期刊文献+
共找到16,239篇文章
< 1 2 250 >
每页显示 20 50 100
THREE-DIMENSIONAL FINITE ELEMENT SIMULATION OF TOTAL KNEE JOINT IN GAIT CYCLE 被引量:3
1
作者 Yuan Guo Xushu Zhang Weiyi Chen 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第4期347-351,共5页
Based on CT scanning pictures from a volunteer's knee joint, a three-dimensional finite element model of the healthy human knee joint is constructed including complete femur, tibia, fibular, patellar and the main car... Based on CT scanning pictures from a volunteer's knee joint, a three-dimensional finite element model of the healthy human knee joint is constructed including complete femur, tibia, fibular, patellar and the main cartilage and ligaments. This model was validated using experimental and numerical results obtained from other authors. The pressure distribution of contact surfaces of knee joint are calculated and analyzed under the load action of ‘heel strike', ‘single limb stance' and ‘toe-off'. The results of the gait cycle are that the contact areas of medial cartilage are larger than that of lateral cartilage; the contact force and contact areas would grow larger with the load increasing; the pressure of lateral meniscus is steady, relative to the significant variation of peak pressure in medial meniscus; and the peak value of contact pressure on all components are usually found at about 4570 of the gait cycle. 展开更多
关键词 knee joint finite element simulation contact pressure BIOMECHANICS
在线阅读 下载PDF
Autologous nerve graft repair of different degrees of sciatic nerve defect:stress and displacement at the anastomosis in a three-dimensional finite element simulation model 被引量:1
2
作者 Cheng-dong Piao Kun Yang +1 位作者 Peng Li Min Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第5期804-807,共4页
In the repair of peripheral nerve injury using autologous or synthetic nerve grafting, the mag- nitude of tensile forces at the anastomosis affects its response to physiological stress and the ultimate success of the ... In the repair of peripheral nerve injury using autologous or synthetic nerve grafting, the mag- nitude of tensile forces at the anastomosis affects its response to physiological stress and the ultimate success of the treatment. One-dimensional stretching is commonly used to measure changes in tensile stress and strain; however, the accuracy of this simple method is limited. There- fore, in the present study, we established three-dimensional finite element models of sciatic nerve defects repaired by autologous nerve grafts. Using PRO E 5.0 finite element simulation software, we calculated the maximum stress and displacement of an anastomosis under a 5 N load in 10-, 20-, 30-, 40-mm long autologous nerve grafts. We found that maximum displacement increased with graft length, consistent with specimen force. These findings indicate that three-dimensional finite element simulation is a feasible method for analyzing stress and displacement at the anas- tomosis after autologous nerve grafting. 展开更多
关键词 nerve regeneration sciatic nerve injury autologous nerve grafting epineurial suturing three-dimensional finite element models load stress DISPLACEMENT neural regeneration
暂未订购
A MIXED FINITE ELEMENT AND UPWIND MIXED FINITE ELEMENT MULTI-STEP METHOD FOR THE THREE-DIMENSIONAL POSITIVE SEMI-DEFINITE DARCY-FORCHHEIMER MISCIBLE DISPLACEMENT PROBLEM
3
作者 Yirang YUAN Changfeng LI +1 位作者 Huailing SONG Tongjun SUN 《Acta Mathematica Scientia》 2025年第2期715-736,共22页
In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow e... In this paper,a composite numerical scheme is proposed to solve the threedimensional Darcy-Forchheimer miscible displacement problem with positive semi-definite assumptions.A mixed finite element is used for the fow equation.The velocity and pressure are computed simultaneously.The accuracy of velocity is improved one order.The concentration equation is solved by using mixed finite element,multi-step difference and upwind approximation.A multi-step method is used to approximate time derivative for improving the accuracy.The upwind approximation and an expanded mixed finite element are adopted to solve the convection and diffusion,respectively.The composite method could compute the diffusion flux and its gradient.It possibly becomes an eficient tool for solving convection-dominated diffusion problems.Firstly,the conservation of mass holds.Secondly,the multi-step method has high accuracy.Thirdly,the upwind approximation could avoid numerical dispersion.Using numerical analysis of a priori estimates and special techniques of differential equations,we give an error estimates for a positive definite problem.Numerical experiments illustrate its computational efficiency and feasibility of application. 展开更多
关键词 Darcy-Forchheimer fow three-dimensional positive semi-definite problem upwind mixed finite element multi-step method conservation of mass convergence analysis
