期刊文献+
共找到4,084篇文章
< 1 2 205 >
每页显示 20 50 100
Three-dimensional image simulation of primary diaphragmatic hemangioma: A case report
1
作者 Pei-Yi Chu Kuan-Hsun Lin +2 位作者 Hao-Lun Kao Yi-Jen Peng Tsai-Wang Huang 《World Journal of Clinical Cases》 SCIE 2019年第24期4307-4313,共7页
BACKGROUND Fewer than 200 cases of diaphragmatic tumors have been reported in the past century. Diaphragmatic hemangiomas are extremely rare. Only nine cases have been reported in English literature to date. We report... BACKGROUND Fewer than 200 cases of diaphragmatic tumors have been reported in the past century. Diaphragmatic hemangiomas are extremely rare. Only nine cases have been reported in English literature to date. We report a case of cavernous hemangioma arising from the diaphragm. Pre-operative three-dimensional(3D)simulation and minimal invasive thoracoscopic excision were performed successfully, and we describe the radiologic findings and the surgical procedure in the following article.CASE SUMMARY A 40-year-old man was referred for further examination of a mass over the right basal lung without specific symptoms. Contrast-enhanced computed tomography revealed a poorly-enhanced lesion in the right basal lung, abutting to the diaphragm, measuring 3.1 cm × 1.5 cm in size. The mediastinum showed a clear appearance without evidence of abnormal mass or lymphadenopathy. A preoperative 3D image was reconstructed, which revealed a diaphragmatic lesion. Video-assisted thoracic surgery was performed, and a red papillary tumor was found, originating from the right diaphragm. The tumor was resected, and the pathological diagnosis was cavernous hemangioma.CONCLUSION In this rare case of diaphragmatic hemangioma, 3D image simulation was helpful for the preoperative evaluation and surgical decision making. 展开更多
关键词 Diaphragmatic tumor HEMANGIOMA Case report three-dimensional image simulation Video-assisted thoracic surgery THORACOSCOPY
暂未订购
Research on Clothing Simulation Design Based on Three-Dimensional Image Analysis 被引量:1
2
作者 Wenyao Zhu Xue Li Young-Mi Shon 《Computers, Materials & Continua》 SCIE EI 2020年第10期945-962,共18页
Traditional clothing design models based on adaptive meshes cannot reflect.To solve this problem,a clothing simulation design model based on 3D image analysis technology is established.The model uses feature extractio... Traditional clothing design models based on adaptive meshes cannot reflect.To solve this problem,a clothing simulation design model based on 3D image analysis technology is established.The model uses feature extraction and description of image evaluation parameters,and establishes the mapping relationship between image features and simulation results by using the optimal parameter values,thereby obtaining a three-dimensional image simulation analysis environment.On the basis of this model,by obtaining the response results of clothing collision detection and the results of local adaptive processing of clothing meshes,the cutting form and actual cutting effect of clothing are determined to construct a design model.The simulation results show that compared with traditional clothing design models,clothing simulation design based on 3D image analysis technology has a better effect,with the definition of fabric folds increasing by 40%.More striking contrast between light and dark,the resolution increasing by 30%,and clothing details getting a more real manifestation. 展开更多
关键词 3D image analysis clothing simulation feature extraction optimal solution mapping relationship collision detection grid layout cutting effect
在线阅读 下载PDF
Image processing based three-dimensional model reconstruction for cross-platform numerical simulation
3
作者 Yu-cheng Sun Yu-hang Huang +5 位作者 Na Li Xiao Han Ai-long Jiang Jin-wu Kang Ji-wu Wang Hai-liang Yu 《China Foundry》 SCIE CAS CSCD 2023年第2期139-147,共9页
Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different ... Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different computing tools have to be developed so as to solve particular fields at different scales and for different processes.Therefore,the integration of different types of software is inevitable.However,it is difficult to perform the transfer of the meshes and simulated results among software packages because of the lack of shared data formats or encrypted data formats.An image processing based method for three-dimensional model reconstruction for numerical simulation was proposed,which presents a solution to the integration problem by a series of slice or projection images obtained by the post-processing modules of the numerical simulation software.By means of mapping image pixels to meshes of either finite difference or finite element models,the geometry contour can be extracted to export the stereolithography model.The values of results,represented by color,can be deduced and assigned to the meshes.All the models with data can be directly or indirectly integrated into other software as a continued or new numerical simulation.The three-dimensional reconstruction method has been validated in numerical simulation of castings and case studies were provided in this study. 展开更多
