期刊文献+
共找到4,248篇文章
< 1 2 213 >
每页显示 20 50 100
Three-Dimensional Prospectivity Modeling of Jinshan Ag-Au Deposit,Southern China by Weights-of-Evidence
1
作者 Fan Xiao Qiuming Cheng +1 位作者 Weisheng Hou Frederik P.Agterberg 《Journal of Earth Science》 2025年第5期2038-2057,共20页
To comprehensively utilize the valuable geological map,exploration profile,borehole,and geochemical logging data and the knowledge on the formation of the Jinshan Ag-Au deposit for forecasting the exploration targets ... To comprehensively utilize the valuable geological map,exploration profile,borehole,and geochemical logging data and the knowledge on the formation of the Jinshan Ag-Au deposit for forecasting the exploration targets of concealed ore bodies,three-dimensional Mineral Prospectivity Modeling(MPM)of the deposit has been conducted using the weights-of-evidence(WofE)method.Conditional independence between evidence layers was tested,and the outline results using the prediction-volume(P-V)and Student's t-statistic methods for delineating favorable mineralization areas from continuous posterior probability map were critically compared.Four exploration targets delineated ultimately by the Student's t-statistic method for the discovery of minable ore bodies in each of the target areas were discussed in detail.The main conclusions include:(1)three-dimensional modeling of a deposit using multi-source reconnaissance data is useful for MPM in interpreting their relationships with known ore bodies;(2)WofE modeling can be used as a straightforward tool for integrating deposit model and reconnaissance data in MPM;(3)the Student's t-statistic method is more applicable in binarizing the continuous prospectivity map for exploration targeting than the PV approach;and(4)two target areas within high potential to find undiscovered ore bodies were diagnosed to guide future near-mine exploration activities of the Jinshan deposit. 展开更多
关键词 three-dimensional modeling mineral prospectivity mapping exploration targeting WEIGHTS-OF-EVIDENCE C-V fractal model Jinshan Ag-Au deposit mineral deposits economic geology
原文传递
Mixed integer programming modeling for the satellite three-dimensional component assignment and layout optimization problem
2
作者 Yufeng XIA Xianqi CHEN +3 位作者 Zhijia LIU Weien ZHOU Wen YAO Zhongneng ZHANG 《Chinese Journal of Aeronautics》 2025年第6期427-447,共21页
Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to en... Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications. 展开更多
关键词 Mixed integer programming modeling three-dimensional component assignment Layout optimization Phi-function Finite-rectangle method
原文传递
Dynamic modeling of a three-dimensional braided composite thin plate considering braiding directions
3
作者 Chentong GAO Huiyu SUN +1 位作者 Jianping GU W.M.HUANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第1期123-138,共16页
Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade compone... Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade components.In this paper,a dynamic model of 3D 4-directional braided composite thin plates considering braiding directions is established.Based on Kirchhoff's plate assumptions,the displacement variables of the plate are expressed.By incorporating the braiding directions into the constitutive equation of the braided composites,the dynamic model of the plate considering braiding directions is obtained.The effects of the speeds,braiding directions,and braided angles on the responses of the plate with fixed-axis rotation and translational motion,respectively,are investigated.This paper presents a dynamic theory for calculating the deformation of 3D braided composite structures undergoing both translational and rotational motions.It also provides a simulation method for investigating the dynamic behavior of non-isotropic material plates in various applications. 展开更多
关键词 three-dimensional(3D)braided composite braiding direction composite thin plate large overall motion dynamic model
在线阅读 下载PDF
Real-time model updating and prediction of three-dimensional timevarying consolidation settlement using machine learning
4
作者 Huaming Tian Yu Wang Danni Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5954-5969,共16页
The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying ge... The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying geotechnical responses(e.g.consolidation settlement)in a 3D spatial domain.However,traditional 3D numerical model updating approaches are computationally prohibitive and therefore difficult to update the 3D responses in real time.To address these challenges,this study proposes a novel machine learning framework called sparse dictionary learning(T-3D-SDL)for real-time updating of time-varying 3D geotechnical responses.In T-3D-SDL,a concerned dataset(e.g.time-varying 3D settlement)is approximated as a linear superposition of dictionary atoms generated from 3D random FEM analyses.Field monitoring data are then used to identify non-trivial atoms and estimate their weights within a Bayesian framework for model updating and prediction.The proposed approach enables the real-time update of temporally varying settlements with a high 3D spatial resolution and quantified uncertainty as field monitoring data evolve.The proposed approach is illustrated using an embankment construction project.The results show that the proposed approach effectively improves settlement predictions along temporal and 3D spatial dimensions,with minimal latency(e.g.within minutes),as monitoring data appear.In addition,the proposed approach requires only a reasonably small number of 3D FEM model evaluations,avoids the use of widely adopted yet often criticized surrogate models,and effectively addresses the limitations(e.g.computational inefficiency)of existing 3D model updating approaches. 展开更多
