Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying expl...Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying explosion loads remains unclear.In this study,prefabricated perforated shale samples with parallel and vertical bedding are fractured under five distinct explosion loads using a MISEF experimental setup.High-frequency explosion pressure-time curves were monitored within an equivalent perforation,and computed tomography scanning along with three-dimensional reconstruction techniques were used to investigate fracture propagation patterns.Additionally,the formation mechanism and influencing factors of explosion crack-generated fines(CGF)were clarified by analyzing the morphology and statistics of explosion debris particles.The results indicate that methane explosion generated oscillating-pulse loads within perforations.Explosion characteristic parameters increase with increasing initial pressure.Explosion load and bedding orientation significantly influence fracture propagation patterns.As initial pressure increases,the fracture mode transitions from bi-wing to 4–5 radial fractures.In parallel bedding shale,radial fractures noticeably deflect along the bedding surface.Vertical bedding facilitates the development of transverse fractures oriented parallel to the cross-section.Bifurcation-merging of explosioninduced fractures generated CGF.CGF mass and fractal dimension increase,while average particle size decreases with increasing explosion load.This study provides valuable insights into MISEF technology.展开更多
Huge numbers of induced unpropped(IU)fractures are generated near propped fractures during hydraulic fracturing in shale gas reservoirs.But it is still unclear how their fracture space and conductivity evolve under in...Huge numbers of induced unpropped(IU)fractures are generated near propped fractures during hydraulic fracturing in shale gas reservoirs.But it is still unclear how their fracture space and conductivity evolve under in-situ conditions.This paper prepares three types of samples,namely,manually split vertical/parallel to beddings(MSV,MSP)and parallel natural fractures(NFP),to represent the varied IU fractures as well as their surface morphology.Laser scan and reconstruction demonstrate that the initial fracture spaces of MSVs and MSPs are limited as the asperities of newly created surfaces are wellmatched,and the NFPs have bigger space due to inhomogeneous geological corrosion.Surface slippage and consequent asperity mismatch increase the fracture width by several times,and the increase is proportional to surface roughness.Under stressful conditions,the slipped MSVs retain the smallest residual space and conductivity due to the newly sharp asperities.Controlled by the bedding structures and clay mineral hydrations,the conductivity of MSPs decreases most after treated with a fracturing fluid.The NFPs remain the highest conductivity,benefitting from their dispersive,gentle,and strong asperities.The results reveal the diverse evolution trends of IU fractures and can provide reliable parameters for fracturing design,post-fracturing evaluation,and productivity forecasting.展开更多
Fracture is the primary failure type for the UO_(2)ceramic pellets,which are operated under irradiation and thermal processes,and physically confined by the cladding.In this work,by combining closely coupled physical ...Fracture is the primary failure type for the UO_(2)ceramic pellets,which are operated under irradiation and thermal processes,and physically confined by the cladding.In this work,by combining closely coupled physical processes of heat conduction,heat transfer,and mechanical deformation with the cohesive phase field framework,we proposed a high-precision modeling of quasistatic cracking of three-dimensional(3D)UO_(2)ceramic fuel pellets under high temperature and irradiation.The simulation results agree well with the experimental results,indicating that the proposed method has the potential to capture 3D crack modes in the interested time range.Further,we studied the relation of the 3D fracture patterns of fuel pellets with the peak power densities.It was found that the power level plays a critical role in determining the competition between radial and circumferential cracks,as well as transverse penetrating cracks.展开更多
Complex trimalleolar ankle fractures are a major orthopaedic challenge,with an incidence of 4.22 per 10000 person-years in the United States and an annual cost of 3.4 billion dollars.This review synthesizes current ev...Complex trimalleolar ankle fractures are a major orthopaedic challenge,with an incidence of 4.22 per 10000 person-years in the United States and an annual cost of 3.4 billion dollars.This review synthesizes current evidence on diagnostic protocols and management strategies,highlighting optimal approaches and emerging trends.Initial care emphasizes soft tissue assessment,often guided by the Tscherne classification,and fracture classification systems.External fixation may be required in open injuries,while early open reduction and internal fixation within six days is linked to improved outcomes.Minimally invasive techniques for the lateral malleolus,including intramedullary nailing and locking plates,are effective,while medial malleolus fractures are commonly managed with screw fixation or tension-band wiring.Posterior malleolus fragments involving more than 25%of the articular surface usually warrant fixation.Alternatives to syndesmotic screws,such as cortical buttons or high-strength sutures,reduce the need for secondary procedures.Arthroscopic-assisted open reduction and internal fixation benefits younger,active patients by enabling concurrent management of intra-articular and ligamentous injuries.Postoperative care prioritizes early weight-bearing and validated functional scores.Despite advances,complications remain common,and further research is needed to refine surgical strategies and improve outcomes.展开更多
The Gabes aquifer system,located in southeastern Tunisia,is a crucial resource for supporting local socio-economic activities.Due to its dual porosity structure,is particularly vulnerable to pollution.This study aims ...The Gabes aquifer system,located in southeastern Tunisia,is a crucial resource for supporting local socio-economic activities.Due to its dual porosity structure,is particularly vulnerable to pollution.This study aims to develop a hybrid model that combines the Fracture Aquifer Index(FAI)with the conventional GOD(Groundwater occurrence,Overall lithology,Depth to water table)method,to assess groundwater vulnerability in fractured aquifer.To develop the hybrid model,the classical GOD method was integrated with FAI to produce a single composite index.Each parameter within both GOD and FAI was scored,and a final index was calculated to delineate vulnerable areas.The results show that the study area can be classified into four vulnerability levels:Very low,low,moderate,and high,indicating that approximately 8%of the area exhibits very low vulnerability,29%has low vulnerability,25%falls into the moderate category,and 38%is considered highly vulnerable.The FAI-GOD model further incorporates fracture network characteristics.This refinement reduces the classification to three vulnerability classes:Low,medium,and high.The outcomes demonstrate that 46%of the area is highly vulnerable due to a dense concentration of fractures,while 17%represents an intermediate zone characterized by either shallow or deeper fractures.In contrast,37%corresponds to areas with lightly fractured rock,where the impact on vulnerability is minimal.Multivariate statistical analysis was employed using Principal Components Analysis(PCA)and Hierarchical Cluster Analysis(HCA)on 24 samples across six variables.The first three components account for over 76%of the total variance,reinforcing the significance of fracture dynamics in classifying vulnerability levels.The FAI-GOD model removes the very-low-vulnerability class and expands the spatial extent of low-and high-vulnerability zones,reflecting the dominant influence of fracture networks on aquifer sensitivity.While both indices use a five-class system,FAI-GOD redistributes vulnerability by eliminating very-low-vulnerability areas and amplifying low/high categories,highlighting the critical role of fractures.A strong correlation(R2=0.94)between the GOD and FAI-GOD indices,demonstrated through second-order polynomial regression,confirms the robustness of the FAI-GOD model in accurately predicting vulnerability to pollution.This model provides a useful framework for assessing the vulnerability of complex aquifers and serves as a decision-making tool for groundwater managers in similar areas.展开更多
