Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results ca...Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results cannot be fed back to users timely.To address this issue,we proposed a human-machine interaction(HMI)method for discontinuity mapping.Users can help the algorithm identify the noise and make real-time result judgments and parameter adjustments.For this,a regular cube was selected to illustrate the workflows:(1)point cloud was acquired using remote sensing;(2)the HMI method was employed to select reference points and angle thresholds to detect group discontinuity;(3)individual discontinuities were extracted from the group discontinuity using a density-based cluster algorithm;and(4)the orientation of each discontinuity was measured based on a plane fitting algorithm.The method was applied to a well-studied highway road cut and a complex natural slope.The consistency of the computational results with field measurements demonstrates its good accuracy,and the average error in the dip direction and dip angle for both cases was less than 3.Finally,the computational time of the proposed method was compared with two other popular algorithms,and the reduction in computational time by tens of times proves its high computational efficiency.This method provides geologists and geological engineers with a new idea to map rapidly and accurately rock structures under large amounts of noises or unclear features.展开更多
This paper presents an automated method for discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces.Specifically,the method consists of five steps:(1)detection of trace feature points by...This paper presents an automated method for discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces.Specifically,the method consists of five steps:(1)detection of trace feature points by normal tensor voting theory,(2)co ntraction of trace feature points,(3)connection of trace feature points,(4)linearization of trace segments,and(5)connection of trace segments.A sensitivity analysis was then conducted to identify the optimal parameters of the proposed method.Three field cases,a natural rock mass outcrop and two excavated rock tunnel surfaces,were analyzed using the proposed method to evaluate its validity and efficiency.The results show that the proposed method is more efficient and accurate than the traditional trace mapping method,and the efficiency enhancement is more robust as the number of feature points increases.展开更多
As 3D acquisition technology develops and 3D sensors become increasingly affordable,large quantities of 3D point cloud data are emerging.How to effectively learn and extract the geometric features from these point clo...As 3D acquisition technology develops and 3D sensors become increasingly affordable,large quantities of 3D point cloud data are emerging.How to effectively learn and extract the geometric features from these point clouds has become an urgent problem to be solved.The point cloud geometric information is hidden in disordered,unstructured points,making point cloud analysis a very challenging problem.To address this problem,we propose a novel network framework,called Tree Graph Network(TGNet),which can sample,group,and aggregate local geometric features.Specifically,we construct a Tree Graph by explicit rules,which consists of curves extending in all directions in point cloud feature space,and then aggregate the features of the graph through a cross-attention mechanism.In this way,we incorporate more point cloud geometric structure information into the representation of local geometric features,which makes our network perform better.Our model performs well on several basic point clouds processing tasks such as classification,segmentation,and normal estimation,demonstrating the effectiveness and superiority of our network.Furthermore,we provide ablation experiments and visualizations to better understand our network.展开更多
Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materia...Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.展开更多
Light detection and ranging(LiDAR)sensors play a vital role in acquiring 3D point cloud data and extracting valuable information about objects for tasks such as autonomous driving,robotics,and virtual reality(VR).Howe...Light detection and ranging(LiDAR)sensors play a vital role in acquiring 3D point cloud data and extracting valuable information about objects for tasks such as autonomous driving,robotics,and virtual reality(VR).However,the sparse and disordered nature of the 3D point cloud poses significant challenges to feature extraction.Overcoming limitations is critical for 3D point cloud processing.3D point cloud object detection is a very challenging and crucial task,in which point cloud processing and feature extraction methods play a crucial role and have a significant impact on subsequent object detection performance.In this overview of outstanding work in object detection from the 3D point cloud,we specifically focus on summarizing methods employed in 3D point cloud processing.We introduce the way point clouds are processed in classical 3D object detection algorithms,and their improvements to solve the problems existing in point cloud processing.Different voxelization methods and point cloud sampling strategies will influence the extracted features,thereby impacting the final detection performance.展开更多