关键词 Digital twin three-dimensional(3D)finite element method(FEM) Time-varying 3D settlement Real-time model update Sparse dictionary learning(SDL)
在线阅读 下载PDF
Modularized and Parametric Modeling Technology for Finite Element Simulations of Underground Engineering under Complicated Geological Conditions
5
作者 Jiaqi Wu Li Zhuo +4 位作者 Jianliang Pei Yao Li Hongqiang Xie Jiaming Wu Huaizhong Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期621-645,共25页
The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling ... The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses. 展开更多
关键词 Underground engineering modularized and parametric modeling finite element method complex geological structure cloud modeling
在线阅读 下载PDF
Parametric modeling and applications of target scattering centers:a review
6
作者 YIN Hongcheng YAN Hua 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1411-1427,共17页
The parametric scattering center model of radar tar-get has the advantages of simplicity,sparsity and mechanism relevant,making it widely applied in fields such as radar data compression and rapid generation,radar ima... The parametric scattering center model of radar tar-get has the advantages of simplicity,sparsity and mechanism relevant,making it widely applied in fields such as radar data compression and rapid generation,radar imaging,feature extraction and recognition.This paper summarizes and analyzes the research situation,development trend,and difficult prob-lems on scattering center(SC)parametric modeling from three aspects:parametric representation,determination method of model parameters,and application. 展开更多
关键词 radar target scattering center(SC) parametric model radar target imaging radar target simulation radar tar-get recognition
在线阅读 下载PDF
Application of Three-dimensional Modeling in a Hydrologic Test Reach
7
作者 Yuxing GAO Yiyang XIE 《Meteorological and Environmental Research》 2024年第6期67-69,共3页
To address the problem that the display effect of hydrologic test data was not intuitive,the three-dimensional modeling technology of a hydrologic test reach based on GIS technology was proposed.The reach of of the Ye... To address the problem that the display effect of hydrologic test data was not intuitive,the three-dimensional modeling technology of a hydrologic test reach based on GIS technology was proposed.The reach of of the Yellow River around Lanzhou hydrological station was selected to study three-dimensional modeling.The elevation data of river was processed through three-dimensional model constructing,water surface modeling and three-dimensional animation demonstration by using ArcGIS Pro software.Based on the historical highest flood level data of the test reach on September 15,1981,the real scene restoration was carried out based on the three-dimensional model,and the hydrological factors such as water depth and channel storage were analyzed.The three-dimensional modeling based on GIS technology can directly and realistically reflect the changes of topography and water surface of the test reach,and improve the application of hydrologic test results in flood control. 展开更多
关键词 three-dimensional modeling Hydrologic test ARCGIS Lanzhou hydrological station
在线阅读 下载PDF
Oxygen tension modulates cell function in an in vitro three-dimensional glioblastoma tumor model 被引量:1
8
作者 Sen Wang Siqi Yao +8 位作者 Na Pei Luge Bai Zhiyan Hao Dichen Li Jiankang He J.Miguel Oliveira Xiaoyan Xue Ling Wang Xinggang Mao 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第3期307-319,共13页
Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor ... Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells.This study reports a three-dimensional(3D)brain tumor model obtained by encapsulating U87MG(U87)cells in a hydrogel containing type I collagen.It also documents the effect of various oxygen concentrations(1%,7%,and 21%)in the culture environment on U87 cell morphology,proliferation,viability,cell cycle,apoptosis rate,and migration.Finally,it compares two-dimensional(2D)and 3D cultures.For comparison purposes,cells cultured in flat culture dishes were used as the control(2D model).Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase(G0 phase)/gap I phase(G1 phase)than those cultured in the 2D model.Besides,the two models yielded significantly different cell morphologies.Finally,hypoxia(e.g.,1%O2)affected cell morphology,slowed cell growth,reduced cell viability,and increased the apoptosis rate in the 3D model.These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function,and can be more representative of the tumor microenvironment than 2D culture systems.The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology. 展开更多
关键词 HYPOXIA GLIOMA three-dimensional glioma model In vitro
暂未订购
