In recent years,research investigations have focused on the substantial freshwater storage in the Beaufort Gyre(BG)region due to climate change.Despite active mesoscale eddies in the area,a notable gap in understandin...In recent years,research investigations have focused on the substantial freshwater storage in the Beaufort Gyre(BG)region due to climate change.Despite active mesoscale eddies in the area,a notable gap in understanding the three-dimensional structure and induced transport has been observed.This study concentrates on the Canada Basin in the western Arctic Ocean,specifically examining a subsurface anticyclonic eddy(SAE)sampled by a Mooring A in the BG region.Hybrid Coordinate Ocean Model(HYCOM)analysis data reveal its lifecycle from February 15 to March 15,2017,marked by initiation,development,maturity,decay,and termination stages.This work extends the finding of SAE passing through Mooring A by examining its overall effects,spatiotemporal variations,and swirl transport.SAE generation through baroclinic instability,which contributes to the westward tilt of the vertical axis,is also confirmed in this study.Swirl transport induced by SAE is predominantly eastward and downward due to its trajectory and background flow.SAE temporarily weakens stratification and extends the subsurface depth but demonstrates transient effects.Moreover,SAE transports upper-layer freshwater,Pacific Winter Water,and Atlantic Water downward,emphasizing its potential influence on freshwater redistribution in the Canadian Basin.This research provides valuable insights into mesoscale eddy dynamics,revealing their role in modulating the upper water mass in the BG region.展开更多
Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significan...Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.展开更多
Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With ...Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With the development of seismic exploration into deep and ultradeep events,especially those from complex targets in the western region of China,the internal multiple eliminations become increasingly challenging.Currently,three-dimensional(3D)seismic data are primarily used for oil and gas target recognition and drilling.Effectively eliminating internal multiples in 3D seismic data of complex structures and mitigating their adverse effects is crucial for enhancing the success rate of drilling.In this study,we propose an internal multiple prediction algorithm for 3D seismic data in complex structures using the Marchenko autofocusing theory.This method can predict the accurate internal multiples of time difference without an accurate velocity model and the implementation process mainly consists of several steps.Firstly,simulating direct waves with a 3D macroscopic velocity model.Secondly,using direct waves and 3D full seismic acquisition records to obtain the upgoing and down-going Green's functions between the virtual source point and surface.Thirdly,constructing internal multiples of the relevant layers by upgoing and downgoing Green's functions.Finally,utilizing the adaptive matching subtraction method to remove predicted internal multiples from the original data to obtain seismic records without multiples.Compared with the two-dimensional(2D)Marchenko algo-rithm,the performance of the 3D Marchenko algorithm for internal multiple prediction has been significantly enhanced,resulting in higher computational accuracy.Numerical simulation test results indicate that our proposed method can effectively eliminate internal multiples in 3D seismic data,thereby exhibiting important theoretical and industrial application value.展开更多
To address the poor mechanical properties of polydimethylsiloxane(PDMS)and enhance the understanding of the reinforcement mechanisms of aerogel network structures in rubber matrices,this study reinforced PDMS using an...To address the poor mechanical properties of polydimethylsiloxane(PDMS)and enhance the understanding of the reinforcement mechanisms of aerogel network structures in rubber matrices,this study reinforced PDMS using an ordered interconnected three-dimensional montmorillonite(MMT)aerogel network.The average pore diameter of the aerogels was successfully reduced from 11.53μm to 2.51μm by adjusting the ratio of poly(vinyl alcohol)(PVA)to MMT via directional freezing.Changes in the aerogel network were observed in field emission scanning electron microscope(FESEM)images.After vacuum impregnation,the aerogel network structure of the composites was observed using FESEM.Tensile tests indicated that as the pore diameter decreased,the elongation at break of the composites first increased to a peak of329.61%before decreasing,while the tensile strength and Young's modulus continuously increased to their maximum values of 6.29 MPa and24.67 MPa,respectively.Meanwhile,FESEM images of the tensile cracks and fracture surfaces showed that with a reduction in aerogel pore diameter,the degrees of crack deflection and interfacial debonding increased,presenting a rougher fracture surface.These phenomena enable the composites to dissipate substantial energy during tension,thus effectively improving the mechanical strength of the composites.The present work elucidates the bearing of ordered three-dimensional aerogel network structures on the performance of rubber matrices and provides crucial theoretical insights and technical guidance for the creation and optimization of high-performance PDMS-based composites.展开更多
In the printing industry,the common method of coloring relies on inks,which contains amounts of chemical agents,causing environment pollution.However,structural color achieves coloration through the refraction and dif...In the printing industry,the common method of coloring relies on inks,which contains amounts of chemical agents,causing environment pollution.However,structural color achieves coloration through the refraction and diffraction of light by periodic structure,offering eco-friendly and fade-resistant advantages,as well as colorful.In this study,screen printing was used to create patterned mask on paper substrates.Then,coated SiO_(2)microspheres on the mask to create structural color patterns with angle-dependent color characteristics.The patterns showed color changes from rose-red to orange to green by changing the viewing angle.By changing the color grayscale,the absorption of stray light by the substrate was enhanced,thereby the brightness and saturation of the structural color improved too.This method is simple,cost-effective,and environmentally friendly,and it has highly promising for the application in printing and anti-counterfeiting.展开更多