Airborne LiDAR(Light Detection and Ranging)is an evolving high-tech active remote sensing technology that has the capability to acquire large-area topographic data and can quickly generate DEM(Digital Elevation Model)...Airborne LiDAR(Light Detection and Ranging)is an evolving high-tech active remote sensing technology that has the capability to acquire large-area topographic data and can quickly generate DEM(Digital Elevation Model)products.Combined with image data,this technology can further enrich and extract spatial geographic information.However,practically,due to the limited operating range of airborne LiDAR and the large area of task,it would be necessary to perform registration and stitching process on point clouds of adjacent flight strips.By eliminating grow errors,the systematic errors in the data need to be effectively reduced.Thus,this paper conducts research on point cloud registration methods in urban building areas,aiming to improve the accuracy and processing efficiency of airborne LiDAR data.Meanwhile,an improved post-ICP(Iterative Closest Point)point cloud registration method was proposed in this study to determine the accurate registration and efficient stitching of point clouds,which capable to provide a potential technical support for applicants in related field.展开更多
The spatial distribution of discontinuities and the size of rock blocks are the key indicators for rock mass quality evaluation and rockfall risk assessment.Traditional manual measurement is often dangerous or unreach...The spatial distribution of discontinuities and the size of rock blocks are the key indicators for rock mass quality evaluation and rockfall risk assessment.Traditional manual measurement is often dangerous or unreachable at some high-steep rock slopes.In contrast,unmanned aerial vehicle(UAV)photogrammetry is not limited by terrain conditions,and can efficiently collect high-precision three-dimensional(3D)point clouds of rock masses through all-round and multiangle photography for rock mass characterization.In this paper,a new method based on a 3D point cloud is proposed for discontinuity identification and refined rock block modeling.The method is based on four steps:(1)Establish a point cloud spatial topology,and calculate the point cloud normal vector and average point spacing based on several machine learning algorithms;(2)Extract discontinuities using the density-based spatial clustering of applications with noise(DBSCAN)algorithm and fit the discontinuity plane by combining principal component analysis(PCA)with the natural breaks(NB)method;(3)Propose a method of inserting points in the line segment to generate an embedded discontinuity point cloud;and(4)Adopt a Poisson reconstruction method for refined rock block modeling.The proposed method was applied to an outcrop of an ultrahigh steep rock slope and compared with the results of previous studies and manual surveys.The results show that the method can eliminate the influence of discontinuity undulations on the orientation measurement and describe the local concave-convex characteristics on the modeling of rock blocks.The calculation results are accurate and reliable,which can meet the practical requirements of engineering.展开更多
The satellite laser ranging (SLR) data quality from the COMPASS was analyzed, and the difference between curve recognition in computer vision and pre-process of SLR data finally proposed a new algorithm for SLR was ...The satellite laser ranging (SLR) data quality from the COMPASS was analyzed, and the difference between curve recognition in computer vision and pre-process of SLR data finally proposed a new algorithm for SLR was discussed data based on curve recognition from points cloud is proposed. The results obtained by the new algorithm are 85 % (or even higher) consistent with that of the screen displaying method, furthermore, the new method can process SLR data automatically, which makes it possible to be used in the development of the COMPASS navigation system.展开更多
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo...An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.展开更多
In the last two decades,significant research has been conducted in the field of automated extraction of rock mass discontinuity characteristics from three-dimensional(3D)models.This provides several methodologies for ...In the last two decades,significant research has been conducted in the field of automated extraction of rock mass discontinuity characteristics from three-dimensional(3D)models.This provides several methodologies for acquiring discontinuity measurements from 3D models,such as point clouds generated using laser scanning or photogrammetry.However,even with numerous automated and semiautomated methods presented in the literature,there is not one single method that can automatically characterize discontinuities accurately in a minimum of time.In this paper,we critically review all the existing methods proposed in the literature for the extraction of discontinuity characteristics such as joint sets and orientations,persistence,joint spacing,roughness and block size using point clouds,digital elevation maps,or meshes.As a result of this review,we identify the strengths and drawbacks of each method used for extracting those characteristics.We found that the approaches based on voxels and region growing are superior in extracting joint planes from 3D point clouds.Normal tensor voting with trace growth algorithm is a robust method for measuring joint trace length from 3D meshes.Spacing is estimated by calculating the perpendicular distance between joint planes.Several independent roughness indices are presented to quantify roughness from 3D surface models,but there is a need to incorporate these indices into automated methodologies.There is a lack of efficient algorithms for direct computation of block size from 3D rock mass surface models.展开更多
