The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has...The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.展开更多
Weathering steel exhibits excellent corrosion resistance and is widely used in bridges,towers,railways,highways,and other engineering projects that are exposed to the atmosphere for long periods of time.However,before...Weathering steel exhibits excellent corrosion resistance and is widely used in bridges,towers,railways,highways,and other engineering projects that are exposed to the atmosphere for long periods of time.However,before the formation of stable rust layers,weathering steel is prone to liquid rust sagging and spattering,leading to environmental pollution and city appearance concerns.These factors limit the application and development of weathering steel.In this study,a rapid and environmentally friendly method was de-veloped by introducing alloying elements,specifically investigating the role of Sn in the rapid stabilization of rust layers in marine atmo-spheric environments.The rust layer formed on weathering low-alloy steel exposed to prolonged outdoor conditions and laboratory im-mersion experiments was explored using electron probe micro-analyzer(EPMA),micro-Raman,X-ray photoelectron spectroscopy(XPS),and electrochemical measurements.Results showed an optimal synergistic effect between Sn and Cr,which facilitated the accelerated densification of the rust layer.This beneficial effect enhanced the capability of the rust layer to resist Cl^(-)erosion and improved the protec-tion performance of the rust layer.展开更多
Although perovskite solar cells(PSCs) demonstrate outstanding power conversion efficiency(PCE), their practical applications are still limited by stability issues caused by various problems such as poor crystal qualit...Although perovskite solar cells(PSCs) demonstrate outstanding power conversion efficiency(PCE), their practical applications are still limited by stability issues caused by various problems such as poor crystal quality triggered structural instability. Herein, to address the structural instability of perovskites, we introduced a polymer additive, poly-L-lysine hydrobromide(PLL), into the perovskite precursor to promote perovskite crystal growth, thereby constructing a stable crystal structure. The results show that the introduction of PLL modulates the colloidal aggregation state in the precursor solution, provides longer time for growth of perovskite and successfully realizes the formation of large-sized perovskite films with high crystallinity. More importantly, owing to its hydrophobic long-chain structure and the widespread distribution of C=O and NH on the chain, PLL firmly locks the perovskite crystals, enhancing their structural stability while blocking the intrusion of external factors such as water molecules, significantly enhances the overall stability of the device. The results show that the PLL-based PSC has negligible hysteresis and its PCE is improved from 22.20% to 23.66%. while the PLL-modified perovskite films and devices demonstrate excellent thermal and environmental stability. These findings highlight PLL as a promising additive for optimizing perovskite crystallization, offering guidance for fabricating efficient and stable photovoltaic devices.展开更多
Objectives:Cold-acclimated organisms accumulate low molecular weight organic solutes such as sugar alcohols and soluble sugars.This study aimed to compare the efficacy of five sugar alcohols and 14 soluble sugars in s...Objectives:Cold-acclimated organisms accumulate low molecular weight organic solutes such as sugar alcohols and soluble sugars.This study aimed to compare the efficacy of five sugar alcohols and 14 soluble sugars in stabilizing proteins under freezing,freeze-drying,and air-drying stresses.Materials and methods:Glucose-6-Phosphate Dehydrogenase(G6PD)was used as the model protein.G6PD solutions with or without sugar alcohols and or sugars were subjected to freezing,freeze-drying,and air-drying stresses.The recovery of G6PD activity was measured to evaluate the protective efficacy of these compounds.Results:Without stabilizers,freezing G6PD at-20℃ or-80℃ reduced enzyme activity by around 24%,while freeze-drying or air-drying reduced activity by 90%-95%.Among the five sugar alcohols tested,pinitol,quebrachitol and sorbitol stabilized G6PD,whereas mannitol and myo-inositol destabilized it.Among 14 soluble sugars,trehalose and raffinose showed slightly lower enzyme recovery after repeated freeze-thaw cycles at-20℃.Most soluble sugars(except arabinose and xylose)protected G6PD during freeze-drying,with di-,tri-,and oligosaccharides generally outperforming monosaccharides.During air-drying,lactose was ineffective,while arabinose,galactose,and xylose were detrimental.Conclusion:The study highlights the diverse mechanisms of sugar alcohols and sugars in protein stabilization under stress,offering insights for formulating stable protein-and cell-based drugs.展开更多
This study investigates the innovative reuse of sewage sludge with eco-friendly alkaline solutes to improve clayey soil without conventional cementitious binders.The unconfined compressive strength(UCS)was the main cr...This study investigates the innovative reuse of sewage sludge with eco-friendly alkaline solutes to improve clayey soil without conventional cementitious binders.The unconfined compressive strength(UCS)was the main criterion to assess the quality and effectiveness of the proposed solutions,as this test was performed to measure the strength of the stabilized clay by varying binders’dosages and curing times.Moreover,the direct shear test(DST)was used to investigate the Mohr-Coulomb parameters of the treated soil.Microstructure observations of the natural and treated soil were conducted using scanning electron microscope(SEM),energy-dispersive spectroscopy(EDS),and FTIR.Furthermore,toxicity characteristic leaching procedure(TCLP)tests were performed on the treated soil to investigate the leachability of metals.According to the results,using 2.5%of sewage sludge activated by NaOH and Na_(2)SiO_(3)increases the UCS values from 176 kPa to 1.46 MPa after 7 d and 56 d of curing,respectively.The results of the DST indicate that sewage sludge as a precursor increases cohesion and enhances frictional resistance,thereby improving the Mohr-Coulomb parameters of the stabilized soil.The SEM micrographs show that alkali-activated sewage sludge increases the integrity and reduces the cavity volumes in the stabilized soil.Moreover,TCLP tests revealed that the solubility of metals in the treated soil alkaliactivated by sewage sludge significantly decreased.This study suggests that using sewage sludge can replace cement and lime in ground improvement,improve the circular economy,and reduce the carbon footprint of construction projects.展开更多
The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wav...The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wave functions.Two plasma mediums,namely,the Debye plasma and quantum plasma environments are considered.The screened Coulomb potential(SCP)obtained from Debye-Hückel model is used to represent Debye plasma environments and the exponential cosine screened Coulomb potential(ECSCP)obtained from a modified Debye-Hückel model is used to represent quantum plasma environments.The resonance parameters(resonance positions and widths)are presented in terms of the screening parameters.展开更多
