期刊文献+
共找到158,541篇文章
< 1 2 250 >
每页显示 20 50 100
Characterizing three-dimensional features of Antarctic subglacial lakes from the inversion of hydraulic potential——Lake Vostok as a case study
1
作者 LI Yan LU Yang +2 位作者 ZHANG Zizhan SHI Hongling XI Hui 《Advances in Polar Science》 CSCD 2019年第1期70-75,共6页
To estimate basal water storage beneath the Antarctic ice sheet, it is essential to have data on the three-dimensional characteristics of subglacial lakes. We present a method to estimate the water depth and surface a... To estimate basal water storage beneath the Antarctic ice sheet, it is essential to have data on the three-dimensional characteristics of subglacial lakes. We present a method to estimate the water depth and surface area of Antarctic subglacial lakes from the inversion of hydraulic potential method. Lake Vostok is chosen as a case study because of the diverse and comprehensive measurements that have been obtained over and around the lake. The average depth of Lake Vostok is around 345±4 m. We estimated the surface area of Lake Vostok beneath the ice sheet to be about 13300±594 km^2. The lake consists of two sub-basins separated by a ridge at water depths of about 200–300 m. The surface area of the northern sub-basin is estimated to be about half of that of the southern basin. The maximum depths of the northern and southern sub-basins are estimated to be about 450 and 850 m, respectively. Total water volume is estimated to be about 4658±204 km^3. These estimates are compared with previous estimates obtained from seismic data and inversion of aerogravity data. In general, our estimates are closer to those obtained from the inversion of aerogravity data than those from seismic data, indicating the applicability of our method to the estimation of water depths of other subglacial lakes. 展开更多
关键词 three-dimensional featureS Lake VOSTOK HYDRAULIC POTENTIAL SUBGLACIAL water storage
在线阅读 下载PDF
A three-dimensional feature extraction-based method for coal cleat characterization using X-ray μCT and its application to a Bowen Basin coal specimen
2
作者 Yulai Zhang Matthew Tsang +4 位作者 Mark Knackstedt Michael Turner Shane Latham Euan Macaulay Rhys Pitchers 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期153-166,共14页
Cleats are the dominant micro-fracture network controlling the macro-mechanical behavior of coal.Improved understanding of the spatial characteristics of cleat networks is therefore important to the coal mining indust... Cleats are the dominant micro-fracture network controlling the macro-mechanical behavior of coal.Improved understanding of the spatial characteristics of cleat networks is therefore important to the coal mining industry.Discrete fracture networks(DFNs)are increasingly used in engineering analyses to spatially model fractures at various scales.The reliability of coal DFNs largely depends on the confidence in the input cleat statistics.Estimates of these parameters can be made from image-based three-dimensional(3D)characterization of coal cleats using X-ray micro-computed tomography(m CT).One key step in this process,after cleat extraction,is the separation of individual cleats,without which the cleats are a connected network and statistics for different cleat sets cannot be measured.In this paper,a feature extraction-based image processing method is introduced to identify and separate distinct cleat groups from 3D X-ray m CT images.Kernels(filters)representing explicit cleat features of coal are built and cleat separation is successfully achieved by convolutional operations on 3D coal images.The new method is applied to a coal specimen with 80 mm in diameter and 100 mm in length acquired from an Anglo American Steelmaking Coal mine in the Bowen Basin,Queensland,Australia.It is demonstrated that the new method produces reliable cleat separation capable of defining individual cleats and preserving 3D topology after separation.Bedding-parallel fractures are also identified and separated,which has his-torically been challenging to delineate and rarely reported.A variety of cleat/fracture statistics is measured which not only can quantitatively characterize the cleat/fracture system but also can be used for DFN modeling.Finally,variability and heterogeneity with respect to the core axis are investigated.Significant heterogeneity is observed and suggests that the representative elementary volume(REV)of the cleat groups for engineering purposes may be a complex problem requiring careful consideration. 展开更多