Building façades can feature different patterns depending on the architectural style,function-ality,and size of the buildings;therefore,reconstructing these façades can be complicated.In particular,when sema...Building façades can feature different patterns depending on the architectural style,function-ality,and size of the buildings;therefore,reconstructing these façades can be complicated.In particular,when semantic façades are reconstructed from point cloud data,uneven point density and noise make it difficult to accurately determine the façade structure.When inves-tigating façade layouts,Gestalt principles can be applied to cluster visually similar floors and façade elements,allowing for a more intuitive interpretation of façade structures.We propose a novel model for describing façade structures,namely the layout graph model,which involves a compound graph with two structure levels.In the proposed model,similar façade elements such as windows are first grouped into clusters.A down-layout graph is then formed using this cluster as a node and by combining intra-and inter-cluster spacings as the edges.Second,a top-layout graph is formed by clustering similar floors.By extracting relevant parameters from this model,we transform semantic façade reconstruction to an optimization strategy using simulated annealing coupled with Gibbs sampling.Multiple façade point cloud data with different features were selected from three datasets to verify the effectiveness of this method.The experimental results show that the proposed method achieves an average accuracy of 86.35%.Owing to its flexibility,the proposed layout graph model can deal with different types of façades and qualities of point cloud data,enabling a more robust and accurate reconstruc-tion of façade models.展开更多
To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-sca...To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-scale feature descriptors. First, we select the optimal dual-scale descriptors from a range of feature descriptors. Next, we segment the facade according to the threshold value of the chosen optimal dual-scale descriptors. Finally, we use RANSAC (Random Sample Consensus) to fit the segmented surface and optimize the fitting result. Experimental results show that, compared to commonly used facade segmentation algorithms, the proposed method yields more accurate segmentation results, providing a robust data foundation for subsequent 3D model reconstruction of buildings.展开更多
This paper describes the development of an intelligent automated control system of a robot manipulator for plasma treatment of medical implants with complex shapes.The two-layer coatings from the Ti wire and hydroxyap...This paper describes the development of an intelligent automated control system of a robot manipulator for plasma treatment of medical implants with complex shapes.The two-layer coatings from the Ti wire and hydroxyapatite powders are applied on the surface of Ti medical implants by microplasma spraying to increase the biocompatibility of implants.The coating process requires precise control of a number of parameters,particularly the plasma spray distance and plasma jet traverse velocity.Thus,the development of the robotic plasma surface treatment involves automated path planning.The key idea of the proposed intelligent automatic control system is the use of data of preliminary three-dimensional (3D) scanning of the processed implant by the robot manipulator.The segmentation algorithm of the point cloud from laser scanning of the surface is developed.This methodology is suitable for robotic 3D scanning systems with both non-contact laser distance sensors and video cameras,used in additive manufacturing and medicine.展开更多
When obtaining three-dimensional(3D)face point cloud data based on structured light,factors related to the environment,occlusion,and illumination intensity lead to holes in the collected data,which affect subsequent r...When obtaining three-dimensional(3D)face point cloud data based on structured light,factors related to the environment,occlusion,and illumination intensity lead to holes in the collected data,which affect subsequent recognition.In this study,we propose a hole-filling method based on stereo-matching technology combined with a B-spline.The algorithm uses phase information acquired during raster projection to locate holes in the point cloud,simultaneously extracting boundary point cloud sets.By registering the face point cloud data using the stereo-matching algorithm and the data collected using the raster projection method,some supplementary information points can be obtained at the holes.The shape of the B-spline curve can then be roughly described by a few key points,and the control points are put into the hole area as key points for iterative calculation of surface reconstruction.Simulations using smooth ceramic cups and human face models showed that our model can accurately reproduce details and accurately restore complex shapes on the test surfaces.Simulation results indicated the robustness of the method,which is able to fill holes on complex areas such as the inner side of the nose without a prior model.This approach also effectively supplements the hole information,and the patched point cloud is closer to the original data.This method could be used across a wide range of applications requiring accurate facial recognition.展开更多