The flying-wing aircraft has excellent aerodynamic efficiency and stealth performance.However,due to the lack of tails,the flying-wing aircraft has a serious attitude control problem.In this paper,the effective flow c...The flying-wing aircraft has excellent aerodynamic efficiency and stealth performance.However,due to the lack of tails,the flying-wing aircraft has a serious attitude control problem.In this paper,the effective flow control strategy of three-axis control is proposed by using continuous jets for a flapless flying-wing aircraft.The wind tunnel test of two kinds of flying-wing models,namely one flow control model and one mechanical control model,is conducted,and the control effect is analyzed and compared.By simultaneous blowing of the circulation control actuators inboard and differential blowing of the circulation control actuators outboard,the pitch and roll controls are achieved,respectively.It also has an effective control effect at very large angles of attack where the conventional control surface fails.A linear relationship is found between the increment of the controlled aerodynamic force/moment coefficient and the momentum coefficient for circulation control actuators.Moreover,to resolve the difficulty in yaw control,a novel wingtip jet is proposed based on the concept of the all-moving tip and compared with apex jet and circulation control jet.It is found that the wingtip jet is the most efficient actuator,followed by the simultaneous-blowing circulation control jet.Therefore,based on the research above,two optimized fluidic control configurations are proposed.One employs circulation control jet and wingtip jet,and the other is completely dependent on circulation control jet.Finally,the flow control mechanism of circulation control is discussed.Circulation control significantly accelerates the flow on the upper surface of the airfoil in attached flow and reduces the flow separation region in separated flow,leading to aerodynamic performance improvement.These results provide an important theoretic basis for the flapless flight control of flying-wing aircraft.展开更多
Dear Editor,This letter is concerned with stability analysis and stabilization design for sampled-data based load frequency control(LFC) systems via a data-driven method. By describing the dynamic behavior of LFC syst...Dear Editor,This letter is concerned with stability analysis and stabilization design for sampled-data based load frequency control(LFC) systems via a data-driven method. By describing the dynamic behavior of LFC systems based on a data-based representation, a stability criterion is derived to obtain the admissible maximum sampling interval(MSI) for a given controller and a design condition of the PI-type controller is further developed to meet the required MSI. Finally, the effectiveness of the proposed methods is verified by a case study.展开更多
Slow-release phosphate materials were prepared by activating insoluble phosphate with organic acid to stabilize high concentrations of Cd and Zn in contaminated smelter soil.The results showed that oxalic acid(0.1 mol...Slow-release phosphate materials were prepared by activating insoluble phosphate with organic acid to stabilize high concentrations of Cd and Zn in contaminated smelter soil.The results showed that oxalic acid(0.1 mol/L)activated tricalcium phosphate(TO-0.1)provided the most efficient stabilization of Cd and Zn.After 30 d treatment,leaching concentrations of Cd and Zn in soil were decreased from 3.17 and 16.60 mg/L to 0.078 and 0.32 mg/L,respectively.The acid-soluble fractions of Cd and Zn were transformed into reducible,oxidizable,and residual fractions.Notably,As mobility in TO-0.1 treated soils did not increase.In addition,acid rain leaching and 150 d of natural aging revealed that the slow-release phosphate material provided long-term stability for the stabilization of Cd and Zn.This study verifies the potential application of slow-release phosphate materials for the remediation of heavy metal contaminated soil at smelting sites.展开更多
Wellbore instability is one of the significant challenges in the drilling engineering and during the development of carbonate reservoirs,especially with open-hole completion.The problems of wellbore instability such a...Wellbore instability is one of the significant challenges in the drilling engineering and during the development of carbonate reservoirs,especially with open-hole completion.The problems of wellbore instability such as downhole collapse and silt deposit in the fractured carbonate reservoir of Tarim Basin(Ordovician)are severe.Solid destabilization and production(SDP)was proposed to describe this engineering problem of carbonate reservoirs.To clarify the mechanism and mitigate potential borehole instability problems,we conducted particle size distribution(PSD)analysis,X-ray diffraction(XRD)analysis,triaxial compression tests,and micro-scale sand production tests based on data analysis.We found that the rock fragments and silt in the wellbore came from two sources:one from the wellbore collapse in the upper unplugged layers and the other from the production of sand particles carried by the fluid in the productive layers.Based on the experimental study,a novel method combining a geomechanical model and microscopic sand production model was proposed to predict wellbore instability and analyze its influencing factors.The critical condition and failure zone predicted by the prediction model fit well with the field observations.According to the prediction results,the management and prevention measures of wellbore instability in carbonate reservoirs were proposed.It is suggested to optimize the well track in new drilling wells while upgrading the production system in old wells.This study is of great guiding significance for the optimization of carbonate solid control and it improves the understanding of the sand production problems in carbonate reservoirs.展开更多
This study presents a novel approach to enhance silicon anode performance through barium titanate(BTO)incorporation,with the establishment of a force-electric coupling model.By introducing piezoelectric BTO into silic...This study presents a novel approach to enhance silicon anode performance through barium titanate(BTO)incorporation,with the establishment of a force-electric coupling model.By introducing piezoelectric BTO into silicon matrices,we successfully improved both the mechanical stability and electrochemical kinetics of the anode.The developed force-electric coupling model explains how BTO mitigates stress accumulation during lithiation while optimizing the kinetics of Li^(+)and electron transfer.Experimental verification and multiphysical simulation indicate that Si@BTO effectively eliminates structural degradation during the cycling process and significantly reduces the charge transfer resistance.The force-electric coupling mechanism further facilitates stable solid electrolyte interphase(SEI)formation.When paired with LiFePO_(4)cathodes,Si@BTO maintains 76% capacity retention after 500 cycles at a 10 C rate.This work establishes a basic force-electric coupling model framework and offers insights into the development of advanced silicon anode batteries with exceptional performance.展开更多