关键词 cross-platform numerical simulation 3D model reconstruction image processing SLICE
在线阅读 下载PDF
Training image analysis for three-dimensional reconstruction of porous media
4
作者 滕奇志 杨丹 +2 位作者 徐智 李征骥 何小海 《Journal of Southeast University(English Edition)》 EI CAS 2012年第4期415-421,共7页
In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is prop... In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is proposed. The second-order statistics based on texture features are analyzed to evaluate the scale stationarity of the training image. The multiple-point statistics of the training image are applied to obtain the multiple-point statistics stationarity estimation by the multi-point density function. The results show that the reconstructed 3D structures are closer to reality when the training image has better scale stationarity and multiple-point statistics stationarity by the indications of local percolation probability and two-point probability. Moreover, training images with higher multiple-point statistics stationarity and lower scale stationarity are likely to obtain closer results to the real 3D structure, and vice versa. Thus, stationarity analysis of the training image has far-reaching significance in choosing a better 2D thin section image for the 3D reconstruction of porous media. Especially, high-order statistics perform better than low-order statistics. 展开更多
关键词 three-dimensional reconstruction training image stationarity porous media multiple-point statistics
在线阅读 下载PDF
A target imaging simulation method for ground-based system based on signal-to-noise ratio
5
作者 Chunxu Ren Yun Li +3 位作者 Yanzhao Li Weihua Gao Wenlong Niu Xiaodong Peng 《Astronomical Techniques and Instruments》 2025年第5期288-298,共11页
Space target imaging simulation technology is an important tool for space target detection and identification,with advantages that include high flexibility and low cost.However,existing space target imaging simulation... Space target imaging simulation technology is an important tool for space target detection and identification,with advantages that include high flexibility and low cost.However,existing space target imaging simulation technologies are mostly based on target magnitudes for simulations,making it difficult to meet image simulation requirements for different signal-to-noise ratio(SNR)needs.Therefore,design of a simulation method that generates target image sequences with various SNRs based on the optical detection system parameters will be important for faint space target detection research.Addressing the SNR calculation issue in optical observation systems,this paper proposes a ground-based detection image SNR calculation method using the optical system parameters.This method calculates the SNR of an observed image precisely using radiative transfer theory,the optical system parameters,and the observation environment parameters.An SNR-based target sequence image simulation method for ground-based detection scenarios is proposed.This method calculates the imaging SNR using the optical system parameters and establishes a model for conversion between the target’s apparent magnitude and image grayscale values,thereby enabling generation of target sequence simulation images with corresponding SNRs for different system parameters.Experiments show that the SNR obtained using this calculation method has an average calculation error of<1 dB when compared with the theoretical SNR of the actual optical system.Additionally,the simulation images generated by the imaging simulation method show high consistency with real images,which meets the requirements of faint space target detection algorithm research and provides reliable data support for development of related technologies. 展开更多
关键词 image SNR calculation imaging simulation Ground-based optical detection system Space target image sequence
在线阅读 下载PDF
Revolutionizing hepatobiliary surgery:Impact of three-dimensional imaging and virtual surgical planning on precision,complications,and patient outcomes
6
作者 Himanshu Agrawal Himanshu Tanwar Nikhil Gupta 《Artificial Intelligence in Gastroenterology》 2025年第1期39-51,共13页
BACKGROUND Hepatobiliary surgery is complex and requires a thorough understanding of the liver’s anatomy,biliary system,and vasculature.Traditional imaging methods such as computed tomography(CT)and magnetic resonanc... BACKGROUND Hepatobiliary surgery is complex and requires a thorough understanding of the liver’s anatomy,biliary system,and vasculature.Traditional imaging methods such as computed tomography(CT)and magnetic resonance imaging(MRI),although helpful,fail to provide three-dimensional(3D)relationships of these structures,which are critical for planning and executing complicated surgeries.AIM To explore the use of 3D imaging and virtual surgical planning(VSP)technologies to improve surgical accuracy,reduce complications,and enhance patient recovery in hepatobiliary