BACKGROUND Ankle fractures are well-documented in snow sports,but concomitant Achilles tendon and peroneal tendon ruptures are rare.This case report presents a previously unreported combination of Achilles tendon rupt...BACKGROUND Ankle fractures are well-documented in snow sports,but concomitant Achilles tendon and peroneal tendon ruptures are rare.This case report presents a previously unreported combination of Achilles tendon rupture,peroneal tendon rupture,and fibular fracture in a snowboarder,highlighting the complex nature of diagnosis,management,and rehabilitation.CASE SUMMARY A 50-year-old male snowboarder presented with severe right ankle pain following a high speed tumbling crash.Initial evaluation revealed an Achilles tendon rupture and a non-displaced distal lateral malleolus fracture.Subsequent magnetic resonance imaging confirmed complete tears of the Achilles tendon and both peroneus longus and brevis tendons,along with a Weber A lateral malleolus fracture.Surgical intervention included a 4-suture core Kraków repair of the Achilles tendon with calcaneal docking,open reduction and internal fixation of the distal fibula fracture,and primary repair of both peroneal tendons.Postoperatively,a modified Achilles repair protocol was implemented.At 16 weeks post-surgery,radiographs showed a well-healed fibular fracture,and physical examination confirmed intact Achilles and peroneal tendon repairs.By 6 months,the patient had regained full daily and work activities,including recreational pursuits.CONCLUSION This case underscores the importance of maintaining a high index of suspicion for concomitant injuries in high-energy ankle trauma during snow sports.Timely advanced imaging and a comprehensive surgical approach are crucial for optimal outcomes in such complex cases.展开更多
BACKGROUND Humeral shaft fractures are common and vary by age,with high-energy trauma observed in younger adults and low-impact injuries in older adults.Radial nerve palsy is a frequent complication.Treatment ranges f...BACKGROUND Humeral shaft fractures are common and vary by age,with high-energy trauma observed in younger adults and low-impact injuries in older adults.Radial nerve palsy is a frequent complication.Treatment ranges from nonoperative methods to surgical interventions such as intramedullary K-wires,which promote faster rehabilitation and improved elbow mobility.AIM To evaluate the outcomes of managing humeral shaft fractures using closed reduction and internal fixation with flexible intramedullary K-wires.METHODS This was a retrospective cohort study analyzing the medical records of patients with humeral shaft fractures managed with flexible intramedullary K-wires at King Abdulaziz Medical City,using non-random sampling and descriptive analysis for outcome evaluation.RESULTS This study assessed the clinical outcomes of 20 patients treated for humeral shaft fractures with intramedullary K-wires.Patients were predominantly male(n=16,80%),had an average age of 39.2 years,and a mean body mass index of 29.5 kg/m^(2).The fractures most frequently occurred in the middle third of the humerus(n=14,70%),with oblique fractures being the most common type(n=7,35%).All surgeries used general anesthesia and a posterior approach,with no intraoperative complications reported.Postoperatively,all patients achieved clinical and radiological union(n=20,100%),and the majority(n=13,65%)reached an elbow range of motion from 0 to 150 degrees.CONCLUSION These results suggest that intramedullary K-wire fixation may be an effective option for treating humeral shaft fractures,with favorable outcomes in range of motion recovery,fracture union,and a low rate of intraoperative complications.展开更多
This paper prepared a novel as-cast W-Zr-Ti metallic ESM using high-frequency vacuum induction melting technique.The above ESM performs a typical elastic-brittle material feature and strain rate strengthening behavior...This paper prepared a novel as-cast W-Zr-Ti metallic ESM using high-frequency vacuum induction melting technique.The above ESM performs a typical elastic-brittle material feature and strain rate strengthening behavior.The specimens exhibit violent chemical reaction during the fracture process under the impact loading,and the size distribution of their residual debris follows Rosin-Rammler model.The dynamic fracture toughness is obtained by the fitting of debris length scale,approximately 1.87 MPa·m~(1/2).Microstructure observation on residual debris indicates that the failure process is determined by primary crack propagation under quasi-static compression,while it is affected by multiple cracks propagation in both particle and matrix in the case of dynamic impact.Impact test demonstrates that the novel energetic fragment performs brilliant penetration and combustion effect behind the front target,leading to the effective ignition of fuel tank.For the brittleness of as-cast W-ZrTi ESM,further study conducted bond-based peridynamic(BB-PD)C++computational code to simulate its fracture behavior during penetration.The BB-PD method successfully captured the fracture process and debris cloud formation of the energetic fragment.This paper explores a novel as-cast metallic ESM,and provides an available numerical avenue to the simulation of brittle energetic fragment.展开更多
The core sampling experiments were conducted after hydraulic fracturing in the three-dimensional development zone of Fuling shale gas.Six coring wells of different well types were systematically designed.Based on the ...The core sampling experiments were conducted after hydraulic fracturing in the three-dimensional development zone of Fuling shale gas.Six coring wells of different well types were systematically designed.Based on the integrated engineering technology of post-fracturing drilling,coring and monitoring of shale and the analysis of fracture source tracing,the evaluation of the fracture network after fracturing in the three-dimensional development of shale gas was conducted.The data of core fractures after fracturing indicate that three major types of fractures are formed after fracturing:natural fractures,hydraulic fractures,and fractures induced by external mechanical force,which are further classified into six subcategories:natural structural fractures,natural bedding fractures,hydraulic fractures,hydraulically activated fractures,drilling induced fractures,and fractures induced by core transportation.The forms of the artificial fracture network after fracturing are complex.Hydraulic fractures and hydraulically activated fractures interweave with each other,presenting eight forms of artificial fracture networks,among which the“一”-shaped fracture is the most common,accounting for approximately 70%of the total fractures.When the distance to the fractured wellbore is less than 35 m,the density of the artificial fracture network is relatively high;when it is 35–100 m,the density is lower;and when it is beyond 100 m,the density gradually increases.The results of the fracture tracing in the core sampling area confirm that the current fracturing technology can essentially achieve the differential transformation of the reservoir in the main area of Jiaoshiba block in Fuling.The three-layer three-dimensional development model can efficiently utilize shale gas reserves,although there is still room for improvement in the complexity and propagation uniformity of fractures.It is necessary to further optimize technologies such as close-cutting combined with temporary blocking and deflection within fractures or at fracture mouths,as well as limited flow perforation techniques,to promote the balanced initiation and extension of fractures.展开更多