Controlled by the squeezing collision between the Yangtze block and the North China block and the left movement of the Tanlu fault, the Xu-Su region developed into an arc-shaped nappe structure, and many destructive e...Controlled by the squeezing collision between the Yangtze block and the North China block and the left movement of the Tanlu fault, the Xu-Su region developed into an arc-shaped nappe structure, and many destructive earthquakes occurred in its periphery. The geological structure of this area is complex, and there is the possibility of moderate and strong earthquakes. To further explore the crust density structure and identify the main faults and deep structural features in the Xu-Su region, based on the observed seismic data and gravity/GNSS co-site observation data, combined with the EGM2008 global gravity field model, we obtained the density of three-dimensional structure using cross gradient method joint inversion. Based on this, a geological model of the Xu-Su region was established. The results show that the crustal density anomaly amplitude within 0-25 km of the Xu-Su region ranges from-280 to 490 kg/m3, showing a zonal distribution in east-west direction and a segmented north-south direction. There are several density anomalies in the shallow(0-4 km) region at Tongshan, Huaibei, Xiayi, Woyang, etc. The density anomalies are significantly correlated with the distribution of regional faults. The density structure is divided into two large regions by Subei fault, which can be further divided along the eastwest Kouziji-Nanzhao fault and Guzhen-Huaiyuan fault. The earthquakes are obviously related to the regional fault activity and the spatial distribution of abnormal bodies. The earthquake-prone areas(5-15 km) correspond to the abnormal density mutation zone, upper uplift zone, and transformation zone near Xiaoxian, Tongshan, and Xushuanglou faults. The comprehensive results show three weak seismic activity areas in the whole region, which are located near the Huaibei, Xiaoxian, and Wohe faults. The results provide theoretical support for seismic risk analysis in this area, and these three areas should be emphasized in future seismic hazard analysis.展开更多
The development of efficient catalysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is of great significance for the practical application of water splitting in alkaline electrolytes.Transitio...The development of efficient catalysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is of great significance for the practical application of water splitting in alkaline electrolytes.Transition metal sulfide electrocatalysts have been widely recognized as efficient catalysts for water splitting in alkaline media.In this work,an original and efficient synthesis strategy is proposed for the fabrication of asymmetric anode(N-(Co-Cu)S_(x))and cathode(N-CoS/Cu_(2)S).Impressively,these electrodes exhibit superior performance,benefiting from the construction of three-dimensional(3D)structures and the electronic structure adjustment caused by N-doping with increased active sites,improved mass/charge transport and enhanced evolution and release of gas bubbles.Hence,N-(Co-Cu)S_(x)anode exhibits excellent OER performance with only 217 mV overpotential at 10 mA·cm^(-2),while N-CoS/Cu_(2)S cathode possesses excellent HER performance with only 67 mV overpotential at 10 mA·cm^(-2).N-(Co-Cu)S_(x)||N-CoS/Cu_(2)S electrolyzer presents a low cell voltage of 1.53 V at 10 mA·cm^(-2)toward overall water splitting,which is superior to most recently reported transition metal sulfide-based catalysts.展开更多
Satellite altimetry missions at high latitude have opened new avenues for understanding the changes occurring over the ice-covered region.By incorporating Arctic satellite remote sensing data-including sea surface tem...Satellite altimetry missions at high latitude have opened new avenues for understanding the changes occurring over the ice-covered region.By incorporating Arctic satellite remote sensing data-including sea surface temperature(SST),sea surface height anomaly(SSHA),and sea surface salinity(SSS).This study employs a variational method to reconstruct the three-dimensional thermohaline structure of the Arctic Ocean.Compared to the Regional Arctic Reanalysis(RARE),the reconstruction well captures both the horizontal and vertical temperature and salinity structures in the Arctic.It demonstrates superior skill over RARE,when compared with Argo profiles and Ice-Tethered Profiler(ITP)observations.The reconstruction is particularly effective in ice-covered regions,where it more accurately captures the transition from Pacific water to Atlantic water compared to RARE.These findings underscore the potential of applying Arctic satellite data to reconstruct vertical thermohaline structures in the Arctic,particularly in areas due to lack of the subsurface observation reanalysis data exhibit significant biases.As Arctic satellite observations continue to advance,the applications of this method are becoming increasingly promising,which is useful for monitoring the ice-covered region environment and can be applied to oceanographic research.展开更多
The acetylpolyamine oxidase(APAO),spermine oxidase(SMO),and spermidine/spermine N1-acetyltransferase(SSAT)are pivotal enzymes in polyamine metabolism,exerting direct influence on polyamine homeostasis regulation.Dysfu...The acetylpolyamine oxidase(APAO),spermine oxidase(SMO),and spermidine/spermine N1-acetyltransferase(SSAT)are pivotal enzymes in polyamine metabolism,exerting direct influence on polyamine homeostasis regulation.Dysfunctions in these enzymes are intricately linked to inflammatory diseases and cancers.Establishing their three-dimensional structures is essential for exploring enzymatic catalytic mechanisms and designing inhibitors at the atomic level.This article primarily assesses the precision of AlphaFold2 and molecular dynamics simulations in determining the three-dimensional structures of these enzymes,utilizing protein conformation rationality assessment,residue correlation matrix,and other techniques.This provides robust models for subsequent polyamine catabolic metabolism calculations and offers valuable insights for modeling proteins that have yet to acquire crystal structures.展开更多
No earthquake of magnitude six or greater has been recorded historically in the southern segment of the Red River Fault(RRF).This absence constitutes a significant seismic gap, suggesting a risk of future strong earth...No earthquake of magnitude six or greater has been recorded historically in the southern segment of the Red River Fault(RRF).This absence constitutes a significant seismic gap, suggesting a risk of future strong earthquakes. The China Earthquake Science Experimental Site intends to conduct drilling exploration in this area, which necessitates improved knowledge of the fault zone's geometric distribution characteristics and deep structure. We obtained and analyzed audio and broadband magnetotelluric(MT) data collected at one of the alternative drilling stations(in the Dazhai Village of Honghe County). We have used these data to obtain a highresolution 3-D electrical model of this study area's subsurface to a depth of 5 km. We report that the electrical structure from the surface to 0.5 km is relatively complex, characterized by alternating high and low resistivity;below 0.5 km, the electrical structure becomes more simplified. The RRF extends northwest-southeast orientation along the high and low resistivity boundary, dipping northeastward. The electrical structure of the Red River Valley, which the fault zone traverses, reveals low resistivity characteristics with a lateral width of up to2 km. This study offers critical electromagnetic constraints that enhance our understanding of the tectonic characteristics of the RRF. The findings will inform and aid in the design of drilling plans for the southern segment of the RRF region.展开更多
