEF9874:Strengthening Coordinated Approaches to Reduce Invasive Alien Species(lAS)Threats to Globally Significant Agrobiodiversity and Agroecosystems in China”funding from the Excellent Talent Training Funding Project in Dongcheng District,Beijing,with project number 2024-dchrcpyzz-9.
文摘Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environmental science research,ecological and environmental monitoring projects,disaster response,and emergency management.A key method employed in these vehicles for achieving high-precision positioning is LiDAR(lightlaser detection and ranging)-Visual Simultaneous Localization and Mapping(SLAM).However,maintaining highprecision localization in complex scenarios,such as degraded environments or when dynamic objects are present,remains a significant challenge.To address this issue,we integrate both semantic and texture information from LiDAR and cameras to enhance the robustness and efficiency of data registration.Specifically,semantic information simplifies the modeling of scene elements,reducing the reliance on dense point clouds,which can be less efficient.Meanwhile,visual texture information complements LiDAR-Visual localization by providing additional contextual details.By incorporating semantic and texture details frompaired images and point clouds,we significantly improve the quality of data association,thereby increasing the success rate of localization.This approach not only enhances the operational capabilities of ecological monitoring vehicles in complex environments but also contributes to improving the overall efficiency and effectiveness of ecological monitoring and environmental protection efforts.
文摘To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.
文摘Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.
基金Inner Mongolia Natural Science Foundation Project(2020LH05028)。
文摘Impact of texture type on the magnetic properties of ultrahigh density perpendicular magnetic recording media L1_(0)-FePt thin film was investigated,so were the texture formation and evolution mechanism.Reuss,Voigt,and Hill models were used to determine the anisotropic elastic modulus of L1_(0)-FePt thin film with fiber texture.Then,the elastic strain energies of thin films under various stress conditions were calculated.Results reveal that the stress condition has a significant influence on the fiber texture evolution.When the L1_(0)-FePt thin film is subjected to compressive in-plane strain prior to ordering phase transformation,the formation of{100}fiber texture is promoted.On the contrary,the ordering phase transformation under tensile in-plane strain promotes the{001}fiber texture formation.
基金Project(51975169)supported by the National Natural Science Foundation of ChinaProject(LH2022E085)supported by the Natural Science Foundation of Heilongjiang Province,China。
文摘Efficient tool condition monitoring techniques help to realize intelligent management of tool life and reduce tool usage costs.In this paper,the influence of different wear degrees of ball-end milling cutters on the texture shape of machining tool marks is investigated,and a method is proposed for predicting the wear state(including the position and degree of tool wear)of ball-end milling cutters based on entropy measurement of tool mark texture images.Firstly,data samples are prepared through wear experiments,and the change law of the tool mark texture shape with the tool wear state is analyzed.Then,a two-dimensional sample entropy algorithm is developed to quantify the texture morphology.Finally,the processing parameters and tool attitude are integrated into the prediction process to predict the wear value and wear position of the ball end milling cutter.After testing,the correlation between the predicted value and the standard value of the proposed tool condition monitoring method reaches 95.32%,and the accuracy reaches 82.73%,indicating that the proposed method meets the requirement of tool condition monitoring.
基金supported by Guangxi Science and Technology Major Program(No.AA23073008)Hubei Key Laboratory of Water System Science for Sponge City Construction(Wuhan University)(No.2023–05)Nanning Innovation and Entrepreneur Leading Talent Project(No.2021001).
文摘The three-dimensional particle electrode system exhibits significant potential for application in the treatment of wastewater.Nonetheless,the advancement of effective granular electrodes characterized by elevated catalytic activity and minimal energy consumption continues to pose a significant challenge.In this research,Fluorine-doped copper-carbon(F/Cu-GAC)particle electrodes were effectively synthesized through an impregnationcalcination technique,utilizing granular activated carbon as the carrier and fluorinedoped modified copper oxides as the catalytic agents.The particle electrodes were subsequently utilized to promote the degradation of 2,4,6-trichlorophenol(2,4,6-TCP)in a threedimensional electrocatalytic reactor(3DER).The F/Cu-GAC particle electrodes were polarized under the action of electric field,which promoted the heterogeneous Fenton-like reaction in which H2O2 generated by two-electron oxygen reduction reaction(2e-ORR)of O_(2) was catalytically decomposed to·OH.The 3DER equipped with F/Cu-GAC particle electrodes showed 100%removal of 2,4,6-TCP and 79.24%removal of TOC with a specific energy consumption(EC)of approximately 0.019 kWh/g·COD after 2 h of operation.The F/Cu-GAC particle electrodes exhibited an overpotential of 0.38 V and an electrochemically active surface area(ECSA)of 715 cm^(2),as determined through linear sweep voltammetry(LSV)and cyclic voltammetry(CV)assessments.These findings suggest a high level of electrocatalytic performance.Furthermore,the catalytic mechanism of the 3DER equipped with F/Cu-GAC particle electrodes was elucidated through the application of X-ray photoelectron spectroscopy(XPS),electron spin resonance(ESR),and active species capture experiments.This investigation offers a novel approach for the effective degradation of 2,4,6-TCP.