This paper deals with the singular chemotaxis-Navier-Stokes system with indirect signal consumption n_(t)+u·▽v=△n-Х▽·(n/v▽u);v_(t)+u·▽v=△v-uw;w_(t)+u·▽w=△w-w+n;u_(t)+(u·▽)u=△u-▽P+...This paper deals with the singular chemotaxis-Navier-Stokes system with indirect signal consumption n_(t)+u·▽v=△n-Х▽·(n/v▽u);v_(t)+u·▽v=△v-uw;w_(t)+u·▽w=△w-w+n;u_(t)+(u·▽)u=△u-▽P+n▽Ф;▽·u=0,x∈Ω,t>0 in a bounded and smooth domainΩ⊂ℝ2 with no-flux/no-flux/no-flux/no-slip boundary conditions,whereΦ∈W2,∞(Ω).A recent literature[Dai F,Liu B.J Differential Equations,2023,369:115–155]has proved that for all reasonably regular initial data,the associated initial-boundary value problem possesses a global classical solution,but qualitative information on the behavior of solution has never been touched so far.In stark contrast to the positive effect of indirect signal consumption mechanism on the global solvability of system,the analysis of asymptotic behavior of solution to the system with indirect signal consumption is essentially complicated than that with direct signal consumption because the favorable coupled structure between cells and signal is broken down by the indirect signal consumption mechanism.The present study shows that the global classical solution exponentially stabilizes toward the corresponding spatially homogeneous equilibria under a smallness condition on the initial cell mass.In comparison to the previously known result concerning the uniform convergence of solution to the system with direct signal consumption,our result inter alia provides a more in-depth understanding on the asymptotic behavior of solution.展开更多
We read with great interest the investigations conducted by Pourakbar et al.(2024)on the“Stabilization of clay soil using alkali-activated sewage sludge.”The authors have investigated the feasibility of utilizing al...We read with great interest the investigations conducted by Pourakbar et al.(2024)on the“Stabilization of clay soil using alkali-activated sewage sludge.”The authors have investigated the feasibility of utilizing alkali-activated sewage sludge(AASS)as a binder for stabilizing the clayey soil.Sewage sludge(SS)in varying proportions of 1.5%,2%,2.5%,3.5%,and 4.5%was utilized to prepare geopolymer binders using sodium and potassium-based alkali activators.Furthermore,unconfined compressive strength(UCS)and direct shear tests were conducted to examine the strength development of clayey soil stabilized with AASS.While the study presented some intriguing results,we have identified critical concerns regarding(i)the selection of SS as a precursor for alkali activation,(ii)technical inconsistencies associated with the compaction characteristics and microstructural analysis,and(iii)the feasibility of the proposed methodology for practical applications.Through our discussion,we seek to highlight these issues and provide constructive feedback to advance the understanding of alkali activation processes and their implications for soil stabilization.展开更多
In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.T...In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.The control accuracy of ISP is fundamentally circumscribed by various disturbance torques in rotating shaft.Therefore,a dynamic model of ISP incorporating composite perturbations is established with regard to the stabilization of axis in the inertial reference frame.Subsequently,an online estimator for control loop uncertainties based on the sliding mode control algorithm is designed to estimate the aggregate disturbances of various parameters uncertainties and other unmodeled disturbances that cannot be accurately calibrated.Finally,the proposed DSMO is integrated into a classical proportional-integral-derivative(PID)control scheme,utilizing feedforward approach to compensate the composite disturbance in the control loop online.The effectiveness of the proposed disturbance observer is validated through simulation and hardware experimentation,demonstrating a significant improvement in the dynamic control performance and robustness of the classical PID controller extensively utilized in the field of engineering.展开更多
In this paper, a class of discontinuous neutral-type neural networks (NTNNs) with proportional delays is considered. The targets of the paper are to study the problem of periodic solutions and fixed-time (FXT) stabili...In this paper, a class of discontinuous neutral-type neural networks (NTNNs) with proportional delays is considered. The targets of the paper are to study the problem of periodic solutions and fixed-time (FXT) stabilization of the addressed neural networks. In order to complete the targets, based on set-valued map, differential inclusions theory, coincidence theorem and Hölder inequality technique, some new proportional delay-dependent criteria shown by the inequalities are derived. Based on the fact of the existence of solution, further by applying the FXT stability lemmas and equivalent transformation, the zero solution of closed-loop system achieves FXT stabilization and the corresponding settling-times are estimated. Some previous related works on NTNNs are extended. Finally, one typical example is provided to show the effectiveness of the established results.展开更多
During oil displacement,surfactants often encounter challenges such as emulsion instability and channeling,which can compromise their efficiency.To address these issues,polymer microspheres were synthesized via revers...During oil displacement,surfactants often encounter challenges such as emulsion instability and channeling,which can compromise their efficiency.To address these issues,polymer microspheres were synthesized via reverse microemulsion polymerization using acrylamide,2-methyl-2-acrylamidopropane sulfonic acid,and stearyl methacrylate as monomers,with N,N-methylenebisacrylamide as the crosslinker.The microspheres were then combined with sodium alkyl alcohol polyoxyethylene ether carboxylate to enhance emulsion stability and expand the swept volume of surfactant.A stable reverse microemulsion system was prepared using the maximum water solubilization rate as the indicator,and microspheres were synthesized based on this system.The ability of the microspheres to enhance emulsion stability was systematically evaluated.The plugging performance and enhanced oil recovery(EOR)efficiency of the microsphere/surfactant composite system were assessed through core seepage and oil displacement experiments.The experimental results demonstrated that microspheres were successfully prepared in a water-in-oil reverse microemulsion system with a solubilization rate of 42%.The emulsion stability was evaluated under an oil-to-water ratio of 7:3,a temperature of 80℃,and a salinity of 44,592 mg/L,by manually shaking the test tube five times.It was observed that the complete phase separation time of the emulsion increased from 10 to 120 min after the addition of microspheres.Under different permeability conditions(100×10^(-3),300×10^(-3),500×10^(-3)μm^(2)),the recovery efficiency of the composite system increased by 4.5%,8.3%,and 4.8%,respectively,compared to a single surfactant system.The microspheres developed in this study enhanced emulsion stability and increased the swept volume of surfactant within the formation,significantly boosting its oil recovery efficiency.展开更多