This article aims to develop a head pursuit (HP) guidance law for three-dimensional hypervelocity interception, so that the effect of the perturbation induced by seeker detection can be reduced. On the basis of a no...This article aims to develop a head pursuit (HP) guidance law for three-dimensional hypervelocity interception, so that the effect of the perturbation induced by seeker detection can be reduced. On the basis of a novel HP three-dimensional guidance model, a nonlinear variable structure guidance law is presented by using Lyapunov stability theory. The guidance law positions the interceptor ahead of the target on its tlight trajectory, and the speed of the interceptor is required to be lower than that of the target, A numerical example of maneuvering ballistic target interception verifies the rightness of the guidance model and the effectiveness of the proposed method.展开更多
Based on the vertical stratification type of vegetation in the 48 plots (15m×15 m) in Hetian Town, Changting County, Fujian Province, this study was conduct ed to determine the overall vegetation fractional cov...Based on the vertical stratification type of vegetation in the 48 plots (15m×15 m) in Hetian Town, Changting County, Fujian Province, this study was conduct ed to determine the overall vegetation fractional coverage (VFC), litter thickness, soi particle size distribution and nutrient content at different vertical level, analyze the correlations between vegetation characters and soil properties, and compare the dif ferences in the VFC, litter thickness, soil particle size distribution and nutrient con- tent among different erosion degrees and vertical structure types. The result., showed that the VFC and litter thickness were all negatively related to erosion de gree; they were positively related to soil organic matter content, total nitrogen con- tent and total phosphorus content, but not significantly correlated with soil tota potassium content. When the VFC was higher than 50% and litter thickness wa.' higher than 20 ram, the water and soil could be effectively conserved; and the plan litter showed better water and soil conservation effect than the upper vegetation o~ canopy layer. In the vertical structure types of different vegetations, the forest-shrub grass, forest-shrub, shrub-grass and pure grass all could promote vegetation growth improve soil structure and maintain soil fertility.展开更多
Using over 3 500 first P arrival times recorded by nine digital seismic stations from Hainan Digital Seismic Net-work during 1999~2005,a 3-D P-wave velocity model of the crust under Hainan Island and adjacent regions...Using over 3 500 first P arrival times recorded by nine digital seismic stations from Hainan Digital Seismic Net-work during 1999~2005,a 3-D P-wave velocity model of the crust under Hainan Island and adjacent regions has been determined. The results show that the pattern of velocity anomalies in the shallower upper crust is somewhat associated with the surface geological tectonics in the region. A relative low-velocity anomaly appears north of the Wangwu-Wenjiao fault zone and a relative high-velocity anomaly appears south of the Wangwu-Wenjiao fault zone,corresponding to the depressed areas in north Hainan Island,where many volcanoes are frequently active and geothermal values are relatively higher,and the uplifted and stable regions in central and south of the Hainan Is-land. In the middle and lower crust velocities are relatively lower in east Hainan than those in west Hainan,possi-bly suggesting the existence of the upwelling of hot materials from the mantle in east Hainan. The pattern of veloc-ity anomalies also indicates that NW faults,i.e.,the Puqian-Qinglan fault,may be shallower,while the E-W Wangwu-Wenjiao fault may be deeper,which perhaps extends down to Moho depth or deeper.展开更多
Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is p...Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.展开更多
Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled t...Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled thermomechanical fields remains insufficiently understood.In this study,transmission and scanning electron microscopy were employed to observe dislocation structures and grain boundary heterogeneities in processed aluminum alloys,suggesting stress concentrations and microstructural inhomogeneities associated with vacancy accumulation.To complement these observations,first-principles calculations and molecular dynamics simulations were conducted for seven single-vacancy configurations in face-centered cubic aluminum.The stress response,total energy,density of states(DOS),and differential charge density were examined under varying compressive strain(ε=0–0.1)and temperature(0–600 K).The results indicate that face-centered vacancies tend to reduce mechanical strength and perturb electronic states near the Fermi level,whereas corner and edge vacancies appear to have weaker effects.Elevated temperatures may partially restore electronic uniformity through thermal excitation.Overall,these findings suggest that vacancy position exerts a critical but position-dependent influence on coupled structure-property relationships,offering theoretical insights and preliminary experimental support for defect-engineered aluminum alloy design.展开更多