基金Tral Science Foundation of China(Nos.52271103,52334010and 52271031)Partial financial support came from JilinScientific and Technological Development Program(No.20220301026GX)Program for the Central UniversityYouth Innovation Team。
文摘In this work,a good balance of strength and ductility(a yield strength of 185 MPa and a uniform elongation of 20%)has been obtained in a dilute Mg-1.8Zn-0.3Y-0.3Ca-0.3Zr(wt.%)alloy using hard plate rolling(HPR)followed by annealing,with a low anisotropy in mechanical properties.More importantly,the HPR-annealed alloy shows an excellent formability at the same time,i.e.,the index Erichsen(I.E.)value reaches 7.9 mm(the Erichsen cupping test)at room temperature,which is higher compared with the Mg-1.8Zn-0.3Y-0.3Ca0.3Zr alloy produced by conventional multi-pass rolling(CR)followed by annealing.The excellent synergy of strength and formability of the HPR-annealed alloy is mainly attributed to a weak elliptical ring texture,as well as finer and denser Zn_(2)Zr_(3)precipitates.The formation of weak elliptical ring texture is related to the preferential co-segregation of Zn and Ca elements at boundaries of basal grains with smal misorientation angles during annealing,which inhibits the growth of basal grains and promotes the preferential growth of non-basal grains At the same time,in comparison with the CR-annealed alloy,the HPR-annealed alloy contains finer and denser Zn_(2)Zr_(3)precipitates that ar less likely to become sources of cracks,leading to the higher strength and formability of the HPR-annealed alloy.The results in this work can provide reference for the development of high strength Mg alloy sheets with excellent room temperature formability,which also shed light on mitigating planar anisotropy in mechanical properties for Mg alloy sheets.
基金supports from the projects by the NSFC[51771166]the Hebei Natural Science Foundation[E2019203452,E2021203011]+3 种基金the key project of department of education of Hebei province[ZD2021107]project of the central government guiding local science and technology development[216Z1001G]Cultivation Project for Basic Research and Innovation of Yanshan University[2021LGZD002]project of State Key Laboratory of Materials Processing and Die&Mould Technology[P2023-004]are gratefully acknowledged.
文摘Molecular dynamics(MD)simulation is employed to investigate the deformation behavior under various loading paths and strain rates of nanocrystalline magnesium(NC Mg)with[0001]texture.Atomic-scale structural evolution of NC Mg was performed under uniaxial and biaxial loadings.In tension process,compression twins and basal slip dominate,while the compression process is dominated by tension twins.The activation mechanism of twinning is highly sensitive to the loading path and grain orientation.Meanwhile,the effect of strain rate on the structural evolution of NC Mg was investigated.It is found that the effect of strain rate on the plastic deformation of NC Mg is reflected through the plasticity delays and the way to release the stress.As the strain rate decreases,the plastic deformation mechanism gradually changes from intragranular to grain boundary.Some significant potential deformation mechanisms in the loading process were studied.It is observed that{1121}twins nucleated inside the grains,and the thickening process is completed by basal〈a〉slip of the twin boundary.The strain compatibility between twins is automatically optimized with loading.Moreover,the detwinning mechanism caused by the interaction between twins and basal stacking faults is clarified.
基金supported by the Henan Key Laboratory of Intelligent Manufacturing Equipment Integration for Superhard Materials(Grant No.JDKJ2022-01)the National Natural Science Foundation of China(Grant Nos.52035009 and 51761135106)+1 种基金the 2020 Mobility Programme of the Sino-German Center for Research Promotion(Grant No.M-0396)the“111”project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China(Grant No.B07014).