Extending the charging voltage of LiCoO_(2)(LCO)is an ongoing and promising approach to increase its energy density.However,the main challenge of the approach lies in the insuperable cathodic interfacial processes at ...Extending the charging voltage of LiCoO_(2)(LCO)is an ongoing and promising approach to increase its energy density.However,the main challenge of the approach lies in the insuperable cathodic interfacial processes at high voltage,which leads to rapid failure both in the performance and structure of the LCO cathode.Herein,a Li_(2)CO_(3)-based additive was prepared by a simple sand-milling method,enabling a low electrochemical decomposition voltage<4.6 V from commonly>4.8 V,stabilizing the interface of the LCO cathode at 4.6 V.The decomposition of Li_(2)CO_(3)provides extra Li^(+)and CO_(2)to supplement the Li consumption required in the initial irreversible interfacial reactions and rapidly form a uniform and stable cathode electrolyte interphase layer(less organic and more inorganic components)on the LCO cathode by reducing CO_(2).Thus,the phase transformation and the emergence of high-valent Co ions on the surface of LCO at 4.6 V high voltage were inhibited.Thanks to this,with 2%Li_(2)CO_(3)-based additive,the capacity retention of commercial LCO at a high voltage of 4.6 V at 0.5 C for 100 cycles was improved from 59.3%to 79.3%.This work improves the high-voltage stability of LCO and provides a new idea for realizing the high-voltage operation of batteries.展开更多
Global climate change exerts profound effects on snow cover,with consequential impacts on microbial activities and the stability of soil organic carbon(SOC)within aggregates.Northern peatlands are significant carbon r...Global climate change exerts profound effects on snow cover,with consequential impacts on microbial activities and the stability of soil organic carbon(SOC)within aggregates.Northern peatlands are significant carbon reservoirs,playing a critical role in mitigating climate change.However,the effects of snow variations on microbial-mediated SOC stability within aggregates in peatlands remain inadequately understood.Here,an in-situ field experiment manipulating snow conditions(i.e.,snow removal and snow cover)was conducted to investigate how snow variations affect soil microbial community and the associated SOC stability within soil aggregates(>2,0.25-2,and<0.25 mm)in a peatland of Northeast China.The results showed that snow removal significantly increased the SOC content and stability within aggregates.Compared to the soils with snow cover,snow removal resulted in decreased soil average temperatures in the topsoil(0-30 cm depth)and subsoil(30-60 cm depth)(by 1.48 and 1.34°C,respectively)and increased freeze-thaw cycles(by 11 cycles),consequently decreasing the stability of aggregates in the topsoil and subsoil(by 23.68%and 6.85%,respectively).Furthermore,more recalcitrant carbon and enhanced SOC stability were present in microaggregates(<0.25 mm)at two soil depths.Moreover,reductions in bacterial diversity and network stability were observed in response to snow removal.Structural equation modeling analysis demonstrated that snow removal indirectly promoted(P<0.01)SOC stability by regulating carbon to nitrogen(C:N)ratio within aggregates.Overall,our study suggested that microaggregate protection and an appropriate C:N ratio enhanced carbon sequestration in response to climate change.展开更多
Flame-retardant gel polymer electrolyte(FRGPE)with high ionic conductivity and practical safety is essential for the next generation of high energy density sodium metal batteries(SMBs).However,they suffer from serious...Flame-retardant gel polymer electrolyte(FRGPE)with high ionic conductivity and practical safety is essential for the next generation of high energy density sodium metal batteries(SMBs).However,they suffer from serious side reactions and insufficient interfacial stability against sodium metal anode,causing severe performance degradation and even safety issues.Herein,to address these challenges,a fluoroethylene carbonate(FEC)additive confined metal-organic framework(MOF)-based composite gel(AC-MCG)interlayer was constructed upon sodium anode through a facile in-situ UV-induced photopolymerization.The FEC confined in AC-MCG induces the formation of NaF-rich inorganic solid-electrolyte interphase,effectively eliminating the side reactions between the FRGPE and sodium metal anode.Moreover,the MOF with ordered nanochannels can homogenize Na^(+)flux during the plating process and also endow the AC-MCG interlayer with high mechanical strength,thus sufficiently suppressing the growth of sodium dendrites.Benefitting from these merits of the AC-MCG interlayer,a high critical current density of 2.0 mA cm^(-2)and a long-term cycling life for over 4200 h at 0.1 mA cm^(-2)are achieved for the Na/Na symmetric cells.Besides,the solid-state SMBs paired with the constructed AC-MCG interlayer also demonstrated considerable electrochemical performance and practical safety.展开更多
Rechargeable aqueous zinc-ion batteries(AZIBs)exhibit appreciable potential in the domain of electrochemical energy storage.However,there are serious challenges for AZIBs,for instance zinc dendrite growth,hydrogen evo...Rechargeable aqueous zinc-ion batteries(AZIBs)exhibit appreciable potential in the domain of electrochemical energy storage.However,there are serious challenges for AZIBs,for instance zinc dendrite growth,hydrogen evolution reaction(HER),and corrosion side reactions.Herein,we propose a surface engineering modification strategy for coating the montmorillonite(MMT)layer onto the surface of the Zn anode to tackle these issues,thereby achieving high cycling stability for rechargeable AZIBs.The results reveal that the MMT layer on the surface of the Zn anode is able to provide ordered zincophilic channels for zinc ions migration,facilitating the reaction kinetics of zinc ions.Density functional theory(DFT)calculations and water contact angle(CA)tests prove that MMT@Zn anode exhibits superior adsorption capacity for Zn^(2+)and better hydrophobicity than the bare Zn anode,thereby achieving excellent cycling stability.Moreover,the MMT@Zn||MMT@Zn symmetric cell holds the stable cycling over 5600 h at 0.5 mA cm^(-2)and 0.125 m A h cm^(-2),even exceeding 1800 h long cycling under harsh conditions of 5 m A cm^(-2)and 1.25 m A h cm^(-2).The MMT@Zn||V_(2)O_(5)full cell reaches over 3000 cycles at 2 A g^(-1)with excellent rate capability.Therefore,this surface engineering modification strategy for enhancing the electrochemical performance of AZIBs represents a promising application.展开更多
文摘The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.