关键词 Cleat separation Cleat statistics feature extraction Discrete fracture network(DFN)modeling
在线阅读 下载PDF
Enhancing the data processing speed of a deep-learning-based three-dimensional single molecule localization algorithm (FD-DeepLoc) with a combination of feature compression and pipeline programming
3
作者 Shuhao Guo Jiaxun Lin +1 位作者 Yingjun Zhang Zhen-Li Huang 《Journal of Innovative Optical Health Sciences》 2025年第2期150-160,共11页
Three-dimensional(3D)single molecule localization microscopy(SMLM)plays an important role in biomedical applications,but its data processing is very complicated.Deep learning is a potential tool to solve this problem.... Three-dimensional(3D)single molecule localization microscopy(SMLM)plays an important role in biomedical applications,but its data processing is very complicated.Deep learning is a potential tool to solve this problem.As the state of art 3D super-resolution localization algorithm based on deep learning,FD-DeepLoc algorithm reported recently still has a gap with the expected goal of online image processing,even though it has greatly improved the data processing throughput.In this paper,a new algorithm Lite-FD-DeepLoc is developed on the basis of FD-DeepLoc algorithm to meet the online image processing requirements of 3D SMLM.This new algorithm uses the feature compression method to reduce the parameters of the model,and combines it with pipeline programming to accelerate the inference process of the deep learning model.The simulated data processing results show that the image processing speed of Lite-FD-DeepLoc is about twice as fast as that of FD-DeepLoc with a slight decrease in localization accuracy,which can realize real-time processing of 256×256 pixels size images.The results of biological experimental data processing imply that Lite-FD-DeepLoc can successfully analyze the data based on astigmatism and saddle point engineering,and the global resolution of the reconstructed image is equivalent to or even better than FD-DeepLoc algorithm. 展开更多
关键词 Real-time data processing feature compression pipeline programming
原文传递
Clinical features and prognosis of orbital inflammatory myofibroblastic tumor
4
作者 Jing Li Liang-Yuan Xu +9 位作者 Nan Wang Rui Liu Shan-Feng Zhao Ting-Ting Ren Qi-Han Guo Bin Zhang Hong Zhang Hai-Han Yan Yu-Fei Zhang Jian-Min Ma 《International Journal of Ophthalmology(English edition)》 2026年第1期105-114,共10页
AIM:To investigate the clinical features and prognosis of patients with orbital inflammatory myofibroblastic tumor(IMT).METHODS:This retrospective study collected clinical data from 22 patients diagnosed with orbital ... AIM:To investigate the clinical features and prognosis of patients with orbital inflammatory myofibroblastic tumor(IMT).METHODS:This retrospective study collected clinical data from 22 patients diagnosed with orbital IMT based on histopathological examination.The patients were followed up to assess their prognosis.Clinical data from patients,including age,gender,course of disease,past medical history,primary symptoms,ophthalmologic examination findings,general condition,as well as imaging,laboratory,histopathological,and immunohistochemical results from digital records were collected.Orbital magnetic resonance imaging(MRI)and(or)computed tomography(CT)scans were performed to assess bone destruction of the mass,invasion of surrounding tissues,and any inflammatory changes in periorbital areas.RESULTS:The mean age of patients with orbital IMT was 28.24±3.30y,with a male-to-female ratio of 1.2:1.Main clinical manifestations were proptosis,blurred vision,palpable mass,and pain.Bone destruction and surrounding tissue invasion occurred in 72.73%and 54.55%of cases,respectively.Inflammatory changes in the periorbital site were observed in 77.27%of the patients.Hematoxylin and eosin staining