Fusing three-dimensional(3D)and multispectral(MS)imaging data holds promise for high-throughput and comprehensive plant phenotyping to decipher genome-to-phenome knowledge.Acquiring high-quality 3D MS point clouds(3DM...Fusing three-dimensional(3D)and multispectral(MS)imaging data holds promise for high-throughput and comprehensive plant phenotyping to decipher genome-to-phenome knowledge.Acquiring high-quality 3D MS point clouds(3DMPCs)of plants remains challenging because of poor 3D data quality and limited radiometric calibration methods for plants with a complex canopy structure.Here,we present a novel 3D spatial–spectral data fusion approach to collect high-quality 3DMPCs of plants by integrating the next-best-view planning for adaptive data acquisition and neural reference field(NeREF)for radiometric calibration.This approach was used to acquire 3DMPCs of perilla,tomato,and rapeseed plants with diverse plant architecture and leaf morphological features evaluated by the accuracy of chlorophyll content and equivalent water thickness(EWT)estimation.The results showed that the completeness of plant point clouds collected by this approach was improved by an average of 23.6%compared with the fixed viewpoints alone.The NeREF-based radiometric calibration with the hemispherical reference outperformed the conventional calibration method by reducing the root mean square error(RMSE)of 58.93%for extracted reflectance spectra.The RMSE for chlorophyll content and EWT predictions decreased by 21.25%and 14.13%using partial least squares regression with the generated 3DMPCs.Collectively,our study provides an effective and efficient way to collect high-quality 3DMPCs of plants under natural light conditions,which improves the accuracy and comprehensiveness of phenotyping plant morphological and physiological traits,and thus will facilitate plant biology and genetic studies as well as crop breeding.展开更多
基金supported by the National Key R&D Program of China(No.2023YFC3081200)the National Natural Science Foundation of China(No.42077264)the Scientific Research Project of PowerChina Huadong Engineering Corporation Limited(HDEC-2022-0301).
文摘Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results cannot be fed back to users timely.To address this issue,we proposed a human-machine interaction(HMI)method for discontinuity mapping.Users can help the algorithm identify the noise and make real-time result judgments and parameter adjustments.For this,a regular cube was selected to illustrate the workflows:(1)point cloud was acquired using remote sensing;(2)the HMI method was employed to select reference points and angle thresholds to detect group discontinuity;(3)individual discontinuities were extracted from the group discontinuity using a density-based cluster algorithm;and(4)the orientation of each discontinuity was measured based on a plane fitting algorithm.The method was applied to a well-studied highway road cut and a complex natural slope.The consistency of the computational results with field measurements demonstrates its good accuracy,and the average error in the dip direction and dip angle for both cases was less than 3.Finally,the computational time of the proposed method was compared with two other popular algorithms,and the reduction in computational time by tens of times proves its high computational efficiency.This method provides geologists and geological engineers with a new idea to map rapidly and accurately rock structures under large amounts of noises or unclear features.
基金supported by the Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China(Grant No.4182780021)Emeishan-Hanyuan Highway ProgramTaihang Mountain Highway Program。
文摘This paper presents an automated method for discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces.Specifically,the method consists of five steps:(1)detection of trace feature points by normal tensor voting theory,(2)co ntraction of trace feature points,(3)connection of trace feature points,(4)linearization of trace segments,and(5)connection of trace segments.A sensitivity analysis was then conducted to identify the optimal parameters of the proposed method.Three field cases,a natural rock mass outcrop and two excavated rock tunnel surfaces,were analyzed using the proposed method to evaluate its validity and efficiency.The results show that the proposed method is more efficient and accurate than the traditional trace mapping method,and the efficiency enhancement is more robust as the number of feature points increases.