基金support of the National Natural Science Foundation of China(No.52171063).
文摘Weathering steel exhibits excellent corrosion resistance and is widely used in bridges,towers,railways,highways,and other engineering projects that are exposed to the atmosphere for long periods of time.However,before the formation of stable rust layers,weathering steel is prone to liquid rust sagging and spattering,leading to environmental pollution and city appearance concerns.These factors limit the application and development of weathering steel.In this study,a rapid and environmentally friendly method was de-veloped by introducing alloying elements,specifically investigating the role of Sn in the rapid stabilization of rust layers in marine atmo-spheric environments.The rust layer formed on weathering low-alloy steel exposed to prolonged outdoor conditions and laboratory im-mersion experiments was explored using electron probe micro-analyzer(EPMA),micro-Raman,X-ray photoelectron spectroscopy(XPS),and electrochemical measurements.Results showed an optimal synergistic effect between Sn and Cr,which facilitated the accelerated densification of the rust layer.This beneficial effect enhanced the capability of the rust layer to resist Cl^(-)erosion and improved the protec-tion performance of the rust layer.
基金the financial support from the National Key R&D Program of China (No. 2021YFB3800102)the National Natural Science Foundation of China (Nos. 52102196 and 52302324)CASHIPS Director's Fund (Nos. YZJJ-GGZX-2022-01 and YZJJ202304-CX)。
文摘Although perovskite solar cells(PSCs) demonstrate outstanding power conversion efficiency(PCE), their practical applications are still limited by stability issues caused by various problems such as poor crystal quality triggered structural instability. Herein, to address the structural instability of perovskites, we introduced a polymer additive, poly-L-lysine hydrobromide(PLL), into the perovskite precursor to promote perovskite crystal growth, thereby constructing a stable crystal structure. The results show that the introduction of PLL modulates the colloidal aggregation state in the precursor solution, provides longer time for growth of perovskite and successfully realizes the formation of large-sized perovskite films with high crystallinity. More importantly, owing to its hydrophobic long-chain structure and the widespread distribution of C=O and NH on the chain, PLL firmly locks the perovskite crystals, enhancing their structural stability while blocking the intrusion of external factors such as water molecules, significantly enhances the overall stability of the device. The results show that the PLL-based PSC has negligible hysteresis and its PCE is improved from 22.20% to 23.66%. while the PLL-modified perovskite films and devices demonstrate excellent thermal and environmental stability. These findings highlight PLL as a promising additive for optimizing perovskite crystallization, offering guidance for fabricating efficient and stable photovoltaic devices.
基金supported by a research grant from the National University of Singapore to WQS(RP-3960366)a collaborative research grant from Sichuan Zhongke Organ Co.Ltd(Chengdu,China).
文摘Objectives:Cold-acclimated organisms accumulate low molecular weight organic solutes such as sugar alcohols and soluble sugars.This study aimed to compare the efficacy of five sugar alcohols and 14 soluble sugars in stabilizing proteins under freezing,freeze-drying,and air-drying stresses.Materials and methods:Glucose-6-Phosphate Dehydrogenase(G6PD)was used as the model protein.G6PD solutions with or without sugar alcohols and or sugars were subjected to freezing,freeze-drying,and air-drying stresses.The recovery of G6PD activity was measured to evaluate the protective efficacy of these compounds.Results:Without stabilizers,freezing G6PD at-20℃ or-80℃ reduced enzyme activity by around 24%,while freeze-drying or air-drying reduced activity by 90%-95%.Among the five sugar alcohols tested,pinitol,quebrachitol and sorbitol stabilized G6PD,whereas mannitol and myo-inositol destabilized it.Among 14 soluble sugars,trehalose and raffinose showed slightly lower enzyme recovery after repeated freeze-thaw cycles at-20℃.Most soluble sugars(except arabinose and xylose)protected G6PD during freeze-drying,with di-,tri-,and oligosaccharides generally outperforming monosaccharides.During air-drying,lactose was ineffective,while arabinose,galactose,and xylose were detrimental.Conclusion:The study highlights the diverse mechanisms of sugar alcohols and sugars in protein stabilization under stress,offering insights for formulating stable protein-and cell-based drugs.
文摘This study investigates the innovative reuse of sewage sludge with eco-friendly alkaline solutes to improve clayey soil without conventional cementitious binders.The unconfined compressive strength(UCS)was the main criterion to assess the quality and effectiveness of the proposed solutions,as this test was performed to measure the strength of the stabilized clay by varying binders’dosages and curing times.Moreover,the direct shear test(DST)was used to investigate the Mohr-Coulomb parameters of the treated soil.Microstructure observations of the natural and treated soil were conducted using scanning electron microscope(SEM),energy-dispersive spectroscopy(EDS),and FTIR.Furthermore,toxicity characteristic leaching procedure(TCLP)tests were performed on the treated soil to investigate the leachability of metals.According to the results,using 2.5%of sewage sludge activated by NaOH and Na_(2)SiO_(3)increases the UCS values from 176 kPa to 1.46 MPa after 7 d and 56 d of curing,respectively.The results of the DST indicate that sewage sludge as a precursor increases cohesion and enhances frictional resistance,thereby improving the Mohr-Coulomb parameters of the stabilized soil.The SEM micrographs show that alkali-activated sewage sludge increases the integrity and reduces the cavity volumes in the stabilized soil.Moreover,TCLP tests revealed that the solubility of metals in the treated soil alkaliactivated by sewage sludge significantly decreased.This study suggests that using sewage sludge can replace cement and lime in ground improvement,improve the circular economy,and reduce the carbon footprint of construction projects.
基金Supported by the Natural Science Foundation of Heilongjiang Province(LH2024A025)。
文摘The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wave functions.Two plasma mediums,namely,the Debye plasma and quantum plasma environments are considered.The screened Coulomb potential(SCP)obtained from Debye-Hückel model is used to represent Debye plasma environments and the exponential cosine screened Coulomb potential(ECSCP)obtained from a modified Debye-Hückel model is used to represent quantum plasma environments.The resonance parameters(resonance positions and widths)are presented in terms of the screening parameters.