surgeries.METHODS A comprehensive review of studies published between 2017 and 2024 was conducted through PubMed,Scopus,Google Scholar,and Web of Science.Studies selected focused on 3D imaging and VSP applications in hepatobiliary surgery,assessing surgical precision,complications,and patient outcomes.Thirty studies,including randomized controlled trials,cohort studies,and case reports,were included in the final analysis.RESULTS Various 3D imaging modalities,including multidetector CT,MRI,and 3D rotational angiography,provide high-resolution views of the liver’s vascular and biliary anatomy.VSP allows surgeons to simulate complex surgeries,improving preoperative planning and reducing complications like bleeding and bile leaks.Several studies have demonstrated improved surgical precision,reduced complications,and faster recovery times when 3D imaging and VSP were used in complex surgeries.CONCLUSION 3D imaging and VSP technologies significantly enhance the accuracy and outcomes of hepatobiliary surgeries by providing individualized preoperative planning.While promising,further research,particularly randomized controlled trials,is needed to standardize protocols and evaluate long-term efficacy. 展开更多
关键词 three-dimensional imaging Virtual surgical planning Hepatobiliary surgery Surgical precision Preoperative planning
暂未订购
Hyperspectral imaging for one-step growth simulation of Brochothrix thermosphacta in chilled beef during storage
7
作者 Xiaohua Liu Binjing Zhou +7 位作者 Jin Song Kang Tu Jing Peng Weijie Lan Jing Xu Jie Wu Juqing Wu Leiqing Pan 《Food Science and Human Wellness》 2025年第1期226-235,共10页
In this work,one-step growth models using hyperspectral imaging(HSI)(400-1000 nm)were successfully developed in order to estimate the microbial loads,minimum growth temperature(T_(min))and maximum specific growth rate... In this work,one-step growth models using hyperspectral imaging(HSI)(400-1000 nm)were successfully developed in order to estimate the microbial loads,minimum growth temperature(T_(min))and maximum specific growth rate(μ_(max))of Brochothrix thermosphacta in chilled beef at isothermal temperatures(4-25℃).Three different methods were compared for model development,particularly using(Model Ⅰ)the predicted microbial loads from partial least squares regression of the whole spectral variables;(Model Ⅱ)the selected spectral variables related to microbial loads;and(Model Ⅲ)the first principal scores of HSI spectra by principal component analysis.Consequently,Model Ⅰ showed the best ability to predict the microbial loads of B.thermosphacta,with the coefficient of determination(R_(v)^(2))and root mean square error in internal validation(RMSEV)of 0.921 and 0.498(lg(CFU/g)).The T_(min)(-12.32℃)andμmax can be well estimated with R^(2) and root mean square error(RMSE)of 0.971 and 0.276(lg(CFU/g)),respectively.The upward trend ofμmax with temperature was similar to that of the plate count method.HSI technique thus can be used as a simple method for one-step growth simulation of B.thermosphacta in chilled beef during storage. 展开更多
关键词 Brochothrix thermosphacta BEEF Hyperspectral imaging Growth simulation One-step analysis Predictive microbiology
在线阅读 下载PDF
Study on Estimation Method of Rock Mass Discontinuity Shear Strength Based on Three-Dimensional Laser Scanning and Image Technique 被引量:22
8
作者 唐辉明 葛云峰 +3 位作者 王亮清 苑谊 黄磊 孙淼军 《Journal of Earth Science》 SCIE CAS CSCD 2012年第6期908-913,共6页
The estimation of shear strength of rock mass discontinuity is always a focal, but difficult, problem in the field of geotechnical engineering. Considering the disadvantages and limitation of exist- ing estimation met... The estimation of shear strength of rock mass discontinuity is always a focal, but difficult, problem in the field of geotechnical engineering. Considering the disadvantages and limitation of exist- ing estimation methods, a new approach based on the shadow area percentage (SAP) that can be used to quantify surface roughness is proposed in this article. Firstly, by the help of laser scanning technique, the three-dimensional model of the surface of rock discontinuity was established. Secondly, a light source was simulated, and there would be some shadows produced on the model surface. Thirdly, to obtain the value of SAP of each specimen, the shadow detection technique was introduced for use. Fourthly, compared with the result from direct shear testing and based on statistics, an empirical for- mula was found among SAP, normal stress, and shear strength. Data of Yujian (~ River were used as an example, and the following conclusions have been made. (1) In the case of equal normal stress, the peak shear stress is positively proportional to the SAP. (2) The formula for estimating was derived, and the predictions of peak-shear strength made with this equation well agreed with the experimental re- suits obtained in laboratory tests. 展开更多
关键词 rock mechanics rock mass discontinuity shear strength estimation method three-dimensional laser scanning technique image recognition technique.