基金supported by the National Natural Science Foundation of China (Grant Nos.91948203,52075532).
文摘As 3D acquisition technology develops and 3D sensors become increasingly affordable,large quantities of 3D point cloud data are emerging.How to effectively learn and extract the geometric features from these point clouds has become an urgent problem to be solved.The point cloud geometric information is hidden in disordered,unstructured points,making point cloud analysis a very challenging problem.To address this problem,we propose a novel network framework,called Tree Graph Network(TGNet),which can sample,group,and aggregate local geometric features.Specifically,we construct a Tree Graph by explicit rules,which consists of curves extending in all directions in point cloud feature space,and then aggregate the features of the graph through a cross-attention mechanism.In this way,we incorporate more point cloud geometric structure information into the representation of local geometric features,which makes our network perform better.Our model performs well on several basic point clouds processing tasks such as classification,segmentation,and normal estimation,demonstrating the effectiveness and superiority of our network.Furthermore,we provide ablation experiments and visualizations to better understand our network.
基金funded by the National Natural Science Foundation of China(42071014).
文摘Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.
文摘Light detection and ranging(LiDAR)sensors play a vital role in acquiring 3D point cloud data and extracting valuable information about objects for tasks such as autonomous driving,robotics,and virtual reality(VR).However,the sparse and disordered nature of the 3D point cloud poses significant challenges to feature extraction.Overcoming limitations is critical for 3D point cloud processing.3D point cloud object detection is a very challenging and crucial task,in which point cloud processing and feature extraction methods play a crucial role and have a significant impact on subsequent object detection performance.In this overview of outstanding work in object detection from the 3D point cloud,we specifically focus on summarizing methods employed in 3D point cloud processing.We introduce the way point clouds are processed in classical 3D object detection algorithms,and their improvements to solve the problems existing in point cloud processing.Different voxelization methods and point cloud sampling strategies will influence the extracted features,thereby impacting the final detection performance.
基金Guangxi Key Laboratory of Spatial Information and Geomatics(21-238-21-12)Guangxi Young and Middle-aged Teachers’Research Fundamental Ability Enhancement Project(2023KY1196).
文摘Airborne LiDAR(Light Detection and Ranging)is an evolving high-tech active remote sensing technology that has the capability to acquire large-area topographic data and can quickly generate DEM(Digital Elevation Model)products.Combined with image data,this technology can further enrich and extract spatial geographic information.However,practically,due to the limited operating range of airborne LiDAR and the large area of task,it would be necessary to perform registration and stitching process on point clouds of adjacent flight strips.By eliminating grow errors,the systematic errors in the data need to be effectively reduced.Thus,this paper conducts research on point cloud registration methods in urban building areas,aiming to improve the accuracy and processing efficiency of airborne LiDAR data.Meanwhile,an improved post-ICP(Iterative Closest Point)point cloud registration method was proposed in this study to determine the accurate registration and efficient stitching of point clouds,which capable to provide a potential technical support for applicants in related field.
基金supported by the National Natural Science Foundation of China(Grant Nos.41941017 and 42177139)Graduate Innovation Fund of Jilin University(Grant No.2024CX099)。
文摘The spatial distribution of discontinuities and the size of rock blocks are the key indicators for rock mass quality evaluation and rockfall risk assessment.Traditional manual measurement is often dangerous or unreachable at some high-steep rock slopes.In contrast,unmanned aerial vehicle(UAV)photogrammetry is not limited by terrain conditions,and can efficiently collect high-precision three-dimensional(3D)point clouds of rock masses through all-round and multiangle photography for rock mass characterization.In this paper,a new method based on a 3D point cloud is proposed for discontinuity identification and refined rock block modeling.The method is based on four steps:(1)Establish a point cloud spatial topology,and calculate the point cloud normal vector and average point spacing based on several machine learning algorithms;(2)Extract discontinuities using the density-based spatial clustering of applications with noise(DBSCAN)algorithm and fit the discontinuity plane by combining principal component analysis(PCA)with the natural breaks(NB)method;(3)Propose a method of inserting points in the line segment to generate an embedded discontinuity point cloud;and(4)Adopt a Poisson reconstruction method for refined rock block modeling.The proposed method was applied to an outcrop of an ultrahigh steep rock slope and compared with the results of previous studies and manual surveys.The results show that the method can eliminate the influence of discontinuity undulations on the orientation measurement and describe the local concave-convex characteristics on the modeling of rock blocks.The calculation results are accurate and reliable,which can meet the practical requirements of engineering.