showed proliferation of fibroblasts and myofibroblasts,accompanied by infiltration of lymphocytes and plasma cells.Immunohistochemical staining revealed that smooth muscle actin(SMA)and vimentin were positive in 100%of cases,while anaplastic lymphoma kinase(ALK)showed positivity in 47.37%.The recurrence rate of orbital IMT was 27.27%,and sarcomatous degeneration could occur.There were no significant correlations between recurrence and factors such as age,gender,laterality,duration of the disease,periorbital tissue invasion,bone destruction,periorbital inflammation,tumor size,fever,leukocytosis,or treatment(P>0.05).However,lymphadenopathy and a Ki-67 index of 10%or higher may be risk factors for recurrence(P=0.046;P=0.023).CONCLUSION:Orbital IMT is a locally invasive disease that may recur or lead to sarcomatoid degeneration,primarily affecting young and middle-aged patients.The presence of lymphadenopathy and a Ki-67 index of 10%or higher may signify a poor prognosis. 展开更多
关键词 inflammatory myofibroblastic tumor orbital disease clinical features PROGNOSIS
原文传递
Clinicopathologic features of SMARCB1/INI1-deficient pancreatic undifferentiated rhabdoid carcinoma:A case report and review of literature
5
作者 Wan-Qi Yao Xin-Yi Ma Gui-Hua Wang 《World Journal of Gastrointestinal Oncology》 2026年第1期250-262,共13页
BACKGROUND SMARCB1/INI1-deficient pancreatic undifferentiated rhabdoid carcinoma is a highly aggressive tumor,and spontaneous splenic rupture(SSR)as its presenting manifestation is rarely reported among pancreatic mal... BACKGROUND SMARCB1/INI1-deficient pancreatic undifferentiated rhabdoid carcinoma is a highly aggressive tumor,and spontaneous splenic rupture(SSR)as its presenting manifestation is rarely reported among pancreatic malignancies.CASE SUMMARY We herein report a rare case of a 59-year-old female who presented with acute left upper quadrant abdominal pain without any history of trauma.Abdominal imaging demonstrated a heterogeneous splenic lesion with hemoperitoneum,raising clinical suspicion of SSR.Emergency laparotomy revealed a pancreatic tumor invading the spleen and left kidney,with associated splenic rupture and dense adhesions,necessitating en bloc resection of the distal pancreas,spleen,and left kidney.Histopathology revealed a biphasic malignancy composed of moderately differentiated pancreatic ductal adenocarcinoma and an undifferentiated carcinoma with rhabdoid morphology and loss of SMARCB1 expression.Immunohistochemical analysis confirmed complete loss of SMARCB1/INI1 in the undifferentiated component,along with a high Ki-67 index(approximately 80%)and CD10 positivity.The ductal adenocarcinoma component retained SMARCB1/INI1 expression and was positive for CK7 and CK-pan.Transitional zones between the two tumor components suggested progressive dedifferentiation and underlying genomic instability.The patient received adjuvant chemotherapy with gemcitabine and nab-paclitaxel and maintained a satisfactory quality of life at the 6-month follow-up.CONCLUSION This study reports a rare case of SMARCB1/INI1-deficient undifferentiated rhabdoid carcinoma of the pancreas combined with ductal adenocarcinoma,presenting as SSR-an exceptionally uncommon initial manifestation of pancreatic malignancy. 展开更多
关键词 d features Switch/sucrose non-fermentable Chemotherapy Case report
暂未订购
THREE-DIMENSIONAL EVOLUTIION OF VORTICES AND EARLY FEATURES OF COHERENT STRUCTURE IN THE TURBULENT WAKE BEHIND A 2-D CIRCULAR CYLINDER
6
作者 凌国灿 武作兵 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1993年第3期223-232,共10页
3-D evolution of Karman vortex filaments and vortex filaments in braid regions in the turbulent wake of a 2-D circulax cylinder is investigated numeri- cally based on inviscid vortex dynamics by analyzing the response... 3-D evolution of Karman vortex filaments and vortex filaments in braid regions in the turbulent wake of a 2-D circulax cylinder is investigated numeri- cally based on inviscid vortex dynamics by analyzing the response of the initially 2-D spanwise vortex filaments to periodic spanwise disturbance of varying magnitude, wavelength and initial phase angles. Our results reveal a kind of 3-D vortex system in the wake which consists of large scale horseshoe-shaped vortices and small scale λ-shaped vortex filaments as well as vortex loops. The mechanism and the dynamic process about the generation of streamwise vortical structure and the 3-D coherent structure are reported. 展开更多