The feasibility of three-dimensional (3D) printing technology cgmbined with minimally invasive surgery in the treatment of pubic rami fractures was explored.From August 2015 to October 2017,a series of 30 patients who...The feasibility of three-dimensional (3D) printing technology cgmbined with minimally invasive surgery in the treatment of pubic rami fractures was explored.From August 2015 to October 2017,a series of 30 patients who underwent surgical stabilization of their anterior pelvic ring (all utilizing the 3D printing technology)by one surgeon at a single hospital were studied.The minimally invasive incisions were made through anterior inferior cilia spine and pubic nodule.Data collected included the operative duration,the blood loss,the damage of the important tissue,the biographic union and therecovery of the function after the operation.Measurements on inlet and outlet pelvic cardiograph were made immediately post-operation and at all follow-up clinic visits.The scores of reduction and function were measured during follow-up.Results showed that the wounds of 30 patients were healed in the first stage,and there was no injury of important structures such as blood vessels and nerves.According to the Matta criteria,excellent effectiveness was obtained in 22 cases and good in 8 cases.According to the functional evaluation criteria of Majeed,excellent effectiveness was obtained in 21 cases and good in 9 cases.It was suggested that the 3D printing technology assisted by minimally invasive surgery can better evaluate the pelvic fracture before operation,which was helpful in plate modeling, and can shorten surgery duration and reduce intraoperative blood loss and complications. The positioning accuracy was improved,and better surgical result was finally achieved.展开更多
A fracture propagation model of radial well fracturing is established based on the finite element-meshless method.The model considers the coupling effect of fracturing fluid flow and rock matrix deformation.The fractu...A fracture propagation model of radial well fracturing is established based on the finite element-meshless method.The model considers the coupling effect of fracturing fluid flow and rock matrix deformation.The fracture geometries of radial well fracturing are simulated,the induction effect of radial well on the fracture is quantitatively characterized,and the influences of azimuth,horizontal principle stress difference,and reservoir matrix permeability on the fracture geometries are revealed.The radial wells can induce the fractures to extend parallel to their axes when two radial wells in the same layer are fractured.When the radial wells are symmetrically distributed along the direction of the minimum horizontal principle stress with the azimuth greater than 15,the extrusion effect reduces the fracture length of radial wells.When the radial wells are symmetrically distributed along the direction of the maximum horizontal principal stress,the extrusion increases the fracture length of the radial wells.The fracture geometries are controlled by the rectification of radial borehole,the extrusion between radial wells in the same layer,and the deflection of the maximum horizontal principal stress.When the radial wells are distributed along the minimum horizontal principal stress symmetrically,the fracture length induced by the radial well decreases with the increase of azimuth;in contrast,when the radial wells are distributed along the maximum horizontal principal stress symmetrically,the fracture length induced by the radial well first decreases and then increases with the increase of azimuth.The fracture length induced by the radial well decreases with the increase of horizontal principal stress difference.The increase of rock matrix permeability and pore pressure of the matrix around radial wells makes the inducing effect of the radial well on fractures increase.展开更多
This paper is concerned with evaluation of various ductile fracture criteria in a general three-dimensional stress state of stress triaxiality, the Lode parameter and the equiva- lent plastic strain to fracture. Evalu...This paper is concerned with evaluation of various ductile fracture criteria in a general three-dimensional stress state of stress triaxiality, the Lode parameter and the equiva- lent plastic strain to fracture. Evaluation is carried out by comparing fracture loci constructed by fracture criteria to experimental results of A12024-T351. Comparison demonstrates that the Modified Mohr-Coulomb criterion and a newly proposed criterion provide sufficient predictabil- ity of fracture strain. Moreover, evaluation is emphasized on the predicted cut-off value for stress triaxiality. The evaluation demonstrates that the Cockcroft-Latham, Brozzo, Oh, Ko-Huh and the new criteria coupled a reasonable cut-off value for ductile materials.展开更多
Determining the width of an induced hydraulic fracture is the first step for applying wellbore strengthening and hydraulic fracturing techniques. However, current 2-D analytical solutions obtained from the plane strai...Determining the width of an induced hydraulic fracture is the first step for applying wellbore strengthening and hydraulic fracturing techniques. However, current 2-D analytical solutions obtained from the plane strain assumption may have large uncertainties when the fracture height is small. To solve this problem, a 3-D finite element method(FEM) is used to model wellbore strengthening and calculate the fracture width. Comparisons show that the 2-D plane strain solution is the asymptote of the 3-D FEM solution. Therefore, the 2-D solution may overestimate the fracture width. This indicates that the2-D solution may not be applicable in 3-D conditions. Based on the FEM modeling, a new 3-D semi-analytical solution for determining the fracture width is proposed, which accounts for the e ects of 3-D fracture dimensions, stress anisotropy and borehole inclination. Compared to the 2-D solution, this new 3-D semi-analytical solution predicts a smaller fracture width.This implies that the 2-D-based old design for wellbore strengthening may overestimate the fracture width, which can be reduced using the proposed 3-D solution. It also allows an easy way to calculate the fracture width in complex geometrical and geological conditions. This solution has been verified against 3-D finite element calculations for field applications.展开更多
Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both ...Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both hard rock drilling and oil and gas recovery. A three-dimensional internal laser-engraved crack(3D-ILC) method was introduced to prefabricate two parallel internal cracks within the samples without any damage to the surface. The samples were subjected to UF. The mechanism of UF was elucidated by analyzing the characteristics of fracture surfaces. The crack propagation path under different ultrasonic parameters was obtained by numerical simulation based on the Paris fatigue model and compared to the experimental results of UF. The results show that the 3D-ILC method is a powerful tool for UF research.Under the action of an ultrasonic field, the fracture surface shows the characteristics of beach marks and contains powder locally, indicating that the UF mechanism includes high-cycle fatigue fracture, shear and friction, and temperature load. The two internal cracks become close under UF. The numerical result obtained by the Paris fatigue model also shows the attraction of the two cracks, consistent with the test results. The 3D-ILC method provides a new tool for the experimental study of UF. Compared to the conventional numerical methods based on the analysis of stress-strain and plastic zone, numerical simulation can be a good alternative method to obtain the crack path under UF.展开更多
BACKGROUND Posterior malleolar fractures have been reported to occur in<40%of ankle fractures.AIM To reveal the recurrent patterns and characteristics of posterior malleolar fractures by creating fracture maps of t...BACKGROUND Posterior malleolar fractures have been reported to occur in<40%of ankle fractures.AIM To reveal the recurrent patterns and characteristics of posterior malleolar fractures by creating fracture maps of the posterior malleolar fractures through the use of computed tomography mapping.METHODS A consecutive series of posterior malleolar fractures was used to create threedimensional reconstruction images,which were oriented and superimposed to fit an ankle model template by both aligning specific biolandmarks and reducing reconstructed fracture fragments.Fracture lines were found and traced in order to generate an ankle fracture map.RESULTS This study involved 112 patients with a mean age of 49,comprising 32 pronationexternal rotation grade IV fractures and 80 supination-external rotation grade IV fractures according to the Lauge-Hansen classification system.Three-dimensional maps showed that the posterior ankle fracture fragments in the supinationexternal rotation grade IV group were relatively smaller than those in the pronation-external rotation grade IV group after posterior malleolus fracture.In addition,the distribution analyses on posterior malleolus fracture lines indicated that the supination-external rotation grade IV group tended to have higher linear density but more concentrated and orderly distribution fractures compared to the pronation-external rotation grade IV group.CONCLUSION Fracture maps revealed the fracture characteristics and recurrent patterns of posterior malleolar fractures,which might help to improve the understanding of ankle fracture as well as increase opportunities for follow-up research and aid clinical decision-making.展开更多
