In this paper,Shangbu district,Shenzhen was taken for example to study the design of the three-dimensional transportation system in commercial districts against the background of urban renewal,so as to provide referen...In this paper,Shangbu district,Shenzhen was taken for example to study the design of the three-dimensional transportation system in commercial districts against the background of urban renewal,so as to provide references for solving serious traffic problems in old urban industrial areas.Shangbu district adopted a diversified development model to ensure the appropriate spatial scale and constructed a three-dimensional transportation system concerning the underground,ground,and overground planes to guarantee the coexistence of people,goods,and vehicles.展开更多
The hybrid electric propulsion system(HEPS)holds clear potential to support the goal of sustainability in the automobile and aviation industry.As an important part of the three-dimensional transportation network,vehic...The hybrid electric propulsion system(HEPS)holds clear potential to support the goal of sustainability in the automobile and aviation industry.As an important part of the three-dimensional transportation network,vehicles and aircraft using HEPSs have the advantages of high fuel economy,low emission,and low noise.To fulfill these advantages,the design of their energy management strategies(EMSs)is essential.This paper presents an in-depth review of EMSs for hybrid electric vehicles(HEVs)and hybrid electric aircraft.First,in view of the main challenges of current EMSs of HEVs,the referenced research is reviewed according to the solutions facing real-time implementation problems,variable driving conditions adaptability problems,and multi-objective optimization problems,respectively.Second,the existing research on the EMSs for hybrid electric aircraft is summarized according to the hybrid electric propulsion architectures.In addition,with the advance in propulsion technology and mechanical manufacturing in recent years,flying cars have gradually become a reality,further enriching the composition of the three-dimensional transportation network.And EMSs also play an essential role in the efficient operation of flying cars driven by HEPSs.Therefore,in the last part of this paper,the development status of flying cars and their future prospects are elaborated.By comprehensively summarizing the EMSs of HEPS for vehicles and aircraft,this review aims to provide guidance for the research on the EMSs for flying cars driven by HEPS and serve as the basis for knowledge transfer of relevant researchers.展开更多
To ensure the safe transportation of radioactive materials,numerous countries have established specific standards.For the transfer of fissile materials,it is imperative that the material within the packaging remains i...To ensure the safe transportation of radioactive materials,numerous countries have established specific standards.For the transfer of fissile materials,it is imperative that the material within the packaging remains in a subcritical state during routine,normal,and accidental transport conditions.In the event of an accident,the rods within the storage tank may become rearranged,introducing uncertainty that must be accounted for to ensure that criticality analysis results are conservative.Historically,this uncertainty was addressed overly conservatively due to limited research on non-uniform arrangement scenarios,which proved unsuitable for criticality safety analysis of spent fuel packages.This paper introduced three distinct methods to non-uniformly rearrange fuel rods—Uniform Arrangement by Blocks,Layer-by-Layer Determination,and Birdcage Deformation—and meticulously evaluates the influences of rod rearrangement on the effective multiplication factor of neutrons,k eff,utilizing the Monte Carlo method.Ultimately,this study presents a holistic method capable of encompassing the entire spectrum of potential effects stemming from the rearrangement of fuel rods during rods mispositioning accident.By augmenting the safety margin,this approach proves to be adeptly suited for the criticality safety analysis of nuclear fuel transport containers.展开更多
In recent years,research investigations have focused on the substantial freshwater storage in the Beaufort Gyre(BG)region due to climate change.Despite active mesoscale eddies in the area,a notable gap in understandin...In recent years,research investigations have focused on the substantial freshwater storage in the Beaufort Gyre(BG)region due to climate change.Despite active mesoscale eddies in the area,a notable gap in understanding the three-dimensional structure and induced transport has been observed.This study concentrates on the Canada Basin in the western Arctic Ocean,specifically examining a subsurface anticyclonic eddy(SAE)sampled by a Mooring A in the BG region.Hybrid Coordinate Ocean Model(HYCOM)analysis data reveal its lifecycle from February 15 to March 15,2017,marked by initiation,development,maturity,decay,and termination stages.This work extends the finding of SAE passing through Mooring A by examining its overall effects,spatiotemporal variations,and swirl transport.SAE generation through baroclinic instability,which contributes to the westward tilt of the vertical axis,is also confirmed in this study.Swirl transport induced by SAE is predominantly eastward and downward due to its trajectory and background flow.SAE temporarily weakens stratification and extends the subsurface depth but demonstrates transient effects.Moreover,SAE transports upper-layer freshwater,Pacific Winter Water,and Atlantic Water downward,emphasizing its potential influence on freshwater redistribution in the Canadian Basin.This research provides valuable insights into mesoscale eddy dynamics,revealing their role in modulating the upper water mass in the BG region.展开更多