文摘The satellite laser ranging (SLR) data quality from the COMPASS was analyzed, and the difference between curve recognition in computer vision and pre-process of SLR data finally proposed a new algorithm for SLR was discussed data based on curve recognition from points cloud is proposed. The results obtained by the new algorithm are 85 % (or even higher) consistent with that of the screen displaying method, furthermore, the new method can process SLR data automatically, which makes it possible to be used in the development of the COMPASS navigation system.
基金Project(51274250)supported by the National Natural Science Foundation of ChinaProject(2012BAK09B02-05)supported by the National Key Technology R&D Program during the 12th Five-year Plan of China
文摘An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.
基金funded by the U.S.National Institute for Occupational Safety and Health(NIOSH)under the Contract No.75D30119C06044。
文摘In the last two decades,significant research has been conducted in the field of automated extraction of rock mass discontinuity characteristics from three-dimensional(3D)models.This provides several methodologies for acquiring discontinuity measurements from 3D models,such as point clouds generated using laser scanning or photogrammetry.However,even with numerous automated and semiautomated methods presented in the literature,there is not one single method that can automatically characterize discontinuities accurately in a minimum of time.In this paper,we critically review all the existing methods proposed in the literature for the extraction of discontinuity characteristics such as joint sets and orientations,persistence,joint spacing,roughness and block size using point clouds,digital elevation maps,or meshes.As a result of this review,we identify the strengths and drawbacks of each method used for extracting those characteristics.We found that the approaches based on voxels and region growing are superior in extracting joint planes from 3D point clouds.Normal tensor voting with trace growth algorithm is a robust method for measuring joint trace length from 3D meshes.Spacing is estimated by calculating the perpendicular distance between joint planes.Several independent roughness indices are presented to quantify roughness from 3D surface models,but there is a need to incorporate these indices into automated methodologies.There is a lack of efficient algorithms for direct computation of block size from 3D rock mass surface models.
基金This work is supported by the National Natural Science Foundation of China[grant number 41771484].
文摘Building façades can feature different patterns depending on the architectural style,function-ality,and size of the buildings;therefore,reconstructing these façades can be complicated.In particular,when semantic façades are reconstructed from point cloud data,uneven point density and noise make it difficult to accurately determine the façade structure.When inves-tigating façade layouts,Gestalt principles can be applied to cluster visually similar floors and façade elements,allowing for a more intuitive interpretation of façade structures.We propose a novel model for describing façade structures,namely the layout graph model,which involves a compound graph with two structure levels.In the proposed model,similar façade elements such as windows are first grouped into clusters.A down-layout graph is then formed using this cluster as a node and by combining intra-and inter-cluster spacings as the edges.Second,a top-layout graph is formed by clustering similar floors.By extracting relevant parameters from this model,we transform semantic façade reconstruction to an optimization strategy using simulated annealing coupled with Gibbs sampling.Multiple façade point cloud data with different features were selected from three datasets to verify the effectiveness of this method.The experimental results show that the proposed method achieves an average accuracy of 86.35%.Owing to its flexibility,the proposed layout graph model can deal with different types of façades and qualities of point cloud data,enabling a more robust and accurate reconstruc-tion of façade models.
文摘To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-scale feature descriptors. First, we select the optimal dual-scale descriptors from a range of feature descriptors. Next, we segment the facade according to the threshold value of the chosen optimal dual-scale descriptors. Finally, we use RANSAC (Random Sample Consensus) to fit the segmented surface and optimize the fitting result. Experimental results show that, compared to commonly used facade segmentation algorithms, the proposed method yields more accurate segmentation results, providing a robust data foundation for subsequent 3D model reconstruction of buildings.