在线阅读 下载PDF
Three-Dimensional Finite Element Numerical Simulation and Physical Experiment for Magnetism-Stress Detecting in Oil Casing 被引量:2
4
作者 MENG Fanshun ZHANG Jie +2 位作者 YANG Chaoqun YU Weizhe CHEN Yuxi 《Journal of Ocean University of China》 SCIE CAS 2015年第4期669-674,共6页
The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil i... The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil industry, the number of offshore oil wells is becoming larger and larger. Because the cost of offshore oil well is very high, the casing damage will cause huge economic losses. What's more, it can also bring serious pollution to marine environment. So the effective methods of detecting casing damage are required badly. The accumulation of stress is the main reason for the casing damage. Magnetic anisotropy technique based on counter magnetostriction effect can detect the stress of casing in real time and help us to find out the hidden dangers in time. It is essential for us to prevent the casing damage from occurring. However, such technique is still in the development stage. Previous studies mostly got the relationship between stress and magnetic signals by physical experiment, and the study of physical mechanism in relative magnetic permeability connecting the stress and magnetic signals is rarely reported. The present paper uses the ANSYS to do the three-dimensional finite element numerical simulation to study how the relative magnetic permeability works for the oil casing model. We find that the quantitative relationship between the stress' s variation and magnetic induction intensity's variation is: Δδ =K* ΔB, K = 8.04×109, which is proved correct by physical experiment. 展开更多
关键词 oil casing damage magnetism-stress detecting magnetic anisotropy finite element analysis physical experiment relative magnetic permeability ANSYS three-dimensional numerical simulation
在线阅读 下载PDF
Three-Dimensional Simulations of RESET Operation in Phase-Change Random Access Memory with Blade-Type Like Phase Change Layer by Finite Element Modeling 被引量:2
5
作者 金秋雪 刘波 +8 位作者 刘燕 王维维 汪恒 许震 高丹 王青 夏洋洋 宋志棠 封松林 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第9期128-131,共4页
An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell ... An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell and the blade heater contactor structure by three-dimensional finite element modeling are compared with each other during RESET operation. The simulation results show that the programming region of the phase change layer in the BTL cell is much smaller, and thermal electrical distributions of the BTL cell are more concentrated on the TiN/GST interface. The results indicate that the BTL cell has the superiorities of increasing the heating efficiency, decreasing the power consumption and reducing the RESET current from 0.67mA to 0.32mA. Therefore, the BTL cell will be appropriate for high performance PCRAM device with lower power consumption and lower RESET current. 展开更多
关键词 PCRAM cell RESET three-dimensional simulations of RESET Operation in Phase-Change Random Access Memory with Blade-Type Like Phase Change Layer by finite element Modeling of by in with
原文传递
Simulation of three-dimensional tension-induced cracks based on cracking potential function-incorporated extended finite element method 被引量:1
6
作者 WANG Xiang-nan YU Peng +4 位作者 ZHANG Xiang-tao YU Jia-lin HAO Qing-shuo LI Quan-ming YU Yu-zhen 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期235-246,共12页
In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination... In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination of the cracking direction constitutes a great challenge.In most cases,the local stress state provides the fundamental criterion to judge the presence of cracks and the direction of crack propagation.However,in the case of three-dimensional analysis,the coordination relationship between grid elements due to occurrence of cracks becomes a difficult problem for this method.In this paper,based on the extended finite element method,the stress-related function field is introduced into the calculation domain,and then the boundary value problem of the function is solved.Subsequently,the envelope surface of all propagation directions can be obtained at one time.At last,the possible surface can be selected as the direction of crack development.Based on the aforementioned procedure,such method greatly reduces the programming complexity of tracking the crack propagation.As a suitable method for simulating tension-induced failure,it can simulate multiple cracks simultaneously. 展开更多
关键词 extended finite element method CRACK three-dimensional calculation cracking potential function tensile failure
在线阅读 下载PDF
Three-dimensional combined finite-discrete element approach for simulation of single layer powder compaction process 被引量:1