Objective: To analyze the biomechanical elements of Nitinol Patellar Concentrator (NT-PC) in heating commi nuted patellar fractures. Methods: The epoxy resin three dimensional photoelasticity pobal model was loaded wi...Objective: To analyze the biomechanical elements of Nitinol Patellar Concentrator (NT-PC) in heating commi nuted patellar fractures. Methods: The epoxy resin three dimensional photoelasticity pobal model was loaded with Nitinol Patellar Connector and frozen. After dividing layer, photographing and tracing, iterative method was used to calculate the stress value of every tuteed node. Rasults: Stress values of 1 262 nodes scattered in 12 layers were obtained The stress distribution indicated that an overall stress field was yield when the NT-PC fixated the patellar model, and there existed fixative stress in the facies articularis and distal pole of the patellar model. Conclusion: The NT-PC has evident therapeutic effect for the comminuted patellar fractures. The existing stress is helpful in maintaining anatomical reduction and enhancing fracture healing.展开更多
Osteoporosis is a common metabolic skeletal disorder characterized by decreased bone mass and deteriorated bone structure, leading to increased susceptibility to fractures. With aging population, osteoporotic fracture...Osteoporosis is a common metabolic skeletal disorder characterized by decreased bone mass and deteriorated bone structure, leading to increased susceptibility to fractures. With aging population, osteoporotic fractures are of global health and socioeconomic importance. The three-dimensional microstructural information of the common osteoporosis-related fracture sites, including vertebra, femoral neck and distal radius, is a key for fully understanding osteoporosis pathogenesis and predicting the fracture risk. Low vertebral bone mineral density(BMD) is correlated with increased fracture of the spine. Vertebral BMD decreases from cervical to lumbar spine, with the lowest BMD at the third lumbar vertebra. Trabecular bone mass of the vertebrae is much lower than that of the peripheral bone. Cancellous bone of the vertebral body has a complex heterogeneous three-dimensional microstructure, with lower bone volume in the central and anterior superior regions. Trabecular bone quality is a key element to maintain the vertebral strength. The increased fragility of osteoporotic femoral neck is attributed to low cancellous bone volume and high compact porosity. Compared with age-matched controls, increased cortical porosity is observed at the femoral neck in osteoporoticfracture patients. Distal radius demonstrates spatial inhomogeneous characteristic in cortical microstructure. The medial region of the distal radius displays the highest cortical porosity compared with the lateral, anterior and posterior regions. Bone strength of the distal radius is mainly determined by cortical porosity, which deteriorates with advancing age.展开更多
As mass transport mechanisms,the spreading and mixing(dilution) processes of miscible contaminated compounds are fundamental to understanding reactive transport behaviors and transverse dispersion.In this study,the sp...As mass transport mechanisms,the spreading and mixing(dilution) processes of miscible contaminated compounds are fundamental to understanding reactive transport behaviors and transverse dispersion.In this study,the spreading and dilution processes of a miscible contaminated compound in a three-dimensional self-affine rough fracture were simulated with the coupled lattice Boltzmann method(LBM).Moment analysis and the Shannon entropy(dilution index) were employed to analyze the spreading and mixing processes,respectively.The corresponding results showed that the spreading process was anisotropic due to the heterogeneous aperture distribution.A compound was transported faster in a large aperture region than in a small aperture region due to the occurrence of preferential flow.Both the spreading and mixing processes were highly dependent on the fluid flow velocity and molecular diffusion.The calculated results of the dilution index showed that increasing the fluid flow velocity and molecular diffusion coefficient led to a higher increasing rate of the dilution index.展开更多
Subsurface fluid injections can disturb the effective stress regime by elevating pore pressure and potentially reactivate faults and fractures.Laboratory studies indicate that fracture rheology and permeability in suc...Subsurface fluid injections can disturb the effective stress regime by elevating pore pressure and potentially reactivate faults and fractures.Laboratory studies indicate that fracture rheology and permeability in such reactivation events are linked to the roughness of the fracture surfaces.In this study,we construct numerical models using discrete element method(DEM)to explore the influence of fracture surface roughness on the shear strength,slip stability,and permeability evolution during such slip events.For each simulation,a pair of analog rock coupons(three-dimensional bonded quartz particle analogs)representing a mated fracture is sheared under a velocity-stepping scheme.The roughness of the fracture is defined in terms of asperity height and asperity wavelength.Results show that(1)Samples with larger asperity heights(rougher),when sheared,exhibit a higher peak strength which quickly devolves to a residual strength after reaching a threshold shear displacement;(2)These rougher samples also exhibit greater slip stability due to a high degree of asperity wear and resultant production of wear products;(3)Long-term suppression of permeability is observed with rougher fractures,possibly due to the removal of asperities and redistribution of wear products,which locally reduces porosity in the dilating fracture;and(4)Increasing shear-parallel asperity wavelength reduces magnitudes of stress drops after peak strength and enhances fracture permeability,while increasing shear-perpendicular asperity wavelength results in sequential stress drops and a delay in permeability enhancement.This study provides insights into understanding of the mechanisms of frictional and rheological evolution of rough fractures anticipated during reactivation events.展开更多
基金funded by the National Key Research and Development Program of China(No.2020YFA0711800)the National Science Fund for Distinguished Young Scholars(No.51925404)+2 种基金the National Natural Science Foundation of China(No.12372373)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX24_2909)the Graduate Innovation Program of China University of Mining and Technology(No.2024WLKXJ134)。
文摘Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying explosion loads remains unclear.In this study,prefabricated perforated shale samples with parallel and vertical bedding are fractured under five distinct explosion loads using a MISEF experimental setup.High-frequency explosion pressure-time curves were monitored within an equivalent perforation,and computed tomography scanning along with three-dimensional reconstruction techniques were used to investigate fracture propagation patterns.Additionally,the formation mechanism and influencing factors of explosion crack-generated fines(CGF)were clarified by analyzing the morphology and statistics of explosion debris particles.The results indicate that methane explosion generated oscillating-pulse loads within perforations.Explosion characteristic parameters increase with increasing initial pressure.Explosion load and bedding orientation significantly influence fracture propagation patterns.As initial pressure increases,the fracture mode transitions from bi-wing to 4–5 radial fractures.In parallel bedding shale,radial fractures noticeably deflect along the bedding surface.Vertical bedding facilitates the development of transverse fractures oriented parallel to the cross-section.Bifurcation-merging of explosioninduced fractures generated CGF.CGF mass and fractal dimension increase,while average particle size decreases with increasing explosion load.This study provides valuable insights into MISEF technology.