Multi-parameter modeling and analysis of ground motion amplification in the Quaternary sedimentary basin of the Beijing-Tianjin-Hebei region
9
作者 Hong Zhou 《Earthquake Science》 2025年第2期136-151,共16页
Basin effect was first described following the analysis of seismic ground motion associated with the 1985 MW8.1 earthquake in Mexico.Basins affect the propagation of seismic waves through various mechanisms,and severa... Basin effect was first described following the analysis of seismic ground motion associated with the 1985 MW8.1 earthquake in Mexico.Basins affect the propagation of seismic waves through various mechanisms,and several unique phenomena,such as the basin edge effect,basin focusing effect,and basin-induced secondary waves,have been observed.Understanding and quantitatively predicting these phenomena are crucial for earthquake disaster reduction.Some pioneering studies in this field have proposed a quantitative relationship between the basin effect on ground motion and basin depth.Unfortunately,basin effect phenomena predicted using a model based only on basin depth exhibit large deviations from actual distributions,implying the severe shortcomings of single-parameter basin effect modeling.Quaternary sediments are thick and widely distributed in the Beijing-Tianjin-Hebei region.The seismic media inside and outside of this basin have significantly different physical properties,and the basin bottom forms an interface with strong seismic reflections.In this study,we established a three-dimensional structure model of the Quaternary sedimentary basin based on the velocity structure model of the North China Craton and used it to simulate the ground motion under a strong earthquake following the spectral element method,obtaining the spatial distribution characteristics of the ground motion amplification ratio throughout the basin.The back-propagation(BP)neural network algorithm was then introduced to establish a multi-parameter mathematical model for predicting ground motion amplification ratios,with the seismic source location,physical property ratio of the media inside and outside the basin,seismic wave frequency,and basin shape as the input parameters.We then examined the main factors influencing the amplification of seismic ground motion in basins based on the prediction results,and concluded that the main factors influencing the basin effect are basin shape and differences in the physical properties of media inside and outside the basin. 展开更多
关键词 three-dimensional basin effect ground motion modeling BP neural network algorithm spectral element method
在线阅读 下载PDF
Automatic identification of discontinuities and refined modeling of rock blocks from 3D point cloud data of rock surfaces
10
作者 Yaopeng Ji Shengyuan Song +5 位作者 Jianping Chen Jingyu Xue Jianhua Yan Yansong Zhang Di Sun Qing Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3093-3106,共14页
The spatial distribution of discontinuities and the size of rock blocks are the key indicators for rock mass quality evaluation and rockfall risk assessment.Traditional manual measurement is often dangerous or unreach... The spatial distribution of discontinuities and the size of rock blocks are the key indicators for rock mass quality evaluation and rockfall risk assessment.Traditional manual measurement is often dangerous or unreachable at some high-steep rock slopes.In contrast,unmanned aerial vehicle(UAV)photogrammetry is not limited by terrain conditions,and can efficiently collect high-precision three-dimensional(3D)point clouds of rock masses through all-round and multiangle photography for rock mass characterization.In this paper,a new method based on a 3D point cloud is proposed for discontinuity identification and refined rock block modeling.The method is based on four steps:(1)Establish a point cloud spatial topology,and calculate the point cloud normal vector and average point spacing based on several machine learning algorithms;(2)Extract discontinuities using the density-based spatial clustering of applications with noise(DBSCAN)algorithm and fit the discontinuity plane by combining principal component analysis(PCA)with the natural breaks(NB)method;(3)Propose a method of inserting points in the line segment to generate an embedded discontinuity point cloud;and(4)Adopt a Poisson reconstruction method for refined rock block modeling.The proposed method was applied to an outcrop of an ultrahigh steep rock slope and compared with the results of previous studies and manual surveys.The results show that the method can eliminate the influence of discontinuity undulations on the orientation measurement and describe the local concave-convex characteristics on the modeling of rock blocks.The calculation results are accurate and reliable,which can meet the practical requirements of engineering. 展开更多
关键词 three-dimensional(3D)point cloud Rock mass Automatic identification Refined modeling Unmanned aerial vehicle(UAV)
在线阅读 下载PDF
Virtual and augmented reality systems and three-dimensional printing of the renal model—novel trends to guide preoperative planning for renal cancer
11
作者 Claudia-Gabriela Moldovanu 《Asian Journal of Urology》 CSCD 2024年第4期521-529,共9页