7
作者 陈普庆 夏伟 +2 位作者 周照耀 朱权利 李元元 《中国有色金属学会会刊:英文版》 CSCD 2004年第4期751-755,共5页
The application of a combined finite-discrete element modeling approach to simu late the three-dimensional microscopic compaction behavior of single-layer met al powder system was described. The process was treated as... The application of a combined finite-discrete element modeling approach to simu late the three-dimensional microscopic compaction behavior of single-layer met al powder system was described. The process was treated as a static problem,wit h kinematical component being neglected. Due to ill condition,Cholesky’s metho d failed to solve the system equations,while conjugate gradient method was trie d and yielded good results. Deformation of the particles was examined and compar ed with the results of physical modeling experiments. In both cases,the inner p articles were deformed from sphere to polygonal column,with the edges turning f rom arc to straight line. The edge number of a particle was equal to the number of particles surrounding it. And the experiments show that the ductile metal par ticles can be densified only by their plastic deformation without the occurrence of rearrangement phenomenon. 展开更多
关键词 粉末冶金 粉末挤压 有限元 数值模拟
在线阅读 下载PDF
Reliability Prediction of Wrought Carbon Steel Castings under Fatigue Loading Using Coupled Mold Optimization and Finite Element Simulation
8
作者 Muhammad Azhar Ali Khan Syed Sohail Akhtar +2 位作者 Abba AAbubakar Muhammad Asad Khaled S.Al-Athel 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第12期2325-2350,共26页
The fatigue life and reliability of wrought carbon steel castings produced with an optimized mold design are predicted using a finite element method integrated with reliability calculations.The optimization of the mol... The fatigue life and reliability of wrought carbon steel castings produced with an optimized mold design are predicted using a finite element method integrated with reliability calculations.The optimization of the mold is carried out using MAGMASoft mainly based on porosity reduction as a response.After validating the initial mold design with experimental data,a spring flap,a common component of an automotive suspension system is designed and optimized followed by fatigue life prediction based on simulation using Fe-safe.By taking into consideration the variation in both stress and strength,the stress-strength model is used to predict the reliability of the component under fatigue loading.Under typical loading conditions of 70 kN,the analysis showed that 95%of the steel spring flaps achieve infinite life.However,under maximum loading conditions of 90 kN,reliability declined significantly,with only 65%of the spring flaps expected to withstand the stress without failure.The study also identified a safe load-induced stress of 95 MPa on the spring flap.The findings suggest that transitioning from forged to cast spring flaps is a promising option,particularly if further improvements in casting design reduce porosity to negligible levels,potentially achieving 100%reliability under typical loading conditions.This integrated approach of mold optimization coupled with reliability estimation under realistic service loading conditions offers significant potential for the casting industry to produce robust,cost-effective products. 展开更多
关键词 CASTING OPTIMIZATION simulation finite element reliability automotive suspension
在线阅读 下载PDF
Strengthening Mechanisms and Mechanical Characteristics of Heterogeneous CNT/Al Composites by Finite Element Simulation
9
作者 Hui Feng Shu Yang +3 位作者 Shengyuan Yang Li Zhou Junfan Zhang Zongyi Ma 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第12期2106-2120,共15页
The refined explicit finite element scheme considering various strengthening mechanisms and damage modes is proposed for simulation of deformation processes and mechanical properties of carbon nanotube(CNT)-reinforced... The refined explicit finite element scheme considering various strengthening mechanisms and damage modes is proposed for simulation of deformation processes and mechanical properties of carbon nanotube(CNT)-reinforced bimodal-grained aluminum matrix nanocomposites.Firstly,the detailed microstructure model is established by constructing the geometry models of CNTs and grain boundaries,which automatically incorporates grain refinement strengthening and load transfer effect.Secondly,a finite element formulation based on the conventional theory of mechanical-based strain gradient plasticity is developed.Furthermore,the deformation and fracture modes for the nanocomposites with various contents and distributions of coarse grains(CGs)are explored based on the scheme.The results indicate that ductility of the composites first increases and then decreases as the content of CGs rises.Moreover,the dispersed distribution exhibits better ductility than concentrated one.Additionally,grain boundaries proved to be the weakest component within the micromodel.A series of interesting phenomena have been observed and discussed upon the refined simulation scheme.This work contributes to the design and further development of CNT/Al nanocomposites,and the proposed scheme can be extended to various bimodal metal composites. 展开更多