文摘The flying-wing aircraft has excellent aerodynamic efficiency and stealth performance.However,due to the lack of tails,the flying-wing aircraft has a serious attitude control problem.In this paper,the effective flow control strategy of three-axis control is proposed by using continuous jets for a flapless flying-wing aircraft.The wind tunnel test of two kinds of flying-wing models,namely one flow control model and one mechanical control model,is conducted,and the control effect is analyzed and compared.By simultaneous blowing of the circulation control actuators inboard and differential blowing of the circulation control actuators outboard,the pitch and roll controls are achieved,respectively.It also has an effective control effect at very large angles of attack where the conventional control surface fails.A linear relationship is found between the increment of the controlled aerodynamic force/moment coefficient and the momentum coefficient for circulation control actuators.Moreover,to resolve the difficulty in yaw control,a novel wingtip jet is proposed based on the concept of the all-moving tip and compared with apex jet and circulation control jet.It is found that the wingtip jet is the most efficient actuator,followed by the simultaneous-blowing circulation control jet.Therefore,based on the research above,two optimized fluidic control configurations are proposed.One employs circulation control jet and wingtip jet,and the other is completely dependent on circulation control jet.Finally,the flow control mechanism of circulation control is discussed.Circulation control significantly accelerates the flow on the upper surface of the airfoil in attached flow and reduces the flow separation region in separated flow,leading to aerodynamic performance improvement.These results provide an important theoretic basis for the flapless flight control of flying-wing aircraft.
基金supported in part by the National Natural Science Foundation of China(62373337,62373333)the 111 Project(B17040)State Key Laboratory of Advanced Electromagnetic Technology(2024KF002)
文摘Dear Editor,This letter is concerned with stability analysis and stabilization design for sampled-data based load frequency control(LFC) systems via a data-driven method. By describing the dynamic behavior of LFC systems based on a data-based representation, a stability criterion is derived to obtain the admissible maximum sampling interval(MSI) for a given controller and a design condition of the PI-type controller is further developed to meet the required MSI. Finally, the effectiveness of the proposed methods is verified by a case study.
基金supported by the Natural Science Foundation of Hunan Province,China(No.2024JJ1012)the Postgraduate Innovative Project of Central South University,China(No.2023ZZTS0459)the National Key Research and Development Program of China(No.2019YFC1803605)。
文摘Slow-release phosphate materials were prepared by activating insoluble phosphate with organic acid to stabilize high concentrations of Cd and Zn in contaminated smelter soil.The results showed that oxalic acid(0.1 mol/L)activated tricalcium phosphate(TO-0.1)provided the most efficient stabilization of Cd and Zn.After 30 d treatment,leaching concentrations of Cd and Zn in soil were decreased from 3.17 and 16.60 mg/L to 0.078 and 0.32 mg/L,respectively.The acid-soluble fractions of Cd and Zn were transformed into reducible,oxidizable,and residual fractions.Notably,As mobility in TO-0.1 treated soils did not increase.In addition,acid rain leaching and 150 d of natural aging revealed that the slow-release phosphate material provided long-term stability for the stabilization of Cd and Zn.This study verifies the potential application of slow-release phosphate materials for the remediation of heavy metal contaminated soil at smelting sites.
基金financially supported by the National Natural Science Foundation of China(Grant No.52074331).
文摘Wellbore instability is one of the significant challenges in the drilling engineering and during the development of carbonate reservoirs,especially with open-hole completion.The problems of wellbore instability such as downhole collapse and silt deposit in the fractured carbonate reservoir of Tarim Basin(Ordovician)are severe.Solid destabilization and production(SDP)was proposed to describe this engineering problem of carbonate reservoirs.To clarify the mechanism and mitigate potential borehole instability problems,we conducted particle size distribution(PSD)analysis,X-ray diffraction(XRD)analysis,triaxial compression tests,and micro-scale sand production tests based on data analysis.We found that the rock fragments and silt in the wellbore came from two sources:one from the wellbore collapse in the upper unplugged layers and the other from the production of sand particles carried by the fluid in the productive layers.Based on the experimental study,a novel method combining a geomechanical model and microscopic sand production model was proposed to predict wellbore instability and analyze its influencing factors.The critical condition and failure zone predicted by the prediction model fit well with the field observations.According to the prediction results,the management and prevention measures of wellbore instability in carbonate reservoirs were proposed.It is suggested to optimize the well track in new drilling wells while upgrading the production system in old wells.This study is of great guiding significance for the optimization of carbonate solid control and it improves the understanding of the sand production problems in carbonate reservoirs.
基金the financial support of the National Natural Science Foundation of China(NSFC,No.12074093)。
文摘This study presents a novel approach to enhance silicon anode performance through barium titanate(BTO)incorporation,with the establishment of a force-electric coupling model.By introducing piezoelectric BTO into silicon matrices,we successfully improved both the mechanical stability and electrochemical kinetics of the anode.The developed force-electric coupling model explains how BTO mitigates stress accumulation during lithiation while optimizing the kinetics of Li^(+)and electron transfer.Experimental verification and multiphysical simulation indicate that Si@BTO effectively eliminates structural degradation during the cycling process and significantly reduces the charge transfer resistance.The force-electric coupling mechanism further facilitates stable solid electrolyte interphase(SEI)formation.When paired with LiFePO_(4)cathodes,Si@BTO maintains 76% capacity retention after 500 cycles at a 10 C rate.This work establishes a basic force-electric coupling model framework and offers insights into the development of advanced silicon anode batteries with exceptional performance.