Objective:This study aimed to explore the applications of three-dimensional (3D) technology, including virtual reality, augmented reality (AR), and 3D printing system, in the field of medicine, particularly in renal i... Objective:This study aimed to explore the applications of three-dimensional (3D) technology, including virtual reality, augmented reality (AR), and 3D printing system, in the field of medicine, particularly in renal interventions for cancer treatment.Methods:A specialized software transforms 2D medical images into precise 3D digital models, facilitating improved anatomical understanding and surgical planning. Patient-specific 3D printed anatomical models are utilized for preoperative planning, intraoperative guidance, and surgical education. AR technology enables the overlay of digital perceptions onto real-world surgical environments.Results:Patient-specific 3D printed anatomical models have multiple applications, such as preoperative planning, intraoperative guidance, trainee education, and patient counseling. Virtual reality involves substituting the real world with a computer-generated 3D environment, while AR overlays digitally created perceptions onto the existing reality. The advances in 3D modeling technology have sparked considerable interest in their application to partial nephrectomy in the realm of renal cancer. 3D printing, also known as additive manufacturing, constructs 3D objects based on computer-aided design or digital 3D models. Utilizing 3D-printed preoperative renal models provides benefits for surgical planning, offering a more reliable assessment of the tumor's relationship with vital anatomical structures and enabling better preparation for procedures. AR technology allows surgeons to visualize patient-specific renal anatomical structures and their spatial relationships with surrounding organs by projecting CT/MRI images onto a live laparoscopic video. Incorporating patient-specific 3D digital models into healthcare enhances best practice, resulting in improved patient care, increased patient satisfaction, and cost saving for the healthcare system. 展开更多
关键词 three-dimensional model three-dimensional printing Augmented reality Virtual reality
暂未订购
Meta-Auto-Decoder:a Meta-Learning-Based Reduced Order Model for Solving Parametric Partial Differential Equations
12
作者 Zhanhong Ye Xiang Huang +1 位作者 Hongsheng Liu Bin Dong 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1096-1130,共35页
Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational... Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods. 展开更多
关键词 parametric partial differential equations(PDEs) META-LEARNING Reduced order modeling Neural networks(NNs) Auto-decoder
在线阅读 下载PDF
Three-dimensional structural models,evolution and petroleum geological significances of transtensional faults in the Ziyang area,central Sichuan Basin,SW China
13
作者 TIAN Fanglei GUO Tonglou +6 位作者 HE Dengfa GU Zhanyu MENG Xianwu WANG Renfu WANG Ying ZHANG Weikang LU Guo 《Petroleum Exploration and Development》 SCIE 2024年第3期604-620,共17页
With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,... With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration. 展开更多
关键词 transtensional(strike-slip)fault three-dimensional structural model structural evolution petroleum geological significance Ziyang area Sichuan Basin
在线阅读 下载PDF
Hyper accuracy three-dimensional virtual anatomical rainbow model facilitates surgical planning and safe selective clamping during robot-assisted partial nephrectomy
14
作者 Francesco Ditonno Antonio Franco +8 位作者 Celeste Manfredi Daniele Amparore Enrico Checcucci Marco De Sio Alessandro Antonelli Cosimo De Nunzio Cristian Fiori Francesco Porpiglia Riccardo Autorino 《Asian Journal of Urology》 CSCD 2024年第4期660-665,共6页
Objective:To highlight the role of hyper accuracy three-dimensional(3D)reconstruction in facilitating surgical planning and guiding selective clamping during robot-assisted partial nephrectomy(RAPN).Methods:A transper... Objective:To highlight the role of hyper accuracy three-dimensional(3D)reconstruction in facilitating surgical planning and guiding selective clamping during robot-assisted partial nephrectomy(RAPN).Methods:A transperitoneal RAPN was performed in a 62-year-old male patient presenting with a 4 cm right anterior interpolar renal mass(R.E.N.A.L nephrometry score 7A).An abnormal vasculature was observed,with a single renal vein and two right renal arteries originating superiorly to the vein and anterior,when dividing in their segmental branches.According to the hyper accuracy 3D(HA3D^(®))rainbow model(MEDICS Srl,Turin,Italy),one branch belonging to one of the segmental arteries was feeding the tumor.This allowed for an accurate prediction of the area vascularized by each arterial branch.The 3D model was included in the intraoperative console view during the whole procedure,using the TilePro feature.A step-by-step explanation of the procedure is provided in the video attached to the present article.Results:The operative time was 90 min with a warm ischemia time on selective clamping of 13 min.Estimated blood loss was 180 mL.No intraoperative complication was encountered and no drain was placed at the end of the procedure.The patient was discharged on postoperative Day 2,without any early postoperative complications.The final pathology report showed a pathological tumor stage 1 clear cell renal cell carcinoma with negative surgical margins.Conclusion:The present study and the attached video illustrate the value of 3D rainbow model during the planning and execution of a RAPN with selective clamping.It shows how the surgeon can rely on this model to be more efficient by avoiding unnecessary surgical steps,and to safely adopt a“selective”clamping strategy that can translate in minimal functional impact. 展开更多