原文传递
Numerical simulation for large baseline interferometric imaging altimeter
9
作者 Jie Liu Bo Liu +2 位作者 Xiaonan An Haifeng Kou Bing Li 《Geodesy and Geodynamics》 2025年第1期111-126,共16页
Sea topography information holds significant importance in oceanic research and the climate change detection.Radar imaging altimetry has emerged as the leading approach for global ocean observation,employing synthetic... Sea topography information holds significant importance in oceanic research and the climate change detection.Radar imaging altimetry has emerged as the leading approach for global ocean observation,employing synthetic aperture radar(SAR)interferometry to enhance the spatial resolution of Sea topography.Nevertheless,current payload capacity and satellite hardware limitations prevent the extension of the interferometric baseline by enlarging the physical antenna size.This constraint hinders achieving centimeter-level accuracy in interferometric altimetry.To address this challenge,we conducted a numerical simulation to assess the viability of a large baseline interferometric imaging altimeter(LB-IIA).By controlling the baseline within the range of 600-1000 m through spiral orbit design in two satellites and mitigating baseline de-correlation with the carrier frequency shift(CFS)technique,we aimed to overcome the above limitations.Our findings demonstrate the efficacy of the CFS technique in compensating for baseline decoherence,elevating coherence from less than 0.1 to over 0.85.Concurrently.The height difference accuracy between neighboring sea surfaces reaches 1 cm within a 1 km resolution.This study is anticipated to serve as a foundational reference for future interferometric imaging altimeter development,catering to the demand for high-precision sea topography data in accurate global bathymetry inversion. 展开更多
关键词 Sea topography Numerical simulation Carrier frequency shift(CFS) Large baseline interferometric imaging altimeter(LB-IIA)
原文传递
Three-Dimensional and Cross-sectional Characteristics of Normal Grain Growth Based on Monte Carlo Simulation 被引量:3
10
作者 Xiaoyan Song Guoquan Liu(Material Science and Engineering School, University of Science and Technology Beijing, Beijing 100083, China)(Department of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1998年第3期129-133,139,共6页
An appropriate Monte Carlo method was developed to simulate the three-dimensional normal grain growth more completely. Comparative investigation on the three-dimensional and the cross-sectional characteristics of norm... An appropriate Monte Carlo method was developed to simulate the three-dimensional normal grain growth more completely. Comparative investigation on the three-dimensional and the cross-sectional characteristics of normal grain growth was done. It was found that the time exponent of grain growth determined from cross-section exhibits the same rule of increasing slowly with time and approaching the theoretical value n = 0.5 of steadygrain growth as the three-dimensional (3-D) system. From change of the number of grains per unit area with timemeasured in cross-section, the state of 3-D normal grain growth may be predicted. The gtain size distribution incross-section is different from that in 3-D system and can not express the evolution characteristic of the 3-D distribution. Furthermore, there exists statistical connection between the topological parameters in cross-section and thosein three-dimensions. 展开更多
关键词 Monte Carlo simulation normal grain growth three-dimension cross-section CHARACTERISTICS
在线阅读 下载PDF
Three-dimensional visualization and virtual reality simulation role in hepatic surgery:Further research warranted 被引量:5
11
作者 Faiza Ahmed Vinay Jahagirdar +1 位作者 Sravya Gudapati Mohamad Mouchli 《World Journal of Gastrointestinal Surgery》 SCIE 2022年第7期723-726,共4页
Artificial intelligence(AI)is the study of algorithms that enable machines to analyze and execute cognitive activities including problem solving,object and word recognition,reduce the inevitable errors to improve the ... Artificial intelligence(AI)is the study of algorithms that enable machines to analyze and execute cognitive activities including problem solving,object and word recognition,reduce the inevitable errors to improve the diagnostic accuracy,and decision-making.Hepatobiliary procedures are technically complex and the use of AI in perioperative management can improve patient outcomes as discussed below.Three-dimensional(3D)reconstruction of images obtained via ultrasound,computed tomography scan or magnetic resonance imaging,can help surgeons better visualize the surgical sites with added depth perception.Preoperative 3D planning is associated with lesser operative time and intraoperative complications.Also,a more accurate assessment is noted,which leads to fewer operative complications.Images can be converted into physical models with 3D printing technology,which can be of educational value to students and trainees.3D images can be combined to provide 3D visualization,which is used for preoperative navigation,allowing for more precise localization of tumors and vessels.Nevertheless,AI enables surgeons to provide better,personalized care for each patient. 展开更多