Microseismic/acoustic emission(MS/AE)source localization method is crucial for predicting and controlling of potentially dangerous sources of complex structures.However,the locating errors induced by both the irregula...Microseismic/acoustic emission(MS/AE)source localization method is crucial for predicting and controlling of potentially dangerous sources of complex structures.However,the locating errors induced by both the irregular structure and pre-measured velocity are poorly understood in existing methods.To meet the high-accuracy locating requirements in complex three-dimensional hole-containing structures,a velocity-free MS/AE source location method is developed in this paper.It avoids manual repetitive training by using equidistant grid points to search the path,which introduces A*search algorithm and uses grid points to accommodate complex structures with irregular holes.It also takes advantage of the velocity-free source location method.To verify the validity of the proposed method,lead-breaking tests were performed on a cubic concrete test specimen with a size of 10 cm10 cm10 cm.It was cut out into a cylindrical empty space with a size of/6cm10 cm.Based on the arrivals,the classical Geiger method and the proposed method are used to locate lead-breaking sources.Results show that the locating error of the proposed method is 1.20 cm,which is less than 2.02 cm of the Geiger method.Hence,the proposed method can effectively locate sources in the complex three-dimensional structure with holes and achieve higher precision requirements.展开更多
The three-dimensional structure and the seasonal variation of the North Pacific meridional overturning circulation (NPMOC) are analyzed based on the Simple Ocean Data Assimilation data and Argo profiling float data....The three-dimensional structure and the seasonal variation of the North Pacific meridional overturning circulation (NPMOC) are analyzed based on the Simple Ocean Data Assimilation data and Argo profiling float data. The NPMOC displays a multi-cell structure with four cells in the North Pacific altogether. The TC and the STC are a strong clockwise meridional cell in the low latitude ocean and a weaker clockwise meridional cell between 7°N and 18°N, respectively, while the DTC and the subpolar cell are a weaker anticlockwise meridional cell between 3°N and 15°N and a weakest anticlockwise meridional cell between 35°N and 50°N, respectively. The DTC, the TC and the STC are all of very strong seasonal variations. As to the DTC, the southward transport is strongest in fall and weakest in spring. For the TC, the northward transport is strongest in winter and weakest in spring, while the southward transport is strongest in fall and weakest in spring, which is associated with the strong southward fiow of the DTC in fall. As the STC, the northward transport is strongest in winter and weakest in summer, while the southward transport is strongest in summer and weakest in spring. This seasonal difference may be associated with the DTC. The zonal wind stress and the east-west slope of sea level play important roles in the seasonal variations of the TC, the STC and the DTC.展开更多
This paper presents a three-dimensional particle-in-cell (PIC) simulation of a Ka-band relativistic Cherenkov source with a slow wave structure (SWS) consisting of metal photonic band gap (PBG) structures. In th...This paper presents a three-dimensional particle-in-cell (PIC) simulation of a Ka-band relativistic Cherenkov source with a slow wave structure (SWS) consisting of metal photonic band gap (PBG) structures. In the simulation, a perfect match layer boundary is employed to absorb passing band modes supported by the PBG lattice with an artificial metal boundary. The simulated axial field distributions in the cross section and surface of the SWS demonstrate that the device operates in the vicinity of the π point of a TM01-1ike mode. The Fourier transformation spectra of the axial fields as functions of time and space show that only a single frequency appears at 36.27 GHz, which is in good agreement with that of the intersection of the dispersion curve with the slow space charge wave generated on the beam. The simulation results demonstrate that the SWS has good mode selectivity.展开更多
As in-situ observations are sparse,targeted observations of a specific mesoscale eddy are rare.Therefore,it is difficult to study the three-dimensional structure of moving mesoscale eddies.From April to September 2014...As in-situ observations are sparse,targeted observations of a specific mesoscale eddy are rare.Therefore,it is difficult to study the three-dimensional structure of moving mesoscale eddies.From April to September 2014,an anticyclonic eddy located at 135°E-155°E,26°N-42°N was observed using 17 rapidsampling Argo floats,and the spatiotemporal variations in the three-dimensional structure were studied.The results are as follows:(1)the eddy was identified and tracked using satellite altimeter data.It had a lifetime of 269 days and an average radius of 91.5 km.The lifetime of the eddy can be divided into three phases,i.e.,the initiation,maturity,and termination phases.The depth of its influence reached 1000 m;(2)the Argo profiles were divided into seven periods(approximately 20 days in each)for composite analysis,and the composite Argo profiles and CARS2009(CSIRO Atlas of Regional Seas)climatology data were merged following the data-interpolating variational analysis(DIVA)method to reconstruct the three-dimensional structure.The temperature and salinity anomaly cores of the anticyclonic mesoscale eddy are located from 400 to 600 m.From 800 to 900 m,there is an area of low salinity at the center of the eddy.A high concentration anomaly of dissolved oxygen was located at approximately 250 m;(3)to better understand the features of the eddy and its interaction with the surroundings,we calculated the anomalous velocity of the geostrophic flow and the heat,salt,dissolved oxygen transport anomaly,and discussed the eddy's origin and its adjustments to topography.The maximum heat,salt,and oxygen transport caused by eddy were 9.37×10^11 W,3.08×10^3 kg/s,and 2.70×10^2 kg/s,which all occurred during the termination phase.This study highlights the applicability of using Argo floats to understand the three-dimensional structure thermohaline features of eddies in the North Pacific.展开更多
In order to obtain high-performance electromagnetic wave absorbers,the adjustment of structure and components is essential.Based on the above requirements,this system forms a three-dimensional frame structure consisti...In order to obtain high-performance electromagnetic wave absorbers,the adjustment of structure and components is essential.Based on the above requirements,this system forms a three-dimensional frame structure consisting of MXene and transition metal oxides(TMOs)through efficient electrostatic self-assembly.This three-dimensional network structure has rich heterojunction structures,which can cause a large amount of interface polarization and conduction losses in incident electromagnetic waves.Hollow structures cause multiple reflections and scattering of electromagnetic waves,which is also an important reason for further increasing electromagnetic wave losses.When the doping ratio is 1:1,the system has the best impedance matching,the maximum effective absorption bandwidth(EAB max)can reach 5.12 GHz at 1.7 mm,and the minimum reflection loss(RL_(min))is-50.30 dB at 1.8 mm.This provides a reference for the subsequent formation of 2D-MXene materials into 3D materials.展开更多
基金support of the Fundamental Research Funds for the Central Universities(No.E2ET0411X2).