Ni-rich layered cathodes(LiNi_xCo_yMn_(2)O_(2))have recently drawn much attention due to their high specific capacities.However,the poor rate capability of LiNi_xCo_yMn_(2)O_(2),which is mainly originated from the two...Ni-rich layered cathodes(LiNi_xCo_yMn_(2)O_(2))have recently drawn much attention due to their high specific capacities.However,the poor rate capability of LiNi_xCo_yMn_(2)O_(2),which is mainly originated from the twodimensional diffusion of Li ions in the Li slab and Li^(+)/Ni^(2+)cation mixing that hinder the Li^(+)diffusion,has limited their practical application where high power density is needed.Here we integrated Li_(2)MnO_(3)nanodomains into the layered structure of a typical Ni-rich LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)material,which minimized the Li^(+)/Ni^(2+)cationic disordering,and more importantly,established grain boundaries within the NCM811 matrix,thus providing a three-dimensional diffusion channel for Li ions.Accordingly,an average Li-ion diffusion coefficient(D_(Li+))of the Li_(2)MnO_(3)-integrated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811-I)during charge/discharge was calculated to be approximately 6*10^(-10)cm~2 S^(-1),two times of that in the bare NCM811(3*10^(-10)cm~2 S^(-1)).The capacity delivered by the NCM811-I(154.5 mAh g^(-1))was higher than that of NCM811(141.3 mAh g^(-1))at 2 C,and the capacity retention of NCM811-I increased by 13.6%after100 cycles at 0.1 C and 13.4%after 500 cycles at 1 C compared to NCM811.This work provides a valuable routine to improve the rate capability of Ni-rich cathode materials,which may be applied to other oxide cathodes with sluggish Li-ion transportation.展开更多
Coupling with a three dimensional (3D) hydrodynamic model and a suspended solids model, a 3D model for the transport of Fe and Mn in Arha Reservoir, China, was developed. The 3D velocity fields for the flood season a...Coupling with a three dimensional (3D) hydrodynamic model and a suspended solids model, a 3D model for the transport of Fe and Mn in Arha Reservoir, China, was developed. The 3D velocity fields for the flood season are computed to drive the 3D model of Fe and Mn in which the processes of advection, diffusion, redox, sorption, desorption, deposition, and re suspension are included. The model has been calibrated by matching observed fluid, suspended solids, and total concentrations of Fe and Mn in the water column and in the sediment, successively. The model simulated both horizontal and vertical gradients of Fe and Mn in Arha Reservoir. It was found that Fe and especially Mn stratify in accordance with the stratification of DO during summer. The redox cycles across the water sediment interface has a principal role in the rise of Fe and Mn concentrations in the overlying water. It was also found that Fe and Mn loadings from the tributaries have a carryover effect on the water quality through a secondary contamination in the reservoir.展开更多
It is essential to learn the temporal and spatial concentration distributions and variations of seeding agents in cloud seeding of precipitation enhancement. A three-dimensional puff trajectory model incorporating a m...It is essential to learn the temporal and spatial concentration distributions and variations of seeding agents in cloud seeding of precipitation enhancement. A three-dimensional puff trajectory model incorporating a mesoscale nonhydrostatic model has been formulated, and is applied to simulating the transporting and diffusive characteristics of multiple line sources of seeding agents within super-cooled stratus. Several important factors are taken into consideration that affect the diffusion of seeding materials such as effects of topography and vertical wind shear, temporal and spatial variation of seeding parameters and wet deposition. The particles of seeding agents are assumed to be almost inert, they have no interaction with the particles of the cloud or precipitation except that they are washed out by precipitation. The model validity is demonstrated by the analyses and comparisons of model results, and checked by the sensitivity experiments of diffusive coefficients and atmospheric stratification. The advantage of this model includes not only its exact reflection of heterogeneity and unsteadiness of background fields, but also its good simulation of transport and diffusion of multiple line sources. The horizontal diffusion rate and the horizontal transport distance have been proposed that they usually were difficult to obtain in other models. In this simulation the horizontal diffusion rate is 0.82 m s(-1) for average of one hour, and the horizontal average transport distance reaches 65 km after 1 4 which are closely related to the background Fields.展开更多