关键词 three-dimensional evolution coherent structure wake flow
在线阅读 下载PDF
Changes in three-dimensional power Doppler ultrasound features before and after neoadjuvant chemotherapy for cervical cancer and their relationship with malignant molecule expression
7
作者 Ju-Hua Pan Ye-Qing Ren Qing-Lian Ma 《Journal of Hainan Medical University》 2019年第11期69-74,共6页
Objective:To study the changes in three-dimensional power Doppler ultrasound features before and after neoadjuvant chemotherapy for cervical cancer and their relationship with malignant molecule expression.Methods: Th... Objective:To study the changes in three-dimensional power Doppler ultrasound features before and after neoadjuvant chemotherapy for cervical cancer and their relationship with malignant molecule expression.Methods: The patients who were diagnosed with cervical cancer and received neoadjuvant chemotherapy in Wuhan Red Cross Hospital between March 2015 and October 2017 were selected as the cervical cancer group, and the patients who received cervical biopsy and were diagnosed with stage I cervical intraepithelial neoplasia by pathological findings during the same period were selected as the control group. Before biopsy, three-dimensional power Doppler ultrasonography was performed to measure VI, FI and VFI;the tissues of cervical cancer group before and after chemotherapy as well as the biopsy tissues of control group were collected to measure the expression of proliferation genes, invasion genes and angiogenesis genes.Results: The VI, FI and VFI levels as well as the Piwil2 gene (Piwil2), CyclinD1, N-Myc downstream regulated gene 3 (NDRG3), CXC chemokine ligand 5 (CXCL5), cathepsin-L (CAT-L), EGF-containing fibulin-like extracellular matrix protein 1 (EFEMP1), angiotensin (Ang)1, Ang2 and angiopoietin-like protein 4 (ANGPTL4) mRNA expression levels in the tissues of cervical cancer group before and after chemotherapy were all significantly higher than those of control group whereas the thrombospondin 2 (THBS2), Smac gene (Smac), large tumor suppressor kinase 1 (LATS1), reversion-inducing-cysteine-rich protein with kazal motifs (RECK) and plas minogen activator inhibitor 1 (PAI-1) mRNA expression levels in the tissues were all significantly lower than those of control group, and the VI, FI and VFI levels as well as the Piwil2, CyclinD1, NDRG3, CXCL5, CAT-L, EFEMP1, Ang1, Ang2 and ANGPTL4 mRNA expression levels in the tissues of cervical cancer group after chemotherapy were all significantly lower than those before chemotherapy whereas the THBS2, Smac, LATS1, RECK and PAI-1 mRNA expression levels were all significantly higher than those before chemotherapy;the VI, FI and VFI levels in cervical cancer tissues were positively correlated with the Piwil2, CyclinD1, NDRG3, CXCL5, CAT-L, EFEMP1, Ang1, Ang2 and ANGPTL4 mRNA expression levels, and negatively correlated with the THBS2, Smac, LATS1, RECK and PAI-1 mRNA expression levels.Conclusion: The changes in the three-dimensional power Doppler ultrasound parameters before and after neoadjuvant chemotherapy for cervical cancer can reflect the changes in proliferation, invasion and angiogenesis gene expression in the lesions. 展开更多
关键词 CERVICAL cancer three-dimensional power Doppler ultrasound Proliferation INVASION ANGIOGENESIS
暂未订购
Three-dimensional Extension of the Unit-Feature Spatial Classification Method for Cloud Type 被引量:1
8
作者 张成伟 郁凡 +1 位作者 王晨曦 杨建宇 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第3期601-611,共11页