文摘Gallium nitride(GaN),as a third-generation semiconductor,is highly attractive due to its exceptional physical and chemical properties.Laser direct writing offers an efficient method for the precise processing of hard and brittle materials.In this work,various types of surface microtexture were processed on GaN epilayers using a femtosecond laser with a wavelength of 1030 nm.The effects of the laser energy,singlepulse interval,number of pulses,and number of scan passes on groove machining were investigated with a view to achieving high-quality micromachining.The depth,width,surface morphology,and roughness of the grooves were analyzed using scanning electron microscopy,laser scanning confocal microscopy,and atomic force microscopy.Damage and stress were characterized at the microscale using Raman spectroscopy.High-quality precision machining of different types of periodic surface microtexture at 40 mW laser power was achieved by controlling the process parameters and laser trajectory.Finally,an initial exploration was conducted to examine vector-light-based microand nanostructure processing.The findings demonstrate the potential of femtosecond lasers for efficient micromachining of hard and brittle materials without the creation of heat-affected zones or microcracks.The high-quality textured structures achieved through this processing technique have broad and promising applications in optoelectronic devices and tribology.
基金financially supported by the Fundamental Research Program of the Korea Institute of Materials Science(Grant No.360–05–04-PNKA540)the National Research Foundation of Korea(CRC23011–210).
文摘The microstructure and texture evolution of Mg-xAl-1Zn-1Y-0.1Mn alloys are systematically analyzed.There is no effect of Al addition on grain refinement in the Mg-1Zn-1Y-0.1Mn alloy,but the addition of 0.5 wt.%or more Al element dramatically changes texture from a weak texture to a strong basal texture.The predominant second phase particle of Mg_(3)Zn_(3)Y_(2) phase in the Mg-1Zn-1Y-0.1Mn alloy changes to Al_(2)Y phase by the addition of only 0.1 wt.%Al element,and the concentrations of dissolved Y element in the 0Al,0.1Al,0.3Al,0.5Al and 1Al alloys are 0.50,0.31,0.23,0.15 and 0.06 wt.%,respectively.Although the 0.5 wt.%or more Al-added alloys have higher Schmid factor for prismatic(a)slip than the 0.3 wt.%or less Al-added alloys,the lower Al containing alloys show much higher activity of prismatic (a)slip than the higher Al containing alloys.It demonstrates that the addition of high amount of Al element in Mg-Zn-RE alloy dramatically decrease the dissolved Y element,resulting in a significant deterioration of activity of prismaticslip and consequently a poor formability at room temperature.
基金Research results of the General Scientific Research Project of Zhejiang Education Department in 2024,“Research on the Digitalization of Song Yun Ink Painting-Taking the Ten Scenes of West Lake as an Example”(Project No.:Y202455200).
文摘This study examines the development of painting techniques of Chinese ink wash landscape paintings,pays attention to its unique brush and ink language and features of the representation of elements,and deeply analyzes the artistic characteristics of digital ink wash texture materials.The research focuses on key aspects such as the ink brushstrokes with the combination of emptiness and reality,the profound and serene ink wash space,and the extremely ingenious position layout.It proposes a construction path of digital ink wash texture materials based on the Blender material node system.This method makes use of the flexibility of the Blender material node system to successfully simulate highly realistic digital ink wash textures.It can not only construct static ink wash textures but also realize the dynamic transformation of static ink wash works through animation nodes and procedural control,thereby enhancing the artistic expression of digital ink wash works.The proposal and implementation of this method expand the application scope of the Blender material node system,help deeply explore the potential of digital ink wash art,and open up a brand new research path for constructing digital ink wash textures.
基金Sponsored by the Project of Sichuan Landscape and Recreation Research Center(JGYQ2020037).
文摘In this study,CiteSpace software is used to carry out visual analysis on the three-dimensional research literature on urban recreation space from the perspective of compact city theory in the past 20 years,exploring the scientific development trend and research hotspots in this field.The results show that the number of published documents shows a fluctuating upward trend,and the significant growth rate reflects the role of policy orientation in promoting the concept of compact city.The co-occurrence analysis of keywords reveals the research hotspots of“compact city”,“recreation space”and“urban park”,while the emergence of new keywords such as“vertical city”and“spatial justice”indicates the new trend of recent research.The cluster analysis and timeline map further show the evolution of research themes,with“compact city”being the largest cluster and having rich connections with other themes such as“urban design”and“urban park”.
文摘The effect of hot band annealing processes—batch annealing and continuous annealing—on the texture evolution and ridging performance of ferritic stainless steel was investigated.The surface and central layers of the hot band exhibited strong shear and plane deformation textures,respectively.After batch annealing,the texture intensity of the hot-rolled sheet texture significantly decreased,and a weak recrystallization texture appeared,while fully recrystallized grains occurred after continuous annealing.A complete recrystallized{111}texture was obtained after recrystallization annealing.The sheet subjected to continuous annealing exhibited the highest intensity of{111}texture,which was accompanied by a dispersed grain orientation distribution,resulting in the lowest ridging height.