As in-situ observations are sparse,targeted observations of a specific mesoscale eddy are rare.Therefore,it is difficult to study the three-dimensional structure of moving mesoscale eddies.From April to September 2014...As in-situ observations are sparse,targeted observations of a specific mesoscale eddy are rare.Therefore,it is difficult to study the three-dimensional structure of moving mesoscale eddies.From April to September 2014,an anticyclonic eddy located at 135°E-155°E,26°N-42°N was observed using 17 rapidsampling Argo floats,and the spatiotemporal variations in the three-dimensional structure were studied.The results are as follows:(1)the eddy was identified and tracked using satellite altimeter data.It had a lifetime of 269 days and an average radius of 91.5 km.The lifetime of the eddy can be divided into three phases,i.e.,the initiation,maturity,and termination phases.The depth of its influence reached 1000 m;(2)the Argo profiles were divided into seven periods(approximately 20 days in each)for composite analysis,and the composite Argo profiles and CARS2009(CSIRO Atlas of Regional Seas)climatology data were merged following the data-interpolating variational analysis(DIVA)method to reconstruct the three-dimensional structure.The temperature and salinity anomaly cores of the anticyclonic mesoscale eddy are located from 400 to 600 m.From 800 to 900 m,there is an area of low salinity at the center of the eddy.A high concentration anomaly of dissolved oxygen was located at approximately 250 m;(3)to better understand the features of the eddy and its interaction with the surroundings,we calculated the anomalous velocity of the geostrophic flow and the heat,salt,dissolved oxygen transport anomaly,and discussed the eddy's origin and its adjustments to topography.The maximum heat,salt,and oxygen transport caused by eddy were 9.37×10^11 W,3.08×10^3 kg/s,and 2.70×10^2 kg/s,which all occurred during the termination phase.This study highlights the applicability of using Argo floats to understand the three-dimensional structure thermohaline features of eddies in the North Pacific.展开更多
Solid lipid nanoparticles(SLN)could enhance the oral bioavailability of loaded protein and peptide drugs through lymphatic transport.Natural oligopeptides regulate nearly all vital processes and serve as a nitrogen so...Solid lipid nanoparticles(SLN)could enhance the oral bioavailability of loaded protein and peptide drugs through lymphatic transport.Natural oligopeptides regulate nearly all vital processes and serve as a nitrogen source for nourishment.They are mainly transported by oligopeptide transporter-1(PepT-1)which are primarily expressed in the intestine with the characteristics of high-capacity and low energy consumption.Our preliminary research discovered the transmembrane transport of SLN could be improved by stimulating the oligopeptide absorption pathway.This implied the potential of combining the advantages of SLN with oligopeptide transporter mediated transportation.Herein,two kinds of dipeptide modified SLN were designed with insulin and glucagon like peptide-1(GLP-1)analogue exenatide as model drugs.These drugs loaded SLN showed enhanced oral bioavailability and hypoglycemic effect in both type I diabetic C57BL/6mice and type II diabetic KKAymice.Compared with un-modified SLN,dipeptide-modified SLN could be internalized by intestinal epithelial cells via PepT-1-mediated endocytosis with higher uptake.Interestingly,after internalization,more SLN could access the systemic circulation via lymphatic transport pathway,highlighting the potential to combine the oligopeptide-absorption route with SLN for oral drug delivery.展开更多
Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significan...Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.展开更多
The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of mana...The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge.Herein,a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat.The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel.Subsequently,hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient.The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side,and can dynamically and continuously control the transportation time in a wide range of 3–66 s as the temperature increases from 10 to 40℃.This smart fabric can quickly dissipate heat at high temperatures,while at low temperatures,it can slow down the heat dissipation rate and prevent the human from becoming too cold.In addition,the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side.This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations.展开更多
To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D lea...To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.展开更多