We describe how the Unit-Feature Spatial Classification Method(UFSCM) can be used operationally to classify cloud types in satellite imagery efficiently and conveniently.By using a combination of Interactive Data Lang... We describe how the Unit-Feature Spatial Classification Method(UFSCM) can be used operationally to classify cloud types in satellite imagery efficiently and conveniently.By using a combination of Interactive Data Language(IDL) and Visual C++(VC) code in combination to extend the technique in three dimensions(3-D),this paper provides an efficient method to implement interactive computer visualization of the 3-D discrimination matrix modification,so as to deal with the bi-spectral limitations of traditional two dimensional(2-D) UFSCM.The case study of cloud-type classification based on FY-2C satellite data (0600 UTC 18 and 0000 UTC 10 September 2007) is conducted by comparison with ground station data, and indicates that 3-D UFSCM makes more use of the pattern recognition information in multi-spectral imagery,resulting in more reasonable results and an improvement over the 2-D method. 展开更多
关键词 cloud-type classification unit-feature spatial classification method three dimensions
在线阅读 下载PDF
Effects of feature selection and normalization on network intrusion detection 被引量:3
9
作者 Mubarak Albarka Umar Zhanfang Chen +1 位作者 Khaled Shuaib Yan Liu 《Data Science and Management》 2025年第1期23-39,共17页
The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more e... The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more efficient and reliable intrusion detection systems(IDSs).However,the advent of larger IDS datasets has negatively impacted the performance and computational complexity of AI-based IDSs.Many researchers used data preprocessing techniques such as feature selection and normalization to overcome such issues.While most of these researchers reported the success of these preprocessing techniques on a shallow level,very few studies have been performed on their effects on a wider scale.Furthermore,the performance of an IDS model is subject to not only the utilized preprocessing techniques but also the dataset and the ML/DL algorithm used,which most of the existing studies give little emphasis on.Thus,this study provides an in-depth analysis of feature selection and normalization effects on IDS models built using three IDS datasets:NSL-KDD,UNSW-NB15,and CSE–CIC–IDS2018,and various AI algorithms.A wrapper-based approach,which tends to give superior performance,and min-max normalization methods were used for feature selection and normalization,respectively.Numerous IDS models were implemented using the full and feature-selected copies of the datasets with and without normalization.The models were evaluated using popular evaluation metrics in IDS modeling,intra-and inter-model comparisons were performed between models and with state-of-the-art works.Random forest(RF)models performed better on NSL-KDD and UNSW-NB15 datasets with accuracies of 99.86%and 96.01%,respectively,whereas artificial neural network(ANN)achieved the best accuracy of 95.43%on the CSE–CIC–IDS2018 dataset.The RF models also achieved an excellent performance compared to recent works.The results show that normalization and feature selection positively affect IDS modeling.Furthermore,while feature selection benefits simpler algorithms(such as RF),normalization is more useful for complex algorithms like ANNs and deep neural networks(DNNs),and algorithms such as Naive Bayes are unsuitable for IDS modeling.The study also found that the UNSW-NB15 and CSE–CIC–IDS2018 datasets are more complex and more suitable for building and evaluating modern-day IDS than the NSL-KDD dataset.Our findings suggest that prioritizing robust algorithms like RF,alongside complex models such as ANN and DNN,can significantly enhance IDS performance.These insights provide valuable guidance for managers to develop more effective security measures by focusing on high detection rates and low false alert rates. 展开更多
关键词 CYBERSECURITY Intrusion detection system Machine learning Deep learning feature selection NORMALIZATION
在线阅读 下载PDF
Few-shot anomaly detection with adaptive feature transformation and descriptor construction 被引量:1
10
作者 Zhengnan HU Xiangrui ZENG +4 位作者 Yiqun LI Zhouping YIN Erli MENG Leyan ZHU Xianghao KONG 《Chinese Journal of Aeronautics》 2025年第3期491-504,共14页