文摘This paper deals with the singular chemotaxis-Navier-Stokes system with indirect signal consumption n_(t)+u·▽v=△n-Х▽·(n/v▽u);v_(t)+u·▽v=△v-uw;w_(t)+u·▽w=△w-w+n;u_(t)+(u·▽)u=△u-▽P+n▽Ф;▽·u=0,x∈Ω,t>0 in a bounded and smooth domainΩ⊂ℝ2 with no-flux/no-flux/no-flux/no-slip boundary conditions,whereΦ∈W2,∞(Ω).A recent literature[Dai F,Liu B.J Differential Equations,2023,369:115–155]has proved that for all reasonably regular initial data,the associated initial-boundary value problem possesses a global classical solution,but qualitative information on the behavior of solution has never been touched so far.In stark contrast to the positive effect of indirect signal consumption mechanism on the global solvability of system,the analysis of asymptotic behavior of solution to the system with indirect signal consumption is essentially complicated than that with direct signal consumption because the favorable coupled structure between cells and signal is broken down by the indirect signal consumption mechanism.The present study shows that the global classical solution exponentially stabilizes toward the corresponding spatially homogeneous equilibria under a smallness condition on the initial cell mass.In comparison to the previously known result concerning the uniform convergence of solution to the system with direct signal consumption,our result inter alia provides a more in-depth understanding on the asymptotic behavior of solution.
文摘We read with great interest the investigations conducted by Pourakbar et al.(2024)on the“Stabilization of clay soil using alkali-activated sewage sludge.”The authors have investigated the feasibility of utilizing alkali-activated sewage sludge(AASS)as a binder for stabilizing the clayey soil.Sewage sludge(SS)in varying proportions of 1.5%,2%,2.5%,3.5%,and 4.5%was utilized to prepare geopolymer binders using sodium and potassium-based alkali activators.Furthermore,unconfined compressive strength(UCS)and direct shear tests were conducted to examine the strength development of clayey soil stabilized with AASS.While the study presented some intriguing results,we have identified critical concerns regarding(i)the selection of SS as a precursor for alkali activation,(ii)technical inconsistencies associated with the compaction characteristics and microstructural analysis,and(iii)the feasibility of the proposed methodology for practical applications.Through our discussion,we seek to highlight these issues and provide constructive feedback to advance the understanding of alkali activation processes and their implications for soil stabilization.
基金supported by the National Natural Science Foundation of China(61803015).
文摘In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.The control accuracy of ISP is fundamentally circumscribed by various disturbance torques in rotating shaft.Therefore,a dynamic model of ISP incorporating composite perturbations is established with regard to the stabilization of axis in the inertial reference frame.Subsequently,an online estimator for control loop uncertainties based on the sliding mode control algorithm is designed to estimate the aggregate disturbances of various parameters uncertainties and other unmodeled disturbances that cannot be accurately calibrated.Finally,the proposed DSMO is integrated into a classical proportional-integral-derivative(PID)control scheme,utilizing feedforward approach to compensate the composite disturbance in the control loop online.The effectiveness of the proposed disturbance observer is validated through simulation and hardware experimentation,demonstrating a significant improvement in the dynamic control performance and robustness of the classical PID controller extensively utilized in the field of engineering.
基金supported by Social Science Fund of Hunan province(Grant No.22JD074)the Research Foundation of Education Bureau of Hunan province(Grant No.22B0912).
文摘In this paper, a class of discontinuous neutral-type neural networks (NTNNs) with proportional delays is considered. The targets of the paper are to study the problem of periodic solutions and fixed-time (FXT) stabilization of the addressed neural networks. In order to complete the targets, based on set-valued map, differential inclusions theory, coincidence theorem and Hölder inequality technique, some new proportional delay-dependent criteria shown by the inequalities are derived. Based on the fact of the existence of solution, further by applying the FXT stability lemmas and equivalent transformation, the zero solution of closed-loop system achieves FXT stabilization and the corresponding settling-times are estimated. Some previous related works on NTNNs are extended. Finally, one typical example is provided to show the effectiveness of the established results.
基金supported by the Natural Science Foundation of Shandong Province(ZR2021ME007)the National Natural Science Foundation in China(51574267)the Key Projects of China National Key Research and Development Plan(2019YFA0708703)。
文摘During oil displacement,surfactants often encounter challenges such as emulsion instability and channeling,which can compromise their efficiency.To address these issues,polymer microspheres were synthesized via reverse microemulsion polymerization using acrylamide,2-methyl-2-acrylamidopropane sulfonic acid,and stearyl methacrylate as monomers,with N,N-methylenebisacrylamide as the crosslinker.The microspheres were then combined with sodium alkyl alcohol polyoxyethylene ether carboxylate to enhance emulsion stability and expand the swept volume of surfactant.A stable reverse microemulsion system was prepared using the maximum water solubilization rate as the indicator,and microspheres were synthesized based on this system.The ability of the microspheres to enhance emulsion stability was systematically evaluated.The plugging performance and enhanced oil recovery(EOR)efficiency of the microsphere/surfactant composite system were assessed through core seepage and oil displacement experiments.The experimental results demonstrated that microspheres were successfully prepared in a water-in-oil reverse microemulsion system with a solubilization rate of 42%.The emulsion stability was evaluated under an oil-to-water ratio of 7:3,a temperature of 80℃,and a salinity of 44,592 mg/L,by manually shaking the test tube five times.It was observed that the complete phase separation time of the emulsion increased from 10 to 120 min after the addition of microspheres.Under different permeability conditions(100×10^(-3),300×10^(-3),500×10^(-3)μm^(2)),the recovery efficiency of the composite system increased by 4.5%,8.3%,and 4.8%,respectively,compared to a single surfactant system.The microspheres developed in this study enhanced emulsion stability and increased the swept volume of surfactant within the formation,significantly boosting its oil recovery efficiency.