基金supported by the National Natural Science Youth Foundation of China(No.52104003)the Open Fund of Engineering Research Center of Development and Management for Low to Ultra-Low Permeability Oil&Gas Reservoirs in West China,Ministry of Education(No.KFJJ-XB-2020-5)+2 种基金the Science and Technology Planning Project of Sichuan Province(No.22NSFSC4005)the National Natural Science Foundation of China(No.52274031 and No.52374005)the Natural Science Youth Foundation of Sichuan Province(No.2023NSFSC0930)。
文摘Huge numbers of induced unpropped(IU)fractures are generated near propped fractures during hydraulic fracturing in shale gas reservoirs.But it is still unclear how their fracture space and conductivity evolve under in-situ conditions.This paper prepares three types of samples,namely,manually split vertical/parallel to beddings(MSV,MSP)and parallel natural fractures(NFP),to represent the varied IU fractures as well as their surface morphology.Laser scan and reconstruction demonstrate that the initial fracture spaces of MSVs and MSPs are limited as the asperities of newly created surfaces are wellmatched,and the NFPs have bigger space due to inhomogeneous geological corrosion.Surface slippage and consequent asperity mismatch increase the fracture width by several times,and the increase is proportional to surface roughness.Under stressful conditions,the slipped MSVs retain the smallest residual space and conductivity due to the newly sharp asperities.Controlled by the bedding structures and clay mineral hydrations,the conductivity of MSPs decreases most after treated with a fracturing fluid.The NFPs remain the highest conductivity,benefitting from their dispersive,gentle,and strong asperities.The results reveal the diverse evolution trends of IU fractures and can provide reliable parameters for fracturing design,post-fracturing evaluation,and productivity forecasting.
基金supported by the National Natural Science Foundation of China(Grant No.12272203)Young Elite Scientists Sponsorship Program by CAST(Grant No.YESS20220046)+1 种基金Young Talent Project of China National Nuclear Corporation(CNNC)(Grant No.2022-379-3-THU-YE)National Key Research and Development Program of China(Grant No.2022YFB1903100)。
文摘Fracture is the primary failure type for the UO_(2)ceramic pellets,which are operated under irradiation and thermal processes,and physically confined by the cladding.In this work,by combining closely coupled physical processes of heat conduction,heat transfer,and mechanical deformation with the cohesive phase field framework,we proposed a high-precision modeling of quasistatic cracking of three-dimensional(3D)UO_(2)ceramic fuel pellets under high temperature and irradiation.The simulation results agree well with the experimental results,indicating that the proposed method has the potential to capture 3D crack modes in the interested time range.Further,we studied the relation of the 3D fracture patterns of fuel pellets with the peak power densities.It was found that the power level plays a critical role in determining the competition between radial and circumferential cracks,as well as transverse penetrating cracks.
文摘Complex trimalleolar ankle fractures are a major orthopaedic challenge,with an incidence of 4.22 per 10000 person-years in the United States and an annual cost of 3.4 billion dollars.This review synthesizes current evidence on diagnostic protocols and management strategies,highlighting optimal approaches and emerging trends.Initial care emphasizes soft tissue assessment,often guided by the Tscherne classification,and fracture classification systems.External fixation may be required in open injuries,while early open reduction and internal fixation within six days is linked to improved outcomes.Minimally invasive techniques for the lateral malleolus,including intramedullary nailing and locking plates,are effective,while medial malleolus fractures are commonly managed with screw fixation or tension-band wiring.Posterior malleolus fragments involving more than 25%of the articular surface usually warrant fixation.Alternatives to syndesmotic screws,such as cortical buttons or high-strength sutures,reduce the need for secondary procedures.Arthroscopic-assisted open reduction and internal fixation benefits younger,active patients by enabling concurrent management of intra-articular and ligamentous injuries.Postoperative care prioritizes early weight-bearing and validated functional scores.Despite advances,complications remain common,and further research is needed to refine surgical strategies and improve outcomes.