关键词 Mechanical properties Carbon nanotube(CNT) Bimodal metal matrix nanocomposites Refined explicit finite element simulation Microstructure design
原文传递
Study on Remeshing Technique for Three-Dimensional Rigid-plastic Finite Element Simulation
10
作者 单德彬 吕炎 王真 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1997年第3期76-79,共4页
A new method of three-dimensional remeshing is proposed for rigid-plastic finiteelement analysis of a complicated forging process.The forging process of a cylindricalhousing has been simulated to show the effectivenes... A new method of three-dimensional remeshing is proposed for rigid-plastic finiteelement analysis of a complicated forging process.The forging process of a cylindricalhousing has been simulated to show the effectiveness of the scheme.The result ofsimulation shows that the computation can be effectively carried out by using the des-cribed remeshing scheme. 展开更多
关键词 RIGID-PLASTIC finite element simulation REMESHING CYLINDRICAL HOUSING
在线阅读 下载PDF
Optimizing design of lattice materials based on finite element simulation
11
作者 Sun Bingbing Chen Bingqing +2 位作者 Liu Wei Qin Renyao Zhang Xuejun 《China Welding》 CAS 2024年第3期52-64,共13页
The optimized design of simple cross-truss and column lattice structures was carried out by the SolidWorks simulation module.The effective density of the structure was calculated according to the weight reduction requ... The optimized design of simple cross-truss and column lattice structures was carried out by the SolidWorks simulation module.The effective density of the structure was calculated according to the weight reduction requirements proposed by the project.Then,the vari-ation curve between the maximum bearing stress of the unit structure and the structural variables was obtained by simulation.Meanwhile,the mathematical equation between the maximum bearing stress and the structural variables could be obtained through MATLAB fitting.The results indicated that with the decrease in the number of cells,the compressive strength of the prepared column lattice increased(400 to 4 cells,compressive strength 29 MPa to 160 MPa).However,the yield strength increased with the number of cells.The compression strength of the simple cross-truss lattice samples indicated an increase trend with the decrease of the pillar size(an increase of the number of units),reaching 91 MPa(pillar diameter 0.52 mm,number of units 25).While the yield strength increased with the increasing of the number of units.In addition,the additive manufacturing processes of simple cubic lattice and simple cross-pillar lattice were investigated using selective laser melting.The compression performance obtained from the experiment is compared with the simulation results,which are in good agreement.The results of this paper can provide an important reference for optimizing design of lattice materials. 展开更多
关键词 selective laser melting lattice materials finite element simulation materials design mechanical property
在线阅读 下载PDF
THE CHARACTERISTIC FINITE ELEMENT ALTERNATING-DIRECTION METHOD AND ANALYSIS FOR THREE-DIMENSIONAL NUMERICAL RESERVOIR SIMULATION
12
作者 袁益让 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1999年第1期21-34,共14页
Petroleum science has made remarkable progress in organic geochcmistry and in the research into the theories of petroleum origin, its transport and accumulation. In estimating the oil-gas resources of a basin, the kno... Petroleum science has made remarkable progress in organic geochcmistry and in the research into the theories of petroleum origin, its transport and accumulation. In estimating the oil-gas resources of a basin, the knowledge of its evolutionary history and especially the numerical computation of fluid flow and the history of its changes under heat is vital. The mathematical model can be described as a coupled system of nonlinear partial differentical equations with initial-boundary value problems. This thesis, from actual conditions such as the effect of fluid compressibility and the three-dimensional characteristic of large-scale science-engineering computation, we put forward a kind of characteristic finite element alternating-direction schemes and obtain optimal order estimates in L^2 norm for the error in the approximate assumption. 展开更多
关键词 three-dimensional problem COMPRESSIBILITY alternating-direction characteritic finite element optimal order error ESTIMATES in L^2.