基金supported by the National Key Research and Development Program of China(2022YFB2502103)the Xiamen Science and Technology Project(No.3502Z20231057)+2 种基金the National Natural Science Foundation of China(No.22288102,No.22279107,No.22309153)the Fujian Provincial Natural Science Foundation of China(No.2024J01040)the Fundamental Research Funds for the Central Universities(No.20720230039)。
文摘Extending the charging voltage of LiCoO_(2)(LCO)is an ongoing and promising approach to increase its energy density.However,the main challenge of the approach lies in the insuperable cathodic interfacial processes at high voltage,which leads to rapid failure both in the performance and structure of the LCO cathode.Herein,a Li_(2)CO_(3)-based additive was prepared by a simple sand-milling method,enabling a low electrochemical decomposition voltage<4.6 V from commonly>4.8 V,stabilizing the interface of the LCO cathode at 4.6 V.The decomposition of Li_(2)CO_(3)provides extra Li^(+)and CO_(2)to supplement the Li consumption required in the initial irreversible interfacial reactions and rapidly form a uniform and stable cathode electrolyte interphase layer(less organic and more inorganic components)on the LCO cathode by reducing CO_(2).Thus,the phase transformation and the emergence of high-valent Co ions on the surface of LCO at 4.6 V high voltage were inhibited.Thanks to this,with 2%Li_(2)CO_(3)-based additive,the capacity retention of commercial LCO at a high voltage of 4.6 V at 0.5 C for 100 cycles was improved from 59.3%to 79.3%.This work improves the high-voltage stability of LCO and provides a new idea for realizing the high-voltage operation of batteries.
基金supported by the National Natural Science Foundation of China(Nos.42222102,41971136,and 42171107)the Jilin Provincial Department of Science and Technology,China(No.20230508089RC)the Professional Association of the Alliance of International Science Organizations(No.ANSO-PA-2020-14).
文摘Global climate change exerts profound effects on snow cover,with consequential impacts on microbial activities and the stability of soil organic carbon(SOC)within aggregates.Northern peatlands are significant carbon reservoirs,playing a critical role in mitigating climate change.However,the effects of snow variations on microbial-mediated SOC stability within aggregates in peatlands remain inadequately understood.Here,an in-situ field experiment manipulating snow conditions(i.e.,snow removal and snow cover)was conducted to investigate how snow variations affect soil microbial community and the associated SOC stability within soil aggregates(>2,0.25-2,and<0.25 mm)in a peatland of Northeast China.The results showed that snow removal significantly increased the SOC content and stability within aggregates.Compared to the soils with snow cover,snow removal resulted in decreased soil average temperatures in the topsoil(0-30 cm depth)and subsoil(30-60 cm depth)(by 1.48 and 1.34°C,respectively)and increased freeze-thaw cycles(by 11 cycles),consequently decreasing the stability of aggregates in the topsoil and subsoil(by 23.68%and 6.85%,respectively).Furthermore,more recalcitrant carbon and enhanced SOC stability were present in microaggregates(<0.25 mm)at two soil depths.Moreover,reductions in bacterial diversity and network stability were observed in response to snow removal.Structural equation modeling analysis demonstrated that snow removal indirectly promoted(P<0.01)SOC stability by regulating carbon to nitrogen(C:N)ratio within aggregates.Overall,our study suggested that microaggregate protection and an appropriate C:N ratio enhanced carbon sequestration in response to climate change.
基金supported by the National Natural Science Foundation of China(No.52203261,No.52473213)the China Postdoctoral Science Foundation(2023731330)the Central Laboratory,School of Chemical and Material Engineering,Jiangnan University。
文摘Flame-retardant gel polymer electrolyte(FRGPE)with high ionic conductivity and practical safety is essential for the next generation of high energy density sodium metal batteries(SMBs).However,they suffer from serious side reactions and insufficient interfacial stability against sodium metal anode,causing severe performance degradation and even safety issues.Herein,to address these challenges,a fluoroethylene carbonate(FEC)additive confined metal-organic framework(MOF)-based composite gel(AC-MCG)interlayer was constructed upon sodium anode through a facile in-situ UV-induced photopolymerization.The FEC confined in AC-MCG induces the formation of NaF-rich inorganic solid-electrolyte interphase,effectively eliminating the side reactions between the FRGPE and sodium metal anode.Moreover,the MOF with ordered nanochannels can homogenize Na^(+)flux during the plating process and also endow the AC-MCG interlayer with high mechanical strength,thus sufficiently suppressing the growth of sodium dendrites.Benefitting from these merits of the AC-MCG interlayer,a high critical current density of 2.0 mA cm^(-2)and a long-term cycling life for over 4200 h at 0.1 mA cm^(-2)are achieved for the Na/Na symmetric cells.Besides,the solid-state SMBs paired with the constructed AC-MCG interlayer also demonstrated considerable electrochemical performance and practical safety.
基金National Natural Science Foundation of China(Grant No.22005318,22379152)Western Young Scholars Foundations of Chinese Academy of Sciences+4 种基金Lanzhou Youth Science and Technology Talent Innovation Project(Grant No.2023-NQ-86,No.2023-QN-96)Lanzhou Chengguan District Science and Technology Plan Project(Grant No.2023-rc-4,2022-rc-4)Collaborative Innovation Alliance Fund for Young Science and Technology Worker(Grant No.HZJJ23-7)National Nature Science Foundations of Gansu Province(Grant No.21JR11RA020)Fundamental Research Funds for the Central Universities(Grant No.31920220073,31920230128)。
文摘Rechargeable aqueous zinc-ion batteries(AZIBs)exhibit appreciable potential in the domain of electrochemical energy storage.However,there are serious challenges for AZIBs,for instance zinc dendrite growth,hydrogen evolution reaction(HER),and corrosion side reactions.Herein,we propose a surface engineering modification strategy for coating the montmorillonite(MMT)layer onto the surface of the Zn anode to tackle these issues,thereby achieving high cycling stability for rechargeable AZIBs.The results reveal that the MMT layer on the surface of the Zn anode is able to provide ordered zincophilic channels for zinc ions migration,facilitating the reaction kinetics of zinc ions.Density functional theory(DFT)calculations and water contact angle(CA)tests prove that MMT@Zn anode exhibits superior adsorption capacity for Zn^(2+)and better hydrophobicity than the bare Zn anode,thereby achieving excellent cycling stability.Moreover,the MMT@Zn||MMT@Zn symmetric cell holds the stable cycling over 5600 h at 0.5 mA cm^(-2)and 0.125 m A h cm^(-2),even exceeding 1800 h long cycling under harsh conditions of 5 m A cm^(-2)and 1.25 m A h cm^(-2).The MMT@Zn||V_(2)O_(5)full cell reaches over 3000 cycles at 2 A g^(-1)with excellent rate capability.Therefore,this surface engineering modification strategy for enhancing the electrochemical performance of AZIBs represents a promising application.