关键词 Artificial intelligence three-dimensional printing Liver surgery Virtual reality Preoperative planning simulation
暂未订购
Three-dimensional positions of scattering centers reconstruction from multiple SAR images based on radargrammetry 被引量:3
12
作者 钟金荣 文贡坚 +1 位作者 回丙伟 李德仁 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1776-1789,共14页
A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of... A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method. 展开更多
关键词 multiple synthetic aperture radar(SAR) images three-dimensional scattering center position reconstruction radargrammetry
在线阅读 下载PDF
Three-dimensional discrete element numerical simulation of Paleogene salt structures in the western Kuqa foreland thrust belt 被引量:5
13
作者 LI Jianghai ZHANG Yu +1 位作者 WANG Honghao WANG Dianju 《Petroleum Exploration and Development》 2020年第1期68-79,共12页
Taking the Paleogene salt strata in the west of Kuqa foreland thrust belt as study object, the deformation features of salt structure in the compression direction and perpendicular to the compression direction were ex... Taking the Paleogene salt strata in the west of Kuqa foreland thrust belt as study object, the deformation features of salt structure in the compression direction and perpendicular to the compression direction were examined to find out the control factors and formation mechanisms of the salt structures. By using the three-dimensional discrete element numerical simulation method, the formation mechanisms of typical salt structures of western Kuqa foreland thrust belt in Keshen and Dabei work areas were comprehensively analyzed. The simulation results show that the salt deformation in Keshen and Dabei work areas is of forward spread type, with deformation concentrated in the piedmont zone;the salt deformation is affected by the early uplift near the compression end, pre-existing basement faults, synsedimentary process and the initial salt depocenter;in the direction perpendicular to the compression direction, salt rocks near the compression end have strong lateral mobility with the velocity component moving towards the middle part, and the closer to the middle, the larger the velocity will be, so that salt rocks will aggregate towards the middle and deform intensely, forming complex folds and separation of salt structures from salt source, and local outcrop with thrust faults. Compared with 2 D simulation, 3 D simulation can analyze salt structures in the principal stress direction and direction perpendicular to the principal stress, give us a full view of the formation mechanisms of salt structures, and guide the exploration of oil and gas reservoirs related to salt structures. 展开更多
关键词 TARIM Basin KUQA Depression FORELAND THRUST belt salt structure three-dimensional discrete-element numerical simulation formation mechanism
在线阅读 下载PDF
Three-Dimensional Finite Element Numerical Simulation and Physical Experiment for Magnetism-Stress Detecting in Oil Casing 被引量:2
14
作者 MENG Fanshun ZHANG Jie +2 位作者 YANG Chaoqun YU Weizhe CHEN Yuxi 《Journal of Ocean University of China》 SCIE CAS 2015年第4期669-674,共6页
The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil i... The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil industry, the number of offshore oil wells is becoming larger and larger. Because the cost of offshore oil well is very high, the casing damage will cause huge economic losses. What's more, it can also bring serious pollution to marine environment. So the effective methods of detecting casing damage are required badly. The accumulation of stress is the main reason for the casing damage. Magnetic anisotropy technique based on counter magnetostriction effect can detect the stress of casing in real time and help us to find out the hidden dangers in time. It is essential for us to prevent the casing damage from occurring. However, such technique is still in the development stage. Previous studies mostly got the relationship between stress and magnetic signals by physical experiment, and the study of physical mechanism in relative magnetic permeability connecting the stress and magnetic signals is rarely reported. The present paper uses the ANSYS to do the three-dimensional finite element numerical simulation to study how the relative magnetic permeability works for the oil casing model. We find that the quantitative relationship between the stress' s variation and magnetic induction intensity's variation is: Δδ =K* ΔB, K = 8.04×109, which is proved correct by physical experiment. 展开更多