在线阅读 下载PDF
Dynamic evolution mechanism of the fracturing fracture system——Enlightenments from hydraulic fracturing physical experiments and finite element numerical simulation
13
作者 Qi-Qiang Ren Li-Fei Li +3 位作者 Jin Wang Rong-Tao Jiang Meng-Ping Li Jian-Wei Feng 《Petroleum Science》 CSCD 2024年第6期3839-3866,共28页
This study aims to elucidate the dynamic evolution mechanism of the fracturing fracture system during the exploration and development of complex oil and gas reservoirs.By integrating methods of rock mechanical testing... This study aims to elucidate the dynamic evolution mechanism of the fracturing fracture system during the exploration and development of complex oil and gas reservoirs.By integrating methods of rock mechanical testing,logging calculation,and seismic inversion technology,we obtained the current insitu stress characteristics of a single well and rock mechanical parameters.Simultaneously,significant controlling factors of rock mechanical properties were analyzed.Subsequently,by coupling hydraulic fracturing physical experiments with finite element numerical simulation,three different fracturing models were configured:single-cluster,double-cluster,and triple-cluster perforations.Combined with acoustic emission technology,the fracture initiation mode and evolution characteristics during the loading process were determined.The results indicate the following findings:(1)The extension direction and length of the fracture are significantly controlled by the direction of the maximum horizontal principal stress.(2)Areas with poor cementation and compactness exhibit complex fracture morphology,prone to generating network fractures.(3)The interlayer development of fracturing fractures is controlled by the strata occurrence.(4)Increasing the displacement of fracturing fluid enlarges the fracturing fracture length and height.This research provides theoretical support and effective guidance for hydraulic fracturing design in tight oil and gas reservoirs. 展开更多
关键词 Rockmechanical parameters Petrophysical experiments Hydraulic fracturing physical experiment finite element numerical simulation Dynamic evolution mechanism Fracturing fracture
原文传递
3D slope stability analysis considering strength anisotropy by a microstructure tensor enhanced elasto-plastic finite element method
14
作者 Wencheng Wei Hongxiang Tang +1 位作者 Xiaoyu Song Xiangji Ye 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1664-1684,共21页
This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is e... This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is employed to analyze the stability of 3D anisotropic soil slopes.The accuracy of the proposed method is first verified against the data in the literature.We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions.Based on our numerical results,the end effect significantly impacts the failure mechanism and safety factor.Anisotropy degree notably affects the safety factor,with higher degrees leading to deeper landslides.For concave slopes,they can be approximated by straight slopes with suitable boundary conditions to assess their stability.Furthermore,a case study of the Saint-Alban test embankment A in Quebec,Canada,is provided to demonstrate the applicability of the proposed FE model. 展开更多
关键词 Strength anisotropy Elasto-plastic finite element method(FEM) three-dimensional(3D)soil slope Gravity increase method(GIM) Stability analysis Case study
在线阅读 下载PDF
Effect of phase content on deformation compatibility in ferrite and bainite dual-phase steel: experimental and crystal plasticity finite element analysis
15
作者 Xian-bo Shi Xing-yang Tu +3 位作者 Bing-chuan Yan Yi Ren Wei Yan Yi-yin Shan 《Journal of Iron and Steel Research International》 2025年第3期743-755,共13页