文摘In recent years,research investigations have focused on the substantial freshwater storage in the Beaufort Gyre(BG)region due to climate change.Despite active mesoscale eddies in the area,a notable gap in understanding the three-dimensional structure and induced transport has been observed.This study concentrates on the Canada Basin in the western Arctic Ocean,specifically examining a subsurface anticyclonic eddy(SAE)sampled by a Mooring A in the BG region.Hybrid Coordinate Ocean Model(HYCOM)analysis data reveal its lifecycle from February 15 to March 15,2017,marked by initiation,development,maturity,decay,and termination stages.This work extends the finding of SAE passing through Mooring A by examining its overall effects,spatiotemporal variations,and swirl transport.SAE generation through baroclinic instability,which contributes to the westward tilt of the vertical axis,is also confirmed in this study.Swirl transport induced by SAE is predominantly eastward and downward due to its trajectory and background flow.SAE temporarily weakens stratification and extends the subsurface depth but demonstrates transient effects.Moreover,SAE transports upper-layer freshwater,Pacific Winter Water,and Atlantic Water downward,emphasizing its potential influence on freshwater redistribution in the Canadian Basin.This research provides valuable insights into mesoscale eddy dynamics,revealing their role in modulating the upper water mass in the BG region.
基金supported by the National Science Fund for Distinguished Young Scholars(42225107)the National Natural Science Foundation of China(42001326,42371414,42171409,and 42271419)+1 种基金the Natural Science Foundation of Guangdong Province of China(2022A1515012207)the Basic and Applied Basic Research Project of Guangzhou Science and Technology Planning(202201011539)。
文摘Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.
文摘Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With the development of seismic exploration into deep and ultradeep events,especially those from complex targets in the western region of China,the internal multiple eliminations become increasingly challenging.Currently,three-dimensional(3D)seismic data are primarily used for oil and gas target recognition and drilling.Effectively eliminating internal multiples in 3D seismic data of complex structures and mitigating their adverse effects is crucial for enhancing the success rate of drilling.In this study,we propose an internal multiple prediction algorithm for 3D seismic data in complex structures using the Marchenko autofocusing theory.This method can predict the accurate internal multiples of time difference without an accurate velocity model and the implementation process mainly consists of several steps.Firstly,simulating direct waves with a 3D macroscopic velocity model.Secondly,using direct waves and 3D full seismic acquisition records to obtain the upgoing and down-going Green's functions between the virtual source point and surface.Thirdly,constructing internal multiples of the relevant layers by upgoing and downgoing Green's functions.Finally,utilizing the adaptive matching subtraction method to remove predicted internal multiples from the original data to obtain seismic records without multiples.Compared with the two-dimensional(2D)Marchenko algo-rithm,the performance of the 3D Marchenko algorithm for internal multiple prediction has been significantly enhanced,resulting in higher computational accuracy.Numerical simulation test results indicate that our proposed method can effectively eliminate internal multiples in 3D seismic data,thereby exhibiting important theoretical and industrial application value.
基金financially supported by the National Natural Science Foundation of China(Nos.21876164 and U2030203)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘To address the poor mechanical properties of polydimethylsiloxane(PDMS)and enhance the understanding of the reinforcement mechanisms of aerogel network structures in rubber matrices,this study reinforced PDMS using an ordered interconnected three-dimensional montmorillonite(MMT)aerogel network.The average pore diameter of the aerogels was successfully reduced from 11.53μm to 2.51μm by adjusting the ratio of poly(vinyl alcohol)(PVA)to MMT via directional freezing.Changes in the aerogel network were observed in field emission scanning electron microscope(FESEM)images.After vacuum impregnation,the aerogel network structure of the composites was observed using FESEM.Tensile tests indicated that as the pore diameter decreased,the elongation at break of the composites first increased to a peak of329.61%before decreasing,while the tensile strength and Young's modulus continuously increased to their maximum values of 6.29 MPa and24.67 MPa,respectively.Meanwhile,FESEM images of the tensile cracks and fracture surfaces showed that with a reduction in aerogel pore diameter,the degrees of crack deflection and interfacial debonding increased,presenting a rougher fracture surface.These phenomena enable the composites to dissipate substantial energy during tension,thus effectively improving the mechanical strength of the composites.The present work elucidates the bearing of ordered three-dimensional aerogel network structures on the performance of rubber matrices and provides crucial theoretical insights and technical guidance for the creation and optimization of high-performance PDMS-based composites.
文摘In the printing industry,the common method of coloring relies on inks,which contains amounts of chemical agents,causing environment pollution.However,structural color achieves coloration through the refraction and diffraction of light by periodic structure,offering eco-friendly and fade-resistant advantages,as well as colorful.In this study,screen printing was used to create patterned mask on paper substrates.Then,coated SiO_(2)microspheres on the mask to create structural color patterns with angle-dependent color characteristics.The patterns showed color changes from rose-red to orange to green by changing the viewing angle.By changing the color grayscale,the absorption of stray light by the substrate was enhanced,thereby the brightness and saturation of the structural color improved too.This method is simple,cost-effective,and environmentally friendly,and it has highly promising for the application in printing and anti-counterfeiting.
基金funded by the National Natural Science Foundation of China(No.42174104,No.42204089)the Hubei Provincial Natural Science Foundation of China(2022CFB350)+1 种基金the Basic Research Fund of Institute of Seismology,China Earthquake Administration(IS202326341)Open Fund ofWuhan,Gravitation and Solid Earth Tides,National Observation and Research Station(WHYWZ202108,WHYWZ202301)。
文摘Controlled by the squeezing collision between the Yangtze block and the North China block and the left movement of the Tanlu fault, the Xu-Su region developed into an arc-shaped nappe structure, and many destructive earthquakes occurred in its periphery. The geological structure of this area is complex, and there is the possibility of moderate and strong earthquakes. To further explore the crust density structure and identify the main faults and deep structural features in the Xu-Su region, based on the observed seismic data and gravity/GNSS co-site observation data, combined with the EGM2008 global gravity field model, we obtained the density of three-dimensional structure using cross gradient method joint inversion. Based on this, a geological model of the Xu-Su region was established. The results show that the crustal density anomaly amplitude within 0-25 km of the Xu-Su region ranges from-280 to 490 kg/m3, showing a zonal distribution in east-west direction and a segmented north-south direction. There are several density anomalies in the shallow(0-4 km) region at Tongshan, Huaibei, Xiayi, Woyang, etc. The density anomalies are significantly correlated with the distribution of regional faults. The density structure is divided into two large regions by Subei fault, which can be further divided along the eastwest Kouziji-Nanzhao fault and Guzhen-Huaiyuan fault. The earthquakes are obviously related to the regional fault activity and the spatial distribution of abnormal bodies. The earthquake-prone areas(5-15 km) correspond to the abnormal density mutation zone, upper uplift zone, and transformation zone near Xiaoxian, Tongshan, and Xushuanglou faults. The comprehensive results show three weak seismic activity areas in the whole region, which are located near the Huaibei, Xiaoxian, and Wohe faults. The results provide theoretical support for seismic risk analysis in this area, and these three areas should be emphasized in future seismic hazard analysis.