关键词 oil casing damage magnetism-stress detecting magnetic anisotropy finite element analysis physical experiment relative magnetic permeability ANSYS three-dimensional numerical simulation
在线阅读 下载PDF
Three-Dimensional Model Reconstruction of Nonwovens from Multi-Focus Images 被引量:2
15
作者 DONG Gaige WANG Rongwu +1 位作者 LI Chengzu YOU Xiangyin 《Journal of Donghua University(English Edition)》 CAS 2022年第3期185-192,共8页
The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based... The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based on deep learning was proposed to reconstruct 3D models of nonwovens from multi-focus images.A convolutional neural network was trained to extract clear fibers from sequence images.Image processing algorithms were used to obtain the radius,the central axis,and depth information of fibers from the extraction results.Based on this information,3D models were built in 3D space.Furthermore,self-developed algorithms optimized the central axis and depth of fibers,which made fibers more realistic and continuous.The method with lower cost could reconstruct 3D models of nonwovens conveniently. 展开更多
关键词 three-dimensional(3D)model reconstruction deep learning MICROSCOPY NONWOVEN image processing
在线阅读 下载PDF
THE SYSTEM SIMULATION OF THREE-DIMENSIONAL RADAR 被引量:3
16
作者 ZhangWei XiangJingcheng WangXuegang 《Journal of Electronics(China)》 2004年第5期407-412,共6页
To provide a test platform for Electronic Warfare (EW) system, it is needed to simulate the radar received Intermediate Frequency (IF) signals and radar system functions.This letter gives a description of a radar syst... To provide a test platform for Electronic Warfare (EW) system, it is needed to simulate the radar received Intermediate Frequency (IF) signals and radar system functions.This letter gives a description of a radar system simulation software developed for frequencyphase scanning three-dimensional (3-D) radar. Experimental results prove that the software could be used for system evaluation and for training purposes as an attractive alternative to real EW system. 展开更多
关键词 System simulation Electronic Warfare(EW) three-dimensional(3-D) radars Intermediate Frequency (IF) signals
在线阅读 下载PDF
Three-Dimensional Simulations of RESET Operation in Phase-Change Random Access Memory with Blade-Type Like Phase Change Layer by Finite Element Modeling 被引量:2
17
作者 金秋雪 刘波 +8 位作者 刘燕 王维维 汪恒 许震 高丹 王青 夏洋洋 宋志棠 封松林 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第9期128-131,共4页
An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell ... An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell and the blade heater contactor structure by three-dimensional finite element modeling are compared with each other during RESET operation. The simulation results show that the programming region of the phase change layer in the BTL cell is much smaller, and thermal electrical distributions of the BTL cell are more concentrated on the TiN/GST interface. The results indicate that the BTL cell has the superiorities of increasing the heating efficiency, decreasing the power consumption and reducing the RESET current from 0.67mA to 0.32mA. Therefore, the BTL cell will be appropriate for high performance PCRAM device with lower power consumption and lower RESET current. 展开更多
关键词 PCRAM cell RESET three-dimensional simulations of RESET Operation in Phase-Change Random Access Memory with Blade-Type Like Phase Change Layer by Finite Element Modeling of by in with
原文传递
An Approach to Star Map Simulation for Star Sensor Considering the Effect of Image Motion 被引量:2
18
作者 Ai-Jun Li Chao-Shan Liu Xiao-fang Shen 《Optics and Photonics Journal》 2013年第2期108-111,共4页
To test high resolution and dynamic performance of star sensor, a method of consideration image motion on Modeling the motion blur of star sensor is proposed. Firstly, image motion geometric model based on the rotatio... To test high resolution and dynamic performance of star sensor, a method of consideration image motion on Modeling the motion blur of star sensor is proposed. Firstly, image motion geometric model based on the rotation of Starlight vector is studied. Secondly, with the help of the normal distribution of static star image energy model, introducing the star image motion speed, obtaining the energy distribution function of moving stars, implementing high dynamic simulation of star map. Finally, establishing the simulation environment, through adjusting input parameters such as integral time, rate of change of three attitude angle, the launch time, location, then, important simulation data of stars observed by star sensor in orbit can quickly be obtained, such as navigation stars information, value and direction of image motion, intensity distribution, signal to noise ratio. This work is very important to research and evaluate the star image motion compensation algorithm. 展开更多
关键词 STAR SENSOR image MOTION Model simulation of STAR MAP
暂未订购
上一页 1 2 205 下一页 到第
使用帮助 返回顶部