基金supported by the Science Committee of RK MES under the Grant No. AP05130525。
文摘This paper describes the development of an intelligent automated control system of a robot manipulator for plasma treatment of medical implants with complex shapes.The two-layer coatings from the Ti wire and hydroxyapatite powders are applied on the surface of Ti medical implants by microplasma spraying to increase the biocompatibility of implants.The coating process requires precise control of a number of parameters,particularly the plasma spray distance and plasma jet traverse velocity.Thus,the development of the robotic plasma surface treatment involves automated path planning.The key idea of the proposed intelligent automatic control system is the use of data of preliminary three-dimensional (3D) scanning of the processed implant by the robot manipulator.The segmentation algorithm of the point cloud from laser scanning of the surface is developed.This methodology is suitable for robotic 3D scanning systems with both non-contact laser distance sensors and video cameras,used in additive manufacturing and medicine.
基金supported by the National Natural Science Foundation of China(No.61405034)the Special Project on Basic Research of Frontier Leading Technology of Jiangsu Province,China(No.BK20192004C)+1 种基金the Shenzhen Science and Technology Innovation Committee(No.JCYJ20180306174455080)the Natural Science Foundation of Jiangsu Province,China(No.BK20181269)。
文摘When obtaining three-dimensional(3D)face point cloud data based on structured light,factors related to the environment,occlusion,and illumination intensity lead to holes in the collected data,which affect subsequent recognition.In this study,we propose a hole-filling method based on stereo-matching technology combined with a B-spline.The algorithm uses phase information acquired during raster projection to locate holes in the point cloud,simultaneously extracting boundary point cloud sets.By registering the face point cloud data using the stereo-matching algorithm and the data collected using the raster projection method,some supplementary information points can be obtained at the holes.The shape of the B-spline curve can then be roughly described by a few key points,and the control points are put into the hole area as key points for iterative calculation of surface reconstruction.Simulations using smooth ceramic cups and human face models showed that our model can accurately reproduce details and accurately restore complex shapes on the test surfaces.Simulation results indicated the robustness of the method,which is able to fill holes on complex areas such as the inner side of the nose without a prior model.This approach also effectively supplements the hole information,and the patched point cloud is closer to the original data.This method could be used across a wide range of applications requiring accurate facial recognition.
基金funded by the National Natural Science Foundation of China(32371985)the Fundamental Research Funds for the Central Universities,China(226-2022-00217).
文摘Fusing three-dimensional(3D)and multispectral(MS)imaging data holds promise for high-throughput and comprehensive plant phenotyping to decipher genome-to-phenome knowledge.Acquiring high-quality 3D MS point clouds(3DMPCs)of plants remains challenging because of poor 3D data quality and limited radiometric calibration methods for plants with a complex canopy structure.Here,we present a novel 3D spatial–spectral data fusion approach to collect high-quality 3DMPCs of plants by integrating the next-best-view planning for adaptive data acquisition and neural reference field(NeREF)for radiometric calibration.This approach was used to acquire 3DMPCs of perilla,tomato,and rapeseed plants with diverse plant architecture and leaf morphological features evaluated by the accuracy of chlorophyll content and equivalent water thickness(EWT)estimation.The results showed that the completeness of plant point clouds collected by this approach was improved by an average of 23.6%compared with the fixed viewpoints alone.The NeREF-based radiometric calibration with the hemispherical reference outperformed the conventional calibration method by reducing the root mean square error(RMSE)of 58.93%for extracted reflectance spectra.The RMSE for chlorophyll content and EWT predictions decreased by 21.25%and 14.13%using partial least squares regression with the generated 3DMPCs.Collectively,our study provides an effective and efficient way to collect high-quality 3DMPCs of plants under natural light conditions,which improves the accuracy and comprehensiveness of phenotyping plant morphological and physiological traits,and thus will facilitate plant biology and genetic studies as well as crop breeding.