基金supported by the Science and Technology Project of Southwest Petroleum University(No.2021JBGS03)the Local Science and Technology Development Fund Projects Guided by the Central Government of China(No.2021ZYD0060)+2 种基金the National Natural Science Foundation of China(Nos.22209143 and 52371241)Guangdong High-level Innovation Institute Project(Nos.2021B0909050001 and 2021CX02L365)Guangdong Basic and Applied Basic Research Foundation(No.2023B1515120095).
文摘The development of efficient catalysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is of great significance for the practical application of water splitting in alkaline electrolytes.Transition metal sulfide electrocatalysts have been widely recognized as efficient catalysts for water splitting in alkaline media.In this work,an original and efficient synthesis strategy is proposed for the fabrication of asymmetric anode(N-(Co-Cu)S_(x))and cathode(N-CoS/Cu_(2)S).Impressively,these electrodes exhibit superior performance,benefiting from the construction of three-dimensional(3D)structures and the electronic structure adjustment caused by N-doping with increased active sites,improved mass/charge transport and enhanced evolution and release of gas bubbles.Hence,N-(Co-Cu)S_(x)anode exhibits excellent OER performance with only 217 mV overpotential at 10 mA·cm^(-2),while N-CoS/Cu_(2)S cathode possesses excellent HER performance with only 67 mV overpotential at 10 mA·cm^(-2).N-(Co-Cu)S_(x)||N-CoS/Cu_(2)S electrolyzer presents a low cell voltage of 1.53 V at 10 mA·cm^(-2)toward overall water splitting,which is superior to most recently reported transition metal sulfide-based catalysts.
基金The National Key R&D Program of China under contract No.2022YFE0106400the China Scholarship Council under contract No.202206710071+2 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province under contract No.KYCX23_0657the Special Founds for Creative Research under contract No.2022C61540the Opening Project of the Key Laboratory of Marine Environmental Information Technology under contract No.521037412.
文摘Satellite altimetry missions at high latitude have opened new avenues for understanding the changes occurring over the ice-covered region.By incorporating Arctic satellite remote sensing data-including sea surface temperature(SST),sea surface height anomaly(SSHA),and sea surface salinity(SSS).This study employs a variational method to reconstruct the three-dimensional thermohaline structure of the Arctic Ocean.Compared to the Regional Arctic Reanalysis(RARE),the reconstruction well captures both the horizontal and vertical temperature and salinity structures in the Arctic.It demonstrates superior skill over RARE,when compared with Argo profiles and Ice-Tethered Profiler(ITP)observations.The reconstruction is particularly effective in ice-covered regions,where it more accurately captures the transition from Pacific water to Atlantic water compared to RARE.These findings underscore the potential of applying Arctic satellite data to reconstruct vertical thermohaline structures in the Arctic,particularly in areas due to lack of the subsurface observation reanalysis data exhibit significant biases.As Arctic satellite observations continue to advance,the applications of this method are becoming increasingly promising,which is useful for monitoring the ice-covered region environment and can be applied to oceanographic research.
基金National Natural Science Foundation of China(22073023)Natural Science Foundation of Henan Province(242300421134)+1 种基金the Young Backbone Teacher in Colleges and Universities of Henan Province(2021GGJS020)Foundation of State Key Laboratory of Antiviral Drugs。
文摘The acetylpolyamine oxidase(APAO),spermine oxidase(SMO),and spermidine/spermine N1-acetyltransferase(SSAT)are pivotal enzymes in polyamine metabolism,exerting direct influence on polyamine homeostasis regulation.Dysfunctions in these enzymes are intricately linked to inflammatory diseases and cancers.Establishing their three-dimensional structures is essential for exploring enzymatic catalytic mechanisms and designing inhibitors at the atomic level.This article primarily assesses the precision of AlphaFold2 and molecular dynamics simulations in determining the three-dimensional structures of these enzymes,utilizing protein conformation rationality assessment,residue correlation matrix,and other techniques.This provides robust models for subsequent polyamine catabolic metabolism calculations and offers valuable insights for modeling proteins that have yet to acquire crystal structures.
基金supported by research grants from the National Institute of Natural Hazards, MEMC (ZDJ2020-13)the Innovation Team Project from National Institute of Natural Hazards, MEMC (2023-JBKY-59)the National Natural Science Foundation of China (42174093)。
文摘No earthquake of magnitude six or greater has been recorded historically in the southern segment of the Red River Fault(RRF).This absence constitutes a significant seismic gap, suggesting a risk of future strong earthquakes. The China Earthquake Science Experimental Site intends to conduct drilling exploration in this area, which necessitates improved knowledge of the fault zone's geometric distribution characteristics and deep structure. We obtained and analyzed audio and broadband magnetotelluric(MT) data collected at one of the alternative drilling stations(in the Dazhai Village of Honghe County). We have used these data to obtain a highresolution 3-D electrical model of this study area's subsurface to a depth of 5 km. We report that the electrical structure from the surface to 0.5 km is relatively complex, characterized by alternating high and low resistivity;below 0.5 km, the electrical structure becomes more simplified. The RRF extends northwest-southeast orientation along the high and low resistivity boundary, dipping northeastward. The electrical structure of the Red River Valley, which the fault zone traverses, reveals low resistivity characteristics with a lateral width of up to2 km. This study offers critical electromagnetic constraints that enhance our understanding of the tectonic characteristics of the RRF. The findings will inform and aid in the design of drilling plans for the southern segment of the RRF region.