关键词 Hyper accuracy three-dimensional rainbow model Augmented reality Clear cell renal cell carcinoma Robot-assisted partial nephrectomy Selective clamping
暂未订购
A fnite element parametric modeling technique of aircraft wing structures 被引量:13
15
作者 Tang Jiapeng Xi Ping +1 位作者 Zhang Baoyuan Hu Bifu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第5期1202-1210,共9页
A finite element parametric modeling method of aircraft wing structures is proposed in this paper because of time-consuming characteristics of finite element analysis pre-processing. The main research is positioned du... A finite element parametric modeling method of aircraft wing structures is proposed in this paper because of time-consuming characteristics of finite element analysis pre-processing. The main research is positioned during the preliminary design phase of aircraft structures. A knowledge- driven system of fast finite element modeling is built. Based on this method, employing a template parametric technique, knowledge including design methods, rules, and expert experience in the process of modeling is encapsulated and a finite element model is established automatically, which greatly improves the speed, accuracy, and standardization degree of modeling. Skeleton model, geometric mesh model, and finite element model including finite element mesh and property data are established on parametric description and automatic update. The outcomes of research show that the method settles a series of problems of parameter association and model update in the process of finite element modeling which establishes a key technical basis for finite element parametric analysis and optimization design. 展开更多
关键词 Finite element model Geometric mesh model KNOWLEDGE parametric modeling Skeleton model TEMPLATE WING
原文传递
Research on Urban Building Parametric Modelling Method Based on CityEngine
16
作者 Xinyu Liu 《Journal of World Architecture》 2024年第1期7-11,共5页
With the advancement of technology and the development of cities,urban planning and management methods are also constantly improving.From paper-based assignments to modern digitization,new technologies have enabled mo... With the advancement of technology and the development of cities,urban planning and management methods are also constantly improving.From paper-based assignments to modern digitization,new technologies have enabled more efficient design and management for cities.3D modeling can used to simulate the urban environment,which can assist in urban planning and management.However,large-scale modeling cannot be achieved through existing modeling methods,and there are still some shortcomings in the maintenance of the model.Therefore,this article proposes a Computer Generated Architecture(CGA)parametric 3D modeling method based on CityEngine.Research on expanding and customizing modeling rules to create indoor and outdoor modeling rule templates for buildings and methods for generating urban 3D models have been carried out.The results have shown that the completed model can be displayed on different platforms thanks to parameterized modeling.The model can be modified easily and directly applied to the analysis and decision-making of urban planning schemes. 展开更多
关键词 CGA rules Urban planning Texture mapping parametric modeling
在线阅读 下载PDF
A Feature-Based Parametric Product Modeling System in CIMS Environment 被引量:4
17
作者 李海龙 《High Technology Letters》 EI CAS 1997年第1期13-16,共4页
This paper proposes an approach of developing the feature based parametric product modeling system which is suitable for integrated engineering design in CIMS environment.The architecture of ZD--MCADII and the charact... This paper proposes an approach of developing the feature based parametric product modeling system which is suitable for integrated engineering design in CIMS environment.The architecture of ZD--MCADII and the characteristics of its each module are introduced in detail. ZD--MCADII’s product data is managed by an object--oriented database management system OSCAR, and the product model is built according to the standard STEP. The product design is established on a unified product model, and all the product data are globally associated in ZD--MCADII. ZD--MCADII provides various design features to facilitate the product design, and supports the integrity of CAD, CAPP and CAM. 展开更多
关键词 CIMS FEATURE based modeling parametric design PRODUCT model OODB
在线阅读 下载PDF
Dynamic parametric modeling-based model updating strategy of aeroengine casings 被引量:9
18
作者 Chengwei FEI Haotian LIU +3 位作者 Shaolin LI Huan LI Liqiang AN Cheng LU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第12期145-157,共13页