We have developed a three dimensional (3D) PIC (particle-in-cell)-MC (Monte Carlo) code in order to simulate an electron beam transported into the dense matter based on our previous two dimensional code. The rel...We have developed a three dimensional (3D) PIC (particle-in-cell)-MC (Monte Carlo) code in order to simulate an electron beam transported into the dense matter based on our previous two dimensional code. The relativistic motion of fast electrons is treated by the particle-in-cell method under the influence of both a self-generated transverse magnetic field and an axial electric field, as well as collisions. The electric field generated by return current is expressed by Ohm's law and the magnetic field is calculated from Faraday's law. The slowing down of monoenergy electrons in DT plasma is calculated and discussed.展开更多
In order to accurately simulate strong three-dimensional (3-D) free surface flows and sediment transport, the fully 3- D non-hydrostatic pressure models are developed based on the incompressible Navier-Stokes equati...In order to accurately simulate strong three-dimensional (3-D) free surface flows and sediment transport, the fully 3- D non-hydrostatic pressure models are developed based on the incompressible Navier-Stokes equations and convection-diffusion equation of sediment concentration with the mixing triangle and quadrilateral grids. The governing equations are discretized with the unstructured finite volume method in order to provide conservation properties of mass and momentum, and flexibility with practical application. It is shown that it is first-order accurate on nonuniform plane two-dimensional (2-D) grids and second-order accurate on uniform plane grids. A third-order approximation of the vertical velocity at the top-layer is applied. In such a way, free surface zero stress boundary condition is satisfied maturely, and very few vertical layers are needed to give an accurate solution even for complex discontinuous flow and short wave simulation. The model is applied to four examples to simulate strong 3-D free surface flows and sediment transport where non-hydrostatic pressures have a considerable effect on the velocity field. The newly developed model is verified against analytical solutions with an excellent agreement.展开更多
Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and ...Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem.展开更多
Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma ...Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.展开更多
In this paper,we prove the transportation cost-information inequalities on the space of continuous paths with respect to the L~2-metric and the uniform metric for the law of the mild solution to the stochastic heat eq...In this paper,we prove the transportation cost-information inequalities on the space of continuous paths with respect to the L~2-metric and the uniform metric for the law of the mild solution to the stochastic heat equation defined on[0,T]×[0,1]driven by double-parameter fractional noise.展开更多
Autonomous Transporta tion Research(中文刊名《自主交通研究》,简称ATRes期刊)是由武汉理工大学主办,水路交通控制全国重点实验室、国家水运安全工程技术研究中心、交通信息与安全教育部工程研究中心等协办,科爱出版社出版发行的英...Autonomous Transporta tion Research(中文刊名《自主交通研究》,简称ATRes期刊)是由武汉理工大学主办,水路交通控制全国重点实验室、国家水运安全工程技术研究中心、交通信息与安全教育部工程研究中心等协办,科爱出版社出版发行的英文开放获取式高水平学术期刊,国际标准连续出版物号:ISSN 3050-8622。展开更多
文摘In this paper,Shangbu district,Shenzhen was taken for example to study the design of the three-dimensional transportation system in commercial districts against the background of urban renewal,so as to provide references for solving serious traffic problems in old urban industrial areas.Shangbu district adopted a diversified development model to ensure the appropriate spatial scale and constructed a three-dimensional transportation system concerning the underground,ground,and overground planes to guarantee the coexistence of people,goods,and vehicles.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51975048,52102449).
文摘The hybrid electric propulsion system(HEPS)holds clear potential to support the goal of sustainability in the automobile and aviation industry.As an important part of the three-dimensional transportation network,vehicles and aircraft using HEPSs have the advantages of high fuel economy,low emission,and low noise.To fulfill these advantages,the design of their energy management strategies(EMSs)is essential.This paper presents an in-depth review of EMSs for hybrid electric vehicles(HEVs)and hybrid electric aircraft.First,in view of the main challenges of current EMSs of HEVs,the referenced research is reviewed according to the solutions facing real-time implementation problems,variable driving conditions adaptability problems,and multi-objective optimization problems,respectively.Second,the existing research on the EMSs for hybrid electric aircraft is summarized according to the hybrid electric propulsion architectures.In addition,with the advance in propulsion technology and mechanical manufacturing in recent years,flying cars have gradually become a reality,further enriching the composition of the three-dimensional transportation network.And EMSs also play an essential role in the efficient operation of flying cars driven by HEPSs.Therefore,in the last part of this paper,the development status of flying cars and their future prospects are elaborated.By comprehensively summarizing the EMSs of HEPS for vehicles and aircraft,this review aims to provide guidance for the research on the EMSs for flying cars driven by HEPS and serve as the basis for knowledge transfer of relevant researchers.