文摘This article aims to develop a head pursuit (HP) guidance law for three-dimensional hypervelocity interception, so that the effect of the perturbation induced by seeker detection can be reduced. On the basis of a novel HP three-dimensional guidance model, a nonlinear variable structure guidance law is presented by using Lyapunov stability theory. The guidance law positions the interceptor ahead of the target on its tlight trajectory, and the speed of the interceptor is required to be lower than that of the target, A numerical example of maneuvering ballistic target interception verifies the rightness of the guidance model and the effectiveness of the proposed method.
基金Supported by National Natural Science Foundation of China(4157141541071281)+1 种基金Natural Science Foundation of Jiangsu Province(BK20131078)"Qinglan Project"of Jiangsu Province~~
文摘Based on the vertical stratification type of vegetation in the 48 plots (15m×15 m) in Hetian Town, Changting County, Fujian Province, this study was conduct ed to determine the overall vegetation fractional coverage (VFC), litter thickness, soi particle size distribution and nutrient content at different vertical level, analyze the correlations between vegetation characters and soil properties, and compare the dif ferences in the VFC, litter thickness, soil particle size distribution and nutrient con- tent among different erosion degrees and vertical structure types. The result., showed that the VFC and litter thickness were all negatively related to erosion de gree; they were positively related to soil organic matter content, total nitrogen con- tent and total phosphorus content, but not significantly correlated with soil tota potassium content. When the VFC was higher than 50% and litter thickness wa.' higher than 20 ram, the water and soil could be effectively conserved; and the plan litter showed better water and soil conservation effect than the upper vegetation o~ canopy layer. In the vertical structure types of different vegetations, the forest-shrub grass, forest-shrub, shrub-grass and pure grass all could promote vegetation growth improve soil structure and maintain soil fertility.
基金The special project of Detection of Haikou City Earthquake Active Faults from the Tenth Five-year Plan of China Earthquake Administration (0106512)Joint Seismological Science Foundation of China (105086)CAS Key Laboratory of Marginal Sea Geology (MSGL0503).
文摘Using over 3 500 first P arrival times recorded by nine digital seismic stations from Hainan Digital Seismic Net-work during 1999~2005,a 3-D P-wave velocity model of the crust under Hainan Island and adjacent regions has been determined. The results show that the pattern of velocity anomalies in the shallower upper crust is somewhat associated with the surface geological tectonics in the region. A relative low-velocity anomaly appears north of the Wangwu-Wenjiao fault zone and a relative high-velocity anomaly appears south of the Wangwu-Wenjiao fault zone,corresponding to the depressed areas in north Hainan Island,where many volcanoes are frequently active and geothermal values are relatively higher,and the uplifted and stable regions in central and south of the Hainan Is-land. In the middle and lower crust velocities are relatively lower in east Hainan than those in west Hainan,possi-bly suggesting the existence of the upwelling of hot materials from the mantle in east Hainan. The pattern of veloc-ity anomalies also indicates that NW faults,i.e.,the Puqian-Qinglan fault,may be shallower,while the E-W Wangwu-Wenjiao fault may be deeper,which perhaps extends down to Moho depth or deeper.
基金supported by National Natural Science Foundation of China(No.52025055 and 52275571)Basic Research Operation Fund of China(No.xzy012024024).
文摘Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.
基金supported by the Research Project on Strengthening the Construction of an Important Ecological Security Barrier in Northern China by Higher Education Institutions in the Inner Mongolia Autonomous Region(STAQZX202313)the Inner Mongolia Autonomous Region Education Science‘14th Five-Year Plan’2024 Annual Research Project(NGJGH2024635).
文摘Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled thermomechanical fields remains insufficiently understood.In this study,transmission and scanning electron microscopy were employed to observe dislocation structures and grain boundary heterogeneities in processed aluminum alloys,suggesting stress concentrations and microstructural inhomogeneities associated with vacancy accumulation.To complement these observations,first-principles calculations and molecular dynamics simulations were conducted for seven single-vacancy configurations in face-centered cubic aluminum.The stress response,total energy,density of states(DOS),and differential charge density were examined under varying compressive strain(ε=0–0.1)and temperature(0–600 K).The results indicate that face-centered vacancies tend to reduce mechanical strength and perturb electronic states near the Fermi level,whereas corner and edge vacancies appear to have weaker effects.Elevated temperatures may partially restore electronic uniformity through thermal excitation.Overall,these findings suggest that vacancy position exerts a critical but position-dependent influence on coupled structure-property relationships,offering theoretical insights and preliminary experimental support for defect-engineered aluminum alloy design.
基金The authors wish to acknowledge financial support from the National Natural Science Foundation of China(51822407 and 51774327)Natural Science Foundation of Hunan Province in China(2018JJ1037)Innovation Driven project of Central South University(2020CX014).