基金supported by the Demonstration System for High Resolution Meteorological Application(Ⅱ)[grant number 32-Y30F08-9001-20/22]the National Natural Science Foundation of China[grant numbers 12292981 and 12292984]。
文摘Early detection of convective clouds is vital for minimizing hazardous impacts.Forecasting convective initiation(CI)using current multispectral geostationary meteorological satellites is often challenged by high false-alarm rates and missed detections caused by limited resolution.In contrast,high-resolution earth observation satellites offer more detailed texture information,improving early detection capabilities.The authors propose a novel methodology that integrates the advanced features of China’s latest-generation satellites,Gaofen-4(GF-4)and Fengyun-4A(FY-4A).This fusion method retains GF’s high-resolution details and FY-4A’s multispectral information.Two cases from different observational scenarios and weather conditions under GF-4’s staring mode were carried out to compare the CI forecast results based on fused data and solely on FY-4A data.The fused data demonstrated superior performance in detecting smaller-scale convective clouds,enabling earlier forecasting with a lead time of 15–30 minutes,and more accurate location identification.Integrating high-resolution earth observation satellites into early convective cloud detection provides valuable insights for forecasters and decision-makers,particularly given the current resolution limitations of geostationary meteorological satellites.
基金financial support provided by Key Research and Development Program of Heilongjiang(Grant No.2022ZX01A01)Natural Science Found of Heilongjiang Province(LH2022E080)。
文摘The tension-compression asymmetry presents notable challenges for the application of magnesium alloys in many fields.In this study,the solid-solution treated Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy's tension-compression asymmetry was examined using optical microscope(OM),x-ray diffraction(XRD),viscoplastic self-consistent(VPSC)modeling,and electron backscatter diffraction(EBSD).The VPSC hardening parameters were significantly adjusted based on the Schmid factor of deformation modes in rare earth magnesium(Mg-RE)alloy,which came from the EBSD data.Excellent agreement was found between the modified VPSC model's calculation results,especially the stress-strain curves and pole figures.The alloy exhibited good strength with a negligible tension-compression asymmetry and an impressive 0.98 ratio of compressive yield strength to tensile yield strength(CYS/TYS).The main cause could be attributed to the unusual texture of(11-20)<0001>in alloy,which eliminated the imbalance in tension and compression deformation by having a negative effect on the activation of{10-12}twinning in tensile and a positive effect in compressive deformation.The activation level of{10-12}twinning was 0.37 and 0.40calculated by VPSC model,in the plastic deformation of tension and compression,respectively;in the tensile and compression samples,the EBSD data indicated that approximately 31.9%and 31.1%(area proportion)of the grains were deformed with twins,respectively.Both tension and compression deformation showed the{10-12}twinning in the early stage of deformation,which transformed to{11-22}twinning in the later stage.The considerable activation of pyramidal during the later stages of deformation endowed the alloy with good ductility.
基金Supported by the Zhejiang Medical Science and Technology Project,No.2022KY1325 and No.2023KY381Public Welfare Project of Jinhua Science and Technology Plan,No.2023-4-084Major Project of Jinhua Science and Technology Plan,No.2023-3-066.
文摘BACKGROUND Ganglioneuroma is a rare,well-differentiated,slow-growing benign tumor of the peripheral nerves,with surgical resection being the only curative treatment.Surgical resection of ganglioneuromas encasing major blood vessels remains a substantial clinical challenge.Traditionally,these cases often require open abdominal surgery or combined organ resections,and in some instances,the tumors are considered unresectable.Currently,no reports have described the resection of such tumors via laparoscopy.CASE SUMMARY A 35-year-old woman was admitted to our hospital after the incidental discovery of a retroperitoneal space-occupying lesion.Imaging revealed a mass with the celiac axis and superior mesenteric artery passing through it.A neurogenic tumor was suspected,with ganglioneuroma being the most likely diagnosis.Following comprehensive preoperative preparation,the retroperitoneal tumor was resected using a three-dimensional laparoscopy combined with an organ suspension technique.The surgical approach involved incising the tumor along the vascular axis and conducting meticulous,vascular-preserving tumor excision.The operation lasted approximately 458 minutes,with an estimated blood loss of 50 mL.The patient was discharged on the 8th postoperative day.A transient liver injury occurred after surgery but improved rapidly.After 11 months of postoperative follow-up,no complications or tumor recurrence were observed.CONCLUSION This case illustrates the feasibility of minimally invasive laparoscopic resection for retroperitoneal ganglioneuromas encasing major blood vessels.