文摘To ensure the safe transportation of radioactive materials,numerous countries have established specific standards.For the transfer of fissile materials,it is imperative that the material within the packaging remains in a subcritical state during routine,normal,and accidental transport conditions.In the event of an accident,the rods within the storage tank may become rearranged,introducing uncertainty that must be accounted for to ensure that criticality analysis results are conservative.Historically,this uncertainty was addressed overly conservatively due to limited research on non-uniform arrangement scenarios,which proved unsuitable for criticality safety analysis of spent fuel packages.This paper introduced three distinct methods to non-uniformly rearrange fuel rods—Uniform Arrangement by Blocks,Layer-by-Layer Determination,and Birdcage Deformation—and meticulously evaluates the influences of rod rearrangement on the effective multiplication factor of neutrons,k eff,utilizing the Monte Carlo method.Ultimately,this study presents a holistic method capable of encompassing the entire spectrum of potential effects stemming from the rearrangement of fuel rods during rods mispositioning accident.By augmenting the safety margin,this approach proves to be adeptly suited for the criticality safety analysis of nuclear fuel transport containers.
基金support of the Fundamental Research Funds for the Central Universities(No.E2ET0411X2).
文摘In recent years,research investigations have focused on the substantial freshwater storage in the Beaufort Gyre(BG)region due to climate change.Despite active mesoscale eddies in the area,a notable gap in understanding the three-dimensional structure and induced transport has been observed.This study concentrates on the Canada Basin in the western Arctic Ocean,specifically examining a subsurface anticyclonic eddy(SAE)sampled by a Mooring A in the BG region.Hybrid Coordinate Ocean Model(HYCOM)analysis data reveal its lifecycle from February 15 to March 15,2017,marked by initiation,development,maturity,decay,and termination stages.This work extends the finding of SAE passing through Mooring A by examining its overall effects,spatiotemporal variations,and swirl transport.SAE generation through baroclinic instability,which contributes to the westward tilt of the vertical axis,is also confirmed in this study.Swirl transport induced by SAE is predominantly eastward and downward due to its trajectory and background flow.SAE temporarily weakens stratification and extends the subsurface depth but demonstrates transient effects.Moreover,SAE transports upper-layer freshwater,Pacific Winter Water,and Atlantic Water downward,emphasizing its potential influence on freshwater redistribution in the Canadian Basin.This research provides valuable insights into mesoscale eddy dynamics,revealing their role in modulating the upper water mass in the BG region.
基金supported by the Ministry of Science and Technology of the People’s Republic of China(2016YFA0202500)the National Natural Science Foundation of China(52072185)+1 种基金the 111 project(B12015)the National Natural Science Foundation of China(21703147 and U1401248)。
文摘Ni-rich layered cathodes(LiNi_xCo_yMn_(2)O_(2))have recently drawn much attention due to their high specific capacities.However,the poor rate capability of LiNi_xCo_yMn_(2)O_(2),which is mainly originated from the twodimensional diffusion of Li ions in the Li slab and Li^(+)/Ni^(2+)cation mixing that hinder the Li^(+)diffusion,has limited their practical application where high power density is needed.Here we integrated Li_(2)MnO_(3)nanodomains into the layered structure of a typical Ni-rich LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)material,which minimized the Li^(+)/Ni^(2+)cationic disordering,and more importantly,established grain boundaries within the NCM811 matrix,thus providing a three-dimensional diffusion channel for Li ions.Accordingly,an average Li-ion diffusion coefficient(D_(Li+))of the Li_(2)MnO_(3)-integrated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811-I)during charge/discharge was calculated to be approximately 6*10^(-10)cm~2 S^(-1),two times of that in the bare NCM811(3*10^(-10)cm~2 S^(-1)).The capacity delivered by the NCM811-I(154.5 mAh g^(-1))was higher than that of NCM811(141.3 mAh g^(-1))at 2 C,and the capacity retention of NCM811-I increased by 13.6%after100 cycles at 0.1 C and 13.4%after 500 cycles at 1 C compared to NCM811.This work provides a valuable routine to improve the rate capability of Ni-rich cathode materials,which may be applied to other oxide cathodes with sluggish Li-ion transportation.