The phase volume fraction has an important role in the match of the strength and plasticity of dual phase steel.The different bainite contents(18–53 vol.%)in polygonal ferrite and bainite(PF+B)dual phase steel were o... The phase volume fraction has an important role in the match of the strength and plasticity of dual phase steel.The different bainite contents(18–53 vol.%)in polygonal ferrite and bainite(PF+B)dual phase steel were obtained by controlling the relaxation finish temperature during the rolling process.The effect of bainite volume fraction on the tensile deformability was systematically investigated via experiments and crystal plasticity finite element model(CPFEM)simulation.The experimental results showed that the steel showed optimal strain hardenability and strength–plasticity matching when the bainite reached 35%.The 3D-CPFEM models with the same grain size and texture characters were established to clarify the influence of stress/strain distribution on PF+B dual phase steel with different bainite contents.The simulation results indicated that an appropriate increase in the bainite content(18%–35%)did not affect the interphase strain difference,but increased the stress distribution in both phases,as a result of enhancing the coordinated deformability of two phases and improving the strength–plasticity matching.When the bainite content increased to 53%,the stress/strain difference between the two phases was greatly increased,and plastic damage between the two phases was caused by the reduction of the coordinated deformability. 展开更多
关键词 Polygonal ferrite and bainite dual phase steel Phase content Deformation compatibility Crystal plasticity finite element simulation Stress/strain difference
原文传递
Three-Dimensional Phase Field Simulations of Hysteresis and Butterfly Loops by the Finite Volume Method
16
作者 席丽莹 陈焕铭 +3 位作者 郑富 高华 童洋 马治 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第9期128-131,共4页
Three-dimensional simulations of ferroelectric hysteresis and butterfly loops are carried out based on solving the time dependent Ginzburg-Landau equations using a finite volume method. The influence of externally mec... Three-dimensional simulations of ferroelectric hysteresis and butterfly loops are carried out based on solving the time dependent Ginzburg-Landau equations using a finite volume method. The influence of externally mechanical loadings with a tensile strain and a compressive strain on the hysteresis and butterfly loops is studied numerically. Different from the traditional finite element and finite difference methods, the finite volume method is applicable to simulate the ferroelectric phase transitions and properties of ferroelectric materials even for more realistic and physical problems. 展开更多
关键词 three-dimensional Phase Field simulations of Hysteresis and Butterfly Loops by the finite Volume Method
原文传递
COUPLED SIMULATION OF 3D ELECTRO-MAGNETO-FLOW FIELD IN HALL-HEROULT CELLS USING FINITE ELEMENT METHOD 被引量:10
17
作者 J. Li W. Liu +2 位作者 Y.Q. Lai Q.Y. Li Y.X. Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第2期105-116,共12页
Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the... Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the acquired electromagnetic force as source body forces in Navier-Stokes equations. Effects caused by the ferromagnetic shell, busbar system around, and open boundary problem as well as inside induced current were considered in terms of the magnetic field. Furthermore, a new modeling method is found to set up solid models and then mesh them entirely with so-called structuralized grids, namely hex-mesh. Examples of 75kA prebaked cell with two kinds of busbar arrangements are presented. Results agree with those disclosed in the literature and confirm that the coupled simulation is valid. It is also concluded that the usage of these models facilitates the consistent analysis of the electric field to magnetic field and then flow motion to the greater extent, local distributions of current density and magnetic flux density are very much dependent on the cell structure, the steel shell is a shield to reduce the magnetic field and flow pattern is two dimensional in the main body of the metal pad. 展开更多
关键词 coupled simulation electromagnetic field flow field aluminum reduction cell finite element analysis
在线阅读 下载PDF
Applications of finite element simulation in orthopedic and trauma surgery 被引量:8
18
作者 Antonio Herrera Elena Ibarz +5 位作者 José Cego?ino Antonio Lobo-Escolar Sergio Puértolas Enrique López Jesús Mateo Luis Gracia 《World Journal of Orthopedics》 2012年第4期25-41,共17页