文摘The Gabes aquifer system,located in southeastern Tunisia,is a crucial resource for supporting local socio-economic activities.Due to its dual porosity structure,is particularly vulnerable to pollution.This study aims to develop a hybrid model that combines the Fracture Aquifer Index(FAI)with the conventional GOD(Groundwater occurrence,Overall lithology,Depth to water table)method,to assess groundwater vulnerability in fractured aquifer.To develop the hybrid model,the classical GOD method was integrated with FAI to produce a single composite index.Each parameter within both GOD and FAI was scored,and a final index was calculated to delineate vulnerable areas.The results show that the study area can be classified into four vulnerability levels:Very low,low,moderate,and high,indicating that approximately 8%of the area exhibits very low vulnerability,29%has low vulnerability,25%falls into the moderate category,and 38%is considered highly vulnerable.The FAI-GOD model further incorporates fracture network characteristics.This refinement reduces the classification to three vulnerability classes:Low,medium,and high.The outcomes demonstrate that 46%of the area is highly vulnerable due to a dense concentration of fractures,while 17%represents an intermediate zone characterized by either shallow or deeper fractures.In contrast,37%corresponds to areas with lightly fractured rock,where the impact on vulnerability is minimal.Multivariate statistical analysis was employed using Principal Components Analysis(PCA)and Hierarchical Cluster Analysis(HCA)on 24 samples across six variables.The first three components account for over 76%of the total variance,reinforcing the significance of fracture dynamics in classifying vulnerability levels.The FAI-GOD model removes the very-low-vulnerability class and expands the spatial extent of low-and high-vulnerability zones,reflecting the dominant influence of fracture networks on aquifer sensitivity.While both indices use a five-class system,FAI-GOD redistributes vulnerability by eliminating very-low-vulnerability areas and amplifying low/high categories,highlighting the critical role of fractures.A strong correlation(R2=0.94)between the GOD and FAI-GOD indices,demonstrated through second-order polynomial regression,confirms the robustness of the FAI-GOD model in accurately predicting vulnerability to pollution.This model provides a useful framework for assessing the vulnerability of complex aquifers and serves as a decision-making tool for groundwater managers in similar areas.
文摘BACKGROUND Ankle fractures are well-documented in snow sports,but concomitant Achilles tendon and peroneal tendon ruptures are rare.This case report presents a previously unreported combination of Achilles tendon rupture,peroneal tendon rupture,and fibular fracture in a snowboarder,highlighting the complex nature of diagnosis,management,and rehabilitation.CASE SUMMARY A 50-year-old male snowboarder presented with severe right ankle pain following a high speed tumbling crash.Initial evaluation revealed an Achilles tendon rupture and a non-displaced distal lateral malleolus fracture.Subsequent magnetic resonance imaging confirmed complete tears of the Achilles tendon and both peroneus longus and brevis tendons,along with a Weber A lateral malleolus fracture.Surgical intervention included a 4-suture core Kraków repair of the Achilles tendon with calcaneal docking,open reduction and internal fixation of the distal fibula fracture,and primary repair of both peroneal tendons.Postoperatively,a modified Achilles repair protocol was implemented.At 16 weeks post-surgery,radiographs showed a well-healed fibular fracture,and physical examination confirmed intact Achilles and peroneal tendon repairs.By 6 months,the patient had regained full daily and work activities,including recreational pursuits.CONCLUSION This case underscores the importance of maintaining a high index of suspicion for concomitant injuries in high-energy ankle trauma during snow sports.Timely advanced imaging and a comprehensive surgical approach are crucial for optimal outcomes in such complex cases.
基金approved by King Abdullah International Medical Research Center Ethics Committee(approval No.0000074524).
文摘BACKGROUND Humeral shaft fractures are common and vary by age,with high-energy trauma observed in younger adults and low-impact injuries in older adults.Radial nerve palsy is a frequent complication.Treatment ranges from nonoperative methods to surgical interventions such as intramedullary K-wires,which promote faster rehabilitation and improved elbow mobility.AIM To evaluate the outcomes of managing humeral shaft fractures using closed reduction and internal fixation with flexible intramedullary K-wires.METHODS This was a retrospective cohort study analyzing the medical records of patients with humeral shaft fractures managed with flexible intramedullary K-wires at King Abdulaziz Medical City,using non-random sampling and descriptive analysis for outcome evaluation.RESULTS This study assessed the clinical outcomes of 20 patients treated for humeral shaft fractures with intramedullary K-wires.Patients were predominantly male(n=16,80%),had an average age of 39.2 years,and a mean body mass index of 29.5 kg/m^(2).The fractures most frequently occurred in the middle third of the humerus(n=14,70%),with oblique fractures being the most common type(n=7,35%).All surgeries used general anesthesia and a posterior approach,with no intraoperative complications reported.Postoperatively,all patients achieved clinical and radiological union(n=20,100%),and the majority(n=13,65%)reached an elbow range of motion from 0 to 150 degrees.CONCLUSION These results suggest that intramedullary K-wire fixation may be an effective option for treating humeral shaft fractures,with favorable outcomes in range of motion recovery,fracture union,and a low rate of intraoperative complications.
文摘This paper prepared a novel as-cast W-Zr-Ti metallic ESM using high-frequency vacuum induction melting technique.The above ESM performs a typical elastic-brittle material feature and strain rate strengthening behavior.The specimens exhibit violent chemical reaction during the fracture process under the impact loading,and the size distribution of their residual debris follows Rosin-Rammler model.The dynamic fracture toughness is obtained by the fitting of debris length scale,approximately 1.87 MPa·m~(1/2).Microstructure observation on residual debris indicates that the failure process is determined by primary crack propagation under quasi-static compression,while it is affected by multiple cracks propagation in both particle and matrix in the case of dynamic impact.Impact test demonstrates that the novel energetic fragment performs brilliant penetration and combustion effect behind the front target,leading to the effective ignition of fuel tank.For the brittleness of as-cast W-ZrTi ESM,further study conducted bond-based peridynamic(BB-PD)C++computational code to simulate its fracture behavior during penetration.The BB-PD method successfully captured the fracture process and debris cloud formation of the energetic fragment.This paper explores a novel as-cast metallic ESM,and provides an available numerical avenue to the simulation of brittle energetic fragment.
文摘The core sampling experiments were conducted after hydraulic fracturing in the three-dimensional development zone of Fuling shale gas.Six coring wells of different well types were systematically designed.Based on the integrated engineering technology of post-fracturing drilling,coring and monitoring of shale and the analysis of fracture source tracing,the evaluation of the fracture network after fracturing in the three-dimensional development of shale gas was conducted.The data of core fractures after fracturing indicate that three major types of fractures are formed after fracturing:natural fractures,hydraulic fractures,and fractures induced by external mechanical force,which are further classified into six subcategories:natural structural fractures,natural bedding fractures,hydraulic fractures,hydraulically activated fractures,drilling induced fractures,and fractures induced by core transportation.The forms of the artificial fracture network after fracturing are complex.Hydraulic fractures and hydraulically activated fractures interweave with each other,presenting eight forms of artificial fracture networks,among which the“一”-shaped fracture is the most common,accounting for approximately 70%of the total fractures.When the distance to the fractured wellbore is less than 35 m,the density of the artificial fracture network is relatively high;when it is 35–100 m,the density is lower;and when it is beyond 100 m,the density gradually increases.The results of the fracture tracing in the core sampling area confirm that the current fracturing technology can essentially achieve the differential transformation of the reservoir in the main area of Jiaoshiba block in Fuling.The three-layer three-dimensional development model can efficiently utilize shale gas reserves,although there is still room for improvement in the complexity and propagation uniformity of fractures.It is necessary to further optimize technologies such as close-cutting combined with temporary blocking and deflection within fractures or at fracture mouths,as well as limited flow perforation techniques,to promote the balanced initiation and extension of fractures.