文摘Coupling with a three dimensional (3D) hydrodynamic model and a suspended solids model, a 3D model for the transport of Fe and Mn in Arha Reservoir, China, was developed. The 3D velocity fields for the flood season are computed to drive the 3D model of Fe and Mn in which the processes of advection, diffusion, redox, sorption, desorption, deposition, and re suspension are included. The model has been calibrated by matching observed fluid, suspended solids, and total concentrations of Fe and Mn in the water column and in the sediment, successively. The model simulated both horizontal and vertical gradients of Fe and Mn in Arha Reservoir. It was found that Fe and especially Mn stratify in accordance with the stratification of DO during summer. The redox cycles across the water sediment interface has a principal role in the rise of Fe and Mn concentrations in the overlying water. It was also found that Fe and Mn loadings from the tributaries have a carryover effect on the water quality through a secondary contamination in the reservoir.
文摘It is essential to learn the temporal and spatial concentration distributions and variations of seeding agents in cloud seeding of precipitation enhancement. A three-dimensional puff trajectory model incorporating a mesoscale nonhydrostatic model has been formulated, and is applied to simulating the transporting and diffusive characteristics of multiple line sources of seeding agents within super-cooled stratus. Several important factors are taken into consideration that affect the diffusion of seeding materials such as effects of topography and vertical wind shear, temporal and spatial variation of seeding parameters and wet deposition. The particles of seeding agents are assumed to be almost inert, they have no interaction with the particles of the cloud or precipitation except that they are washed out by precipitation. The model validity is demonstrated by the analyses and comparisons of model results, and checked by the sensitivity experiments of diffusive coefficients and atmospheric stratification. The advantage of this model includes not only its exact reflection of heterogeneity and unsteadiness of background fields, but also its good simulation of transport and diffusion of multiple line sources. The horizontal diffusion rate and the horizontal transport distance have been proposed that they usually were difficult to obtain in other models. In this simulation the horizontal diffusion rate is 0.82 m s(-1) for average of one hour, and the horizontal average transport distance reaches 65 km after 1 4 which are closely related to the background Fields.
基金Supported by the National Key R&D Program of China(No.2018YFC1406202)the National Natural Science Foundation of China(Nos.41830964,41976188,41605051)。
文摘As in-situ observations are sparse,targeted observations of a specific mesoscale eddy are rare.Therefore,it is difficult to study the three-dimensional structure of moving mesoscale eddies.From April to September 2014,an anticyclonic eddy located at 135°E-155°E,26°N-42°N was observed using 17 rapidsampling Argo floats,and the spatiotemporal variations in the three-dimensional structure were studied.The results are as follows:(1)the eddy was identified and tracked using satellite altimeter data.It had a lifetime of 269 days and an average radius of 91.5 km.The lifetime of the eddy can be divided into three phases,i.e.,the initiation,maturity,and termination phases.The depth of its influence reached 1000 m;(2)the Argo profiles were divided into seven periods(approximately 20 days in each)for composite analysis,and the composite Argo profiles and CARS2009(CSIRO Atlas of Regional Seas)climatology data were merged following the data-interpolating variational analysis(DIVA)method to reconstruct the three-dimensional structure.The temperature and salinity anomaly cores of the anticyclonic mesoscale eddy are located from 400 to 600 m.From 800 to 900 m,there is an area of low salinity at the center of the eddy.A high concentration anomaly of dissolved oxygen was located at approximately 250 m;(3)to better understand the features of the eddy and its interaction with the surroundings,we calculated the anomalous velocity of the geostrophic flow and the heat,salt,dissolved oxygen transport anomaly,and discussed the eddy's origin and its adjustments to topography.The maximum heat,salt,and oxygen transport caused by eddy were 9.37×10^11 W,3.08×10^3 kg/s,and 2.70×10^2 kg/s,which all occurred during the termination phase.This study highlights the applicability of using Argo floats to understand the three-dimensional structure thermohaline features of eddies in the North Pacific.
基金supported by National Key Research and Development Program of China(Grant No.2021YFE0115200)the Regional Innovation and Development Joint Fund of National Natural Science Foundation of China(Grant No.U22A20356).