Research in different areas of orthopedic and trauma surgery requires a methodology that allows both a more economic approach and the ability to reproduce different situations in an easy way. Simulation models have be... Research in different areas of orthopedic and trauma surgery requires a methodology that allows both a more economic approach and the ability to reproduce different situations in an easy way. Simulation models have been introduced recently in bioengineering and could become an essential tool in the study of any physiological unity, regardless of its complexity. The main problem in modeling with finite elements simulation is to achieve an accurate reproduction of the anatomy and a perfect correlation of the different structures, in any region of the human body. Authors have developed a mixed technique, joining the use of a three-dimensional laser scanner Roland Picza captured together with computed tomography(CT) and 3D CT images, to achieve a perfect reproduction of the anatomy. Finite element(FE) simulation lets us know the biomechanical changes that take place after hipprostheses or osteosynthesis implantation and biological responses of bone to biomechanical changes. The simulation models are able to predict changes in bone stress distribution around the implant, so allowing preventing future pathologies. The development of a FE model of lumbar spine is another interesting application of the simulation. The model allows research on the lumbar spine, not only in physiological conditions but also simulating different load conditions, to assess the impact on biomechanics. Different degrees of disc degeneration can also be simulated to determine the impact on adjacent anatomical elements. Finally, FE models may be useful to test different fixation systems, i.e., pedicular screws, interbody devices or rigid fixations compared with the dynamic ones. We have also developed models of lumbar spine and hip joint to predict the occurrence of osteoporotic fractures, based on densitometric determinations and specific biomechanical models, including approaches from damage and fracture mechanics. FE simulations also allow us to predict the behavior of orthopedic splints applied to the correction of deformities, providing the recovering force-displacement and angle-moment curves that characterize the mechanical behavior of the splint in the overall range of movement. 展开更多
关键词 finite element simulation Hip prosthesis LUMBAR spine LUMBAR FIXATIONS OSTEOPOROTIC fractures SPLINTS
暂未订购
Three-dimensional finite element analysis on effects of tunnel construction on nearby pile foundation 被引量:6
19
作者 杨敏 孙庆 +1 位作者 李卫超 马亢 《Journal of Central South University》 SCIE EI CAS 2011年第3期909-916,共8页
A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-indu... A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect. 展开更多
关键词 finite element analysis TUNNELLING pile foundation three-dimensional simulation displacement controlled model
在线阅读 下载PDF
Effect of stress profile on microstructure evolution of cold-drawn commercially pure aluminum wire analyzed by finite element simulation 被引量:6
20
作者 Y.K.Zhu Q.Y.Chen +6 位作者 Q.Wang H.Y.Yu R.Li J.P.Hou Z.J.Zhang G.P.Zhang Z.F.Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第7期1214-1221,共8页
The evolution of microstructure in the drawing process of commercially pure aluminum wire (CPAW) does not only depend on the nature of materials, but also on the stress profile. In this study, the effect of stress p... The evolution of microstructure in the drawing process of commercially pure aluminum wire (CPAW) does not only depend on the nature of materials, but also on the stress profile. In this study, the effect of stress profile on the texture evolution of the CPAW was systematically investigated by combining the numerical simulation and the microstructure observation. The results show that the tensile stress at the wire center promotes the formation of 〈111〉 texture, whereas the shear stress nearby the rim makes little contribution to the texture formation. Therefore, the 〈111 〉 texture at the wire center is stronger than that in the surface layer, which also results in a higher microhardness at the center of the CPAW under axial loading.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology. 展开更多
关键词 Commercially pure aluminum wire Cold drawing TEXTURE finite element simulation Stress profile
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部