文摘The feasibility of three-dimensional (3D) printing technology cgmbined with minimally invasive surgery in the treatment of pubic rami fractures was explored.From August 2015 to October 2017,a series of 30 patients who underwent surgical stabilization of their anterior pelvic ring (all utilizing the 3D printing technology)by one surgeon at a single hospital were studied.The minimally invasive incisions were made through anterior inferior cilia spine and pubic nodule.Data collected included the operative duration,the blood loss,the damage of the important tissue,the biographic union and therecovery of the function after the operation.Measurements on inlet and outlet pelvic cardiograph were made immediately post-operation and at all follow-up clinic visits.The scores of reduction and function were measured during follow-up.Results showed that the wounds of 30 patients were healed in the first stage,and there was no injury of important structures such as blood vessels and nerves.According to the Matta criteria,excellent effectiveness was obtained in 22 cases and good in 8 cases.According to the functional evaluation criteria of Majeed,excellent effectiveness was obtained in 21 cases and good in 9 cases.It was suggested that the 3D printing technology assisted by minimally invasive surgery can better evaluate the pelvic fracture before operation,which was helpful in plate modeling, and can shorten surgery duration and reduce intraoperative blood loss and complications. The positioning accuracy was improved,and better surgical result was finally achieved.
基金Supported by the National Natural Science Foundation of China(51827804)CNPC Strategic Cooperation Science and Technology Major Project(ZLZX2020-01-05)Open Fund of State Key Laboratory of Rock Mechanics and Engineering(SKLGME021024).
文摘A fracture propagation model of radial well fracturing is established based on the finite element-meshless method.The model considers the coupling effect of fracturing fluid flow and rock matrix deformation.The fracture geometries of radial well fracturing are simulated,the induction effect of radial well on the fracture is quantitatively characterized,and the influences of azimuth,horizontal principle stress difference,and reservoir matrix permeability on the fracture geometries are revealed.The radial wells can induce the fractures to extend parallel to their axes when two radial wells in the same layer are fractured.When the radial wells are symmetrically distributed along the direction of the minimum horizontal principle stress with the azimuth greater than 15,the extrusion effect reduces the fracture length of radial wells.When the radial wells are symmetrically distributed along the direction of the maximum horizontal principal stress,the extrusion increases the fracture length of the radial wells.The fracture geometries are controlled by the rectification of radial borehole,the extrusion between radial wells in the same layer,and the deflection of the maximum horizontal principal stress.When the radial wells are distributed along the minimum horizontal principal stress symmetrically,the fracture length induced by the radial well decreases with the increase of azimuth;in contrast,when the radial wells are distributed along the maximum horizontal principal stress symmetrically,the fracture length induced by the radial well first decreases and then increases with the increase of azimuth.The fracture length induced by the radial well decreases with the increase of horizontal principal stress difference.The increase of rock matrix permeability and pore pressure of the matrix around radial wells makes the inducing effect of the radial well on fractures increase.
文摘This paper is concerned with evaluation of various ductile fracture criteria in a general three-dimensional stress state of stress triaxiality, the Lode parameter and the equiva- lent plastic strain to fracture. Evaluation is carried out by comparing fracture loci constructed by fracture criteria to experimental results of A12024-T351. Comparison demonstrates that the Modified Mohr-Coulomb criterion and a newly proposed criterion provide sufficient predictabil- ity of fracture strain. Moreover, evaluation is emphasized on the predicted cut-off value for stress triaxiality. The evaluation demonstrates that the Cockcroft-Latham, Brozzo, Oh, Ko-Huh and the new criteria coupled a reasonable cut-off value for ductile materials.
基金partially supported by National Key R&D Program of China (2017YFC0804108) during the 13th Five-Year Plan PeriodNational Science Foundation of China (51774136)+1 种基金Natural Science Foundation of Hebei Province of China (D2017508099)the Program for Innovative Research Team in the University sponsored by Ministry of Education of China (IRT-17R37)
文摘Determining the width of an induced hydraulic fracture is the first step for applying wellbore strengthening and hydraulic fracturing techniques. However, current 2-D analytical solutions obtained from the plane strain assumption may have large uncertainties when the fracture height is small. To solve this problem, a 3-D finite element method(FEM) is used to model wellbore strengthening and calculate the fracture width. Comparisons show that the 2-D plane strain solution is the asymptote of the 3-D FEM solution. Therefore, the 2-D solution may overestimate the fracture width. This indicates that the2-D solution may not be applicable in 3-D conditions. Based on the FEM modeling, a new 3-D semi-analytical solution for determining the fracture width is proposed, which accounts for the e ects of 3-D fracture dimensions, stress anisotropy and borehole inclination. Compared to the 2-D solution, this new 3-D semi-analytical solution predicts a smaller fracture width.This implies that the 2-D-based old design for wellbore strengthening may overestimate the fracture width, which can be reduced using the proposed 3-D solution. It also allows an easy way to calculate the fracture width in complex geometrical and geological conditions. This solution has been verified against 3-D finite element calculations for field applications.
基金supported by the National Natural Science Foundation of China (Grant Nos. 52104125, U1765204 and 51739008)
文摘Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both hard rock drilling and oil and gas recovery. A three-dimensional internal laser-engraved crack(3D-ILC) method was introduced to prefabricate two parallel internal cracks within the samples without any damage to the surface. The samples were subjected to UF. The mechanism of UF was elucidated by analyzing the characteristics of fracture surfaces. The crack propagation path under different ultrasonic parameters was obtained by numerical simulation based on the Paris fatigue model and compared to the experimental results of UF. The results show that the 3D-ILC method is a powerful tool for UF research.Under the action of an ultrasonic field, the fracture surface shows the characteristics of beach marks and contains powder locally, indicating that the UF mechanism includes high-cycle fatigue fracture, shear and friction, and temperature load. The two internal cracks become close under UF. The numerical result obtained by the Paris fatigue model also shows the attraction of the two cracks, consistent with the test results. The 3D-ILC method provides a new tool for the experimental study of UF. Compared to the conventional numerical methods based on the analysis of stress-strain and plastic zone, numerical simulation can be a good alternative method to obtain the crack path under UF.