文摘Microseismic/acoustic emission(MS/AE)source localization method is crucial for predicting and controlling of potentially dangerous sources of complex structures.However,the locating errors induced by both the irregular structure and pre-measured velocity are poorly understood in existing methods.To meet the high-accuracy locating requirements in complex three-dimensional hole-containing structures,a velocity-free MS/AE source location method is developed in this paper.It avoids manual repetitive training by using equidistant grid points to search the path,which introduces A*search algorithm and uses grid points to accommodate complex structures with irregular holes.It also takes advantage of the velocity-free source location method.To verify the validity of the proposed method,lead-breaking tests were performed on a cubic concrete test specimen with a size of 10 cm10 cm10 cm.It was cut out into a cylindrical empty space with a size of/6cm10 cm.Based on the arrivals,the classical Geiger method and the proposed method are used to locate lead-breaking sources.Results show that the locating error of the proposed method is 1.20 cm,which is less than 2.02 cm of the Geiger method.Hence,the proposed method can effectively locate sources in the complex three-dimensional structure with holes and achieve higher precision requirements.
基金Supported by the National Basic Research Development Program of China(973 Program)under contract Nos 2007CB816002,2007CB816005the innovative key project of Chinese Academy of Sciences under contract No.KZCXZ-YW-201
文摘The three-dimensional structure and the seasonal variation of the North Pacific meridional overturning circulation (NPMOC) are analyzed based on the Simple Ocean Data Assimilation data and Argo profiling float data. The NPMOC displays a multi-cell structure with four cells in the North Pacific altogether. The TC and the STC are a strong clockwise meridional cell in the low latitude ocean and a weaker clockwise meridional cell between 7°N and 18°N, respectively, while the DTC and the subpolar cell are a weaker anticlockwise meridional cell between 3°N and 15°N and a weakest anticlockwise meridional cell between 35°N and 50°N, respectively. The DTC, the TC and the STC are all of very strong seasonal variations. As to the DTC, the southward transport is strongest in fall and weakest in spring. For the TC, the northward transport is strongest in winter and weakest in spring, while the southward transport is strongest in fall and weakest in spring, which is associated with the strong southward fiow of the DTC in fall. As the STC, the northward transport is strongest in winter and weakest in summer, while the southward transport is strongest in summer and weakest in spring. This seasonal difference may be associated with the DTC. The zonal wind stress and the east-west slope of sea level play important roles in the seasonal variations of the TC, the STC and the DTC.
基金Project supported by the National Key Basic Research Program of China (Grant No 2007CB31040)the National Natural Science Foundation of China (Grant No 60571020)
文摘This paper presents a three-dimensional particle-in-cell (PIC) simulation of a Ka-band relativistic Cherenkov source with a slow wave structure (SWS) consisting of metal photonic band gap (PBG) structures. In the simulation, a perfect match layer boundary is employed to absorb passing band modes supported by the PBG lattice with an artificial metal boundary. The simulated axial field distributions in the cross section and surface of the SWS demonstrate that the device operates in the vicinity of the π point of a TM01-1ike mode. The Fourier transformation spectra of the axial fields as functions of time and space show that only a single frequency appears at 36.27 GHz, which is in good agreement with that of the intersection of the dispersion curve with the slow space charge wave generated on the beam. The simulation results demonstrate that the SWS has good mode selectivity.
基金Supported by the National Key R&D Program of China(No.2018YFC1406202)the National Natural Science Foundation of China(Nos.41830964,41976188,41605051)。
文摘As in-situ observations are sparse,targeted observations of a specific mesoscale eddy are rare.Therefore,it is difficult to study the three-dimensional structure of moving mesoscale eddies.From April to September 2014,an anticyclonic eddy located at 135°E-155°E,26°N-42°N was observed using 17 rapidsampling Argo floats,and the spatiotemporal variations in the three-dimensional structure were studied.The results are as follows:(1)the eddy was identified and tracked using satellite altimeter data.It had a lifetime of 269 days and an average radius of 91.5 km.The lifetime of the eddy can be divided into three phases,i.e.,the initiation,maturity,and termination phases.The depth of its influence reached 1000 m;(2)the Argo profiles were divided into seven periods(approximately 20 days in each)for composite analysis,and the composite Argo profiles and CARS2009(CSIRO Atlas of Regional Seas)climatology data were merged following the data-interpolating variational analysis(DIVA)method to reconstruct the three-dimensional structure.The temperature and salinity anomaly cores of the anticyclonic mesoscale eddy are located from 400 to 600 m.From 800 to 900 m,there is an area of low salinity at the center of the eddy.A high concentration anomaly of dissolved oxygen was located at approximately 250 m;(3)to better understand the features of the eddy and its interaction with the surroundings,we calculated the anomalous velocity of the geostrophic flow and the heat,salt,dissolved oxygen transport anomaly,and discussed the eddy's origin and its adjustments to topography.The maximum heat,salt,and oxygen transport caused by eddy were 9.37×10^11 W,3.08×10^3 kg/s,and 2.70×10^2 kg/s,which all occurred during the termination phase.This study highlights the applicability of using Argo floats to understand the three-dimensional structure thermohaline features of eddies in the North Pacific.
基金supported by the National Natural Science Foundation of China(Nos.51407134,52002196)Natural Science Foundation of Shandong Province(Nos.ZR2019YQ24,ZR2020QF084)+1 种基金Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites)and Special Financial of Shandong Province(Structural Design of High-efficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Talent Teams(No.37000022P990304116449)).
文摘In order to obtain high-performance electromagnetic wave absorbers,the adjustment of structure and components is essential.Based on the above requirements,this system forms a three-dimensional frame structure consisting of MXene and transition metal oxides(TMOs)through efficient electrostatic self-assembly.This three-dimensional network structure has rich heterojunction structures,which can cause a large amount of interface polarization and conduction losses in incident electromagnetic waves.Hollow structures cause multiple reflections and scattering of electromagnetic waves,which is also an important reason for further increasing electromagnetic wave losses.When the doping ratio is 1:1,the system has the best impedance matching,the maximum effective absorption bandwidth(EAB max)can reach 5.12 GHz at 1.7 mm,and the minimum reflection loss(RL_(min))is-50.30 dB at 1.8 mm.This provides a reference for the subsequent formation of 2D-MXene materials into 3D materials.