For accurate Finite Element(FE)modeling for the structural dynamics of aeroengine casings,Parametric Modeling-based Model Updating Strategy(PM-MUS)is proposed based on efficient FE parametric modeling and model updati... For accurate Finite Element(FE)modeling for the structural dynamics of aeroengine casings,Parametric Modeling-based Model Updating Strategy(PM-MUS)is proposed based on efficient FE parametric modeling and model updating techniques regarding uncorrelated/correlated mode shapes.Casings structure is parametrically modeled by simplifying initial structural FE model and equivalently simulating mechanical characteristics.Uncorrelated modes between FE model and experiment are reasonably handled by adopting an objective function to recognize correct correlated modes pairs.The parametrized FE model is updated to effectively describe structural dynamic characteristics in respect of testing data.The model updating technology is firstly validated by the detailed FE model updating of one fixed–fixed beam structure in light of correlated/uncorrelated mode shapes and measured mode data.The PM-MUS is applied to the FE parametrized model updating of an aeroengine stator system(casings)which is constructed by the proposed parametric modeling approach.As revealed in this study,(A)the updated models by the proposed updating strategy and dynamic test data is accurate,and(B)the uncorrelated modes like close modes can be effectively handled and precisely identify the FE model mode associated the corresponding experimental mode,and(C)parametric modeling can enhance the dynamic modeling updating of complex structure in the accuracy of mode matching.The efforts of this study provide an efficient dynamic model updating strategy(PM-MUS)for aeroengine casings by parametric modeling and experimental test data regarding uncorrelated modes. 展开更多
关键词 Aeroengine casings Correlated mode pair model updating parametric modeling Structural dynamics Uncorrelated modes
原文传递
Development cost prediction of general aviation aircraft projects with parametric modeling 被引量:5
19
作者 Xiaonan CHEN Jun HUANG Mingxu YI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第6期1465-1471,共7页
The study of the development cost of general aviation aircraft is limited by small samples with many cost-driven factors. This paper investigates a parametric modeling method for prediction of the development cost of ... The study of the development cost of general aviation aircraft is limited by small samples with many cost-driven factors. This paper investigates a parametric modeling method for prediction of the development cost of general aviation aircraft. The proposed technique depends on some principal components, acquired by utilizing P value analysis and gray correlation analysis. According to these principal components, the corresponding linear regression and BP neural network models are established respectively. The feasibility and accuracy of the P value analysis are verified by comparing results of model fitting and prediction. A sensitivity analysis related to model precision and suitability is discussed in detail. Results obtained in this study show that the proposed method not only has a certain degree of versatility, but also provides a preliminary prediction of the development cost of general aviation aircraft. 展开更多
关键词 BP neural network DEVELOPMENT cost General AVIATION AIRCRAFT GRAY correlation ANALYSIS Linear regression P value ANALYSIS parametric modeling Preliminary prediction Sensitivity ANALYSIS
原文传递
Three-dimensional numerical modeling of gravity anomalies based on Poisson equation in spacewavenumber mixed domain 被引量:6
20
作者 Dai Shi-Kun Zhao Dong-Dong +3 位作者 Zhang Qian-Jiang Li Kun Chen Qing-Rui Wang Xu-Long 《Applied Geophysics》 SCIE CSCD 2018年第3期513-523,共11页
In gravity-anomaly-based prospecting, the computational and memory requirements for practical numerical modeling are potentially enormous. Achieving an efficient and precise inversion for gravity anomaly imaging over ... In gravity-anomaly-based prospecting, the computational and memory requirements for practical numerical modeling are potentially enormous. Achieving an efficient and precise inversion for gravity anomaly imaging over large-scale and complex terrain requires additional methods. To this end, we have proposed a new topography-capable By performing a two-dimensional Fourier transform in the horizontal directions, threedimensional partial differential equations in the spatial domain were transformed into a group of independent, one-dimensional differential equations engaged with different wave numbers. These independent differential equations are highly parallel across different wave numbers. differential equations with different wave numbers, and the efficiency of solving fixedbandwidth linear equations was further improved by a chasing method. In a synthetic test, a prism model was used to verify the accuracy and reliability of the proposed algorithm by comparing the numerical solution with the analytical solution. We studied the computational precision and efficiency with and without topography using different Fourier transform methods. The results showed that the Guass-FFT method has higher numerical precision, while the standard FFT method is superior, in terms of computation time, for inversion and quantitative interpretation under complicated terrain. 展开更多
关键词 Topography gravity ANOMALY space-wavenumber mixing DOMAIN three-dimensional NUMERICAL modeling
在线阅读 下载PDF
上一页 1 2 213 下一页 到第
使用帮助 返回顶部