基金Supported by Multicenter Clinical Trial of h UC-MSCs in the Treatment of Late Chronic Spinal Cord Injury,No.2017YFA0105404Key Discipline Construction Project of Pudong Health Bureau of Shanghai,No.PWZxk2017-08
文摘BACKGROUND Posterior malleolar fractures have been reported to occur in<40%of ankle fractures.AIM To reveal the recurrent patterns and characteristics of posterior malleolar fractures by creating fracture maps of the posterior malleolar fractures through the use of computed tomography mapping.METHODS A consecutive series of posterior malleolar fractures was used to create threedimensional reconstruction images,which were oriented and superimposed to fit an ankle model template by both aligning specific biolandmarks and reducing reconstructed fracture fragments.Fracture lines were found and traced in order to generate an ankle fracture map.RESULTS This study involved 112 patients with a mean age of 49,comprising 32 pronationexternal rotation grade IV fractures and 80 supination-external rotation grade IV fractures according to the Lauge-Hansen classification system.Three-dimensional maps showed that the posterior ankle fracture fragments in the supinationexternal rotation grade IV group were relatively smaller than those in the pronation-external rotation grade IV group after posterior malleolus fracture.In addition,the distribution analyses on posterior malleolus fracture lines indicated that the supination-external rotation grade IV group tended to have higher linear density but more concentrated and orderly distribution fractures compared to the pronation-external rotation grade IV group.CONCLUSION Fracture maps revealed the fracture characteristics and recurrent patterns of posterior malleolar fractures,which might help to improve the understanding of ankle fracture as well as increase opportunities for follow-up research and aid clinical decision-making.
文摘Objective: To analyze the biomechanical elements of Nitinol Patellar Concentrator (NT-PC) in heating commi nuted patellar fractures. Methods: The epoxy resin three dimensional photoelasticity pobal model was loaded with Nitinol Patellar Connector and frozen. After dividing layer, photographing and tracing, iterative method was used to calculate the stress value of every tuteed node. Rasults: Stress values of 1 262 nodes scattered in 12 layers were obtained The stress distribution indicated that an overall stress field was yield when the NT-PC fixated the patellar model, and there existed fixative stress in the facies articularis and distal pole of the patellar model. Conclusion: The NT-PC has evident therapeutic effect for the comminuted patellar fractures. The existing stress is helpful in maintaining anatomical reduction and enhancing fracture healing.
文摘Osteoporosis is a common metabolic skeletal disorder characterized by decreased bone mass and deteriorated bone structure, leading to increased susceptibility to fractures. With aging population, osteoporotic fractures are of global health and socioeconomic importance. The three-dimensional microstructural information of the common osteoporosis-related fracture sites, including vertebra, femoral neck and distal radius, is a key for fully understanding osteoporosis pathogenesis and predicting the fracture risk. Low vertebral bone mineral density(BMD) is correlated with increased fracture of the spine. Vertebral BMD decreases from cervical to lumbar spine, with the lowest BMD at the third lumbar vertebra. Trabecular bone mass of the vertebrae is much lower than that of the peripheral bone. Cancellous bone of the vertebral body has a complex heterogeneous three-dimensional microstructure, with lower bone volume in the central and anterior superior regions. Trabecular bone quality is a key element to maintain the vertebral strength. The increased fragility of osteoporotic femoral neck is attributed to low cancellous bone volume and high compact porosity. Compared with age-matched controls, increased cortical porosity is observed at the femoral neck in osteoporoticfracture patients. Distal radius demonstrates spatial inhomogeneous characteristic in cortical microstructure. The medial region of the distal radius displays the highest cortical porosity compared with the lateral, anterior and posterior regions. Bone strength of the distal radius is mainly determined by cortical porosity, which deteriorates with advancing age.
基金supported by the National Natural Science Foundation of China(Grant No.41602239)the Natural Science Foundation of Jiangsu Province(Grant No.BK20160861)+2 种基金the Fundamental Research Funds for the Central Universities(Grant No.2016B05514)the International Postdoctoral Exchange Fellowship Program from the Office of China Postdoctoral Council(Grant No.20150048)the"333 Project"of Jiangsu Province(Grant No.BRA2015305)
文摘As mass transport mechanisms,the spreading and mixing(dilution) processes of miscible contaminated compounds are fundamental to understanding reactive transport behaviors and transverse dispersion.In this study,the spreading and dilution processes of a miscible contaminated compound in a three-dimensional self-affine rough fracture were simulated with the coupled lattice Boltzmann method(LBM).Moment analysis and the Shannon entropy(dilution index) were employed to analyze the spreading and mixing processes,respectively.The corresponding results showed that the spreading process was anisotropic due to the heterogeneous aperture distribution.A compound was transported faster in a large aperture region than in a small aperture region due to the occurrence of preferential flow.Both the spreading and mixing processes were highly dependent on the fluid flow velocity and molecular diffusion.The calculated results of the dilution index showed that increasing the fluid flow velocity and molecular diffusion coefficient led to a higher increasing rate of the dilution index.
基金support provided by United States Department of Energy Grant DE-FE0023354。
文摘Subsurface fluid injections can disturb the effective stress regime by elevating pore pressure and potentially reactivate faults and fractures.Laboratory studies indicate that fracture rheology and permeability in such reactivation events are linked to the roughness of the fracture surfaces.In this study,we construct numerical models using discrete element method(DEM)to explore the influence of fracture surface roughness on the shear strength,slip stability,and permeability evolution during such slip events.For each simulation,a pair of analog rock coupons(three-dimensional bonded quartz particle analogs)representing a mated fracture is sheared under a velocity-stepping scheme.The roughness of the fracture is defined in terms of asperity height and asperity wavelength.Results show that(1)Samples with larger asperity heights(rougher),when sheared,exhibit a higher peak strength which quickly devolves to a residual strength after reaching a threshold shear displacement;(2)These rougher samples also exhibit greater slip stability due to a high degree of asperity wear and resultant production of wear products;(3)Long-term suppression of permeability is observed with rougher fractures,possibly due to the removal of asperities and redistribution of wear products,which locally reduces porosity in the dilating fracture;and(4)Increasing shear-parallel asperity wavelength reduces magnitudes of stress drops after peak strength and enhances fracture permeability,while increasing shear-perpendicular asperity wavelength results in sequential stress drops and a delay in permeability enhancement.This study provides insights into understanding of the mechanisms of frictional and rheological evolution of rough fractures anticipated during reactivation events.