文摘Solid lipid nanoparticles(SLN)could enhance the oral bioavailability of loaded protein and peptide drugs through lymphatic transport.Natural oligopeptides regulate nearly all vital processes and serve as a nitrogen source for nourishment.They are mainly transported by oligopeptide transporter-1(PepT-1)which are primarily expressed in the intestine with the characteristics of high-capacity and low energy consumption.Our preliminary research discovered the transmembrane transport of SLN could be improved by stimulating the oligopeptide absorption pathway.This implied the potential of combining the advantages of SLN with oligopeptide transporter mediated transportation.Herein,two kinds of dipeptide modified SLN were designed with insulin and glucagon like peptide-1(GLP-1)analogue exenatide as model drugs.These drugs loaded SLN showed enhanced oral bioavailability and hypoglycemic effect in both type I diabetic C57BL/6mice and type II diabetic KKAymice.Compared with un-modified SLN,dipeptide-modified SLN could be internalized by intestinal epithelial cells via PepT-1-mediated endocytosis with higher uptake.Interestingly,after internalization,more SLN could access the systemic circulation via lymphatic transport pathway,highlighting the potential to combine the oligopeptide-absorption route with SLN for oral drug delivery.
基金supported by the National Science Fund for Distinguished Young Scholars(42225107)the National Natural Science Foundation of China(42001326,42371414,42171409,and 42271419)+1 种基金the Natural Science Foundation of Guangdong Province of China(2022A1515012207)the Basic and Applied Basic Research Project of Guangzhou Science and Technology Planning(202201011539)。
文摘Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies.
基金support of this work by National Key Research and Development Program of China(2019YFC19059003)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(23KJB430024)+1 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(2023ZB680)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)are gratefully acknowledged.
文摘The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge.Herein,a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat.The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel.Subsequently,hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient.The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side,and can dynamically and continuously control the transportation time in a wide range of 3–66 s as the temperature increases from 10 to 40℃.This smart fabric can quickly dissipate heat at high temperatures,while at low temperatures,it can slow down the heat dissipation rate and prevent the human from becoming too cold.In addition,the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side.This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations.
文摘To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.
基金National High Technology ICF Committee in ChinaNational Natural Science Fund of China(Nos.10675024,10335020,10375011,and 10576007)+1 种基金National Basic Research Program of China(973 Program)(No.2007CB815101)the Laboratory of Computational Physics(No.51479050205ZW0905)
文摘We have developed a three dimensional (3D) PIC (particle-in-cell)-MC (Monte Carlo) code in order to simulate an electron beam transported into the dense matter based on our previous two dimensional code. The relativistic motion of fast electrons is treated by the particle-in-cell method under the influence of both a self-generated transverse magnetic field and an axial electric field, as well as collisions. The electric field generated by return current is expressed by Ohm's law and the magnetic field is calculated from Faraday's law. The slowing down of monoenergy electrons in DT plasma is calculated and discussed.
基金financially supported by the Science and Technology Project of the Ministry of Transport(Grant No.2013328352570)
文摘In order to accurately simulate strong three-dimensional (3-D) free surface flows and sediment transport, the fully 3- D non-hydrostatic pressure models are developed based on the incompressible Navier-Stokes equations and convection-diffusion equation of sediment concentration with the mixing triangle and quadrilateral grids. The governing equations are discretized with the unstructured finite volume method in order to provide conservation properties of mass and momentum, and flexibility with practical application. It is shown that it is first-order accurate on nonuniform plane two-dimensional (2-D) grids and second-order accurate on uniform plane grids. A third-order approximation of the vertical velocity at the top-layer is applied. In such a way, free surface zero stress boundary condition is satisfied maturely, and very few vertical layers are needed to give an accurate solution even for complex discontinuous flow and short wave simulation. The model is applied to four examples to simulate strong 3-D free surface flows and sediment transport where non-hydrostatic pressures have a considerable effect on the velocity field. The newly developed model is verified against analytical solutions with an excellent agreement.
基金supported by the Deanship of Scientific Research and Graduate Studies at King Khalid University under research grant number(R.G.P.2/93/45).
文摘Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem.
文摘Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma.
基金Partially supported by Postgraduate Research and Practice Innovation Program of Jiangsu Province(Nos.KYCX22-2211,KYCX22-2205)。
文摘In this paper,we prove the transportation cost-information inequalities on the space of continuous paths with respect to the L~2-metric and the uniform metric for the law of the mild solution to the stochastic heat equation defined on[0,T]×[0,1]driven by double-parameter fractional noise.
文摘Autonomous Transporta tion Research(中文刊名《自主交通研究》,简称ATRes期刊)是由武汉理工大学主办,水路交通控制全国重点实验室、国家水运安全工程技术研究中心、交通信息与安全教育部工程研究中心等协办,科爱出版社出版发行的英文开放获取式高水平学术期刊,国际标准连续出版物号:ISSN 3050-8622。