Anomaly Detection (AD) has been extensively adopted in industrial settings to facilitate quality control of products. It is critical to industrial production, especially to areas such as aircraft manufacturing, which ... Anomaly Detection (AD) has been extensively adopted in industrial settings to facilitate quality control of products. It is critical to industrial production, especially to areas such as aircraft manufacturing, which require strict part qualification rates. Although being more efficient and practical, few-shot AD has not been well explored. The existing AD methods only extract features in a single frequency while defects exist in multiple frequency domains. Moreover, current methods have not fully leveraged the few-shot support samples to extract input-related normal patterns. To address these issues, we propose an industrial few-shot AD method, Feature Extender for Anomaly Detection (FEAD), which extracts normal patterns in multiple frequency domains from few-shot samples under the guidance of the input sample. Firstly, to achieve better coverage of normal patterns in the input sample, we introduce a Sample-Conditioned Transformation Module (SCTM), which transforms support features under the guidance of the input sample to obtain extra normal patterns. Secondly, to effectively distinguish and localize anomaly patterns in multiple frequency domains, we devise an Adaptive Descriptor Construction Module (ADCM) to build and select pattern descriptors in a series of frequencies adaptively. Finally, an auxiliary task for SCTM is designed to ensure the diversity of transformations and include more normal patterns into support features. Extensive experiments on two widely used industrial AD datasets (MVTec-AD and VisA) demonstrate the effectiveness of the proposed FEAD. 展开更多
关键词 Industrial applications Anomaly detection Learning algorithms feature extraction feature selection
原文传递
Multi-scale feature fusion optical remote sensing target detection method 被引量:1
11
作者 BAI Liang DING Xuewen +1 位作者 LIU Ying CHANG Limei 《Optoelectronics Letters》 2025年第4期226-233,共8页
An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyram... An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved. 展开更多
关键词 multi scale feature fusion optical remote sensing feature map improve target detection ability optical remote sensing imagesfirstlythe target detection feature fusionto enrich semantic information spatial information
原文传递
Global Mapping of Three-Dimensional Urban Structures Reveals Escalating Utilization in the Vertical Dimension and Pronounced Building Space Inequality 被引量:1
12
作者 Xiaoping Liu Xinxin Wu +6 位作者 Xuecao Li Xiaocong Xu Weilin Liao Limin Jiao Zhenzhong Zeng Guangzhao Chen Xia Li 《Engineering》 2025年第4期86-99,共14页
Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significan... Three-dimensional(3D)urban structures play a critical role in informing climate mitigation strategies aimed at the built environment and facilitating sustainable urban development.Regrettably,there exists a significant gap in detailed and consistent data on 3D building space structures with global coverage due to the challenges inherent in the data collection and model calibration processes.In this study,we constructed a global urban structure(GUS-3D)dataset,including building volume,height,and footprint information,at a 500 m spatial resolution using extensive satellite observation products and numerous reference building samples.Our analysis indicated that the total volume of buildings worldwide in2015 exceeded 1×10^(12)m^(3).Over the 1985 to 2015 period,we observed a slight increase in the magnitude of 3D building volume growth(i.e.,it increased from 166.02 km3 during the 1985–2000 period to 175.08km3 during the 2000–2015 period),while the expansion magnitudes of the two-dimensional(2D)building footprint(22.51×10^(3) vs 13.29×10^(3)km^(2))and urban extent(157×10^(3) vs 133.8×10^(3)km^(2))notably decreased.This trend highlights the significant increase in intensive vertical utilization of urban land.Furthermore,we identified significant heterogeneity in building space provision and inequality across cities worldwide.This inequality is particularly pronounced in many populous Asian cities,which has been overlooked in previous studies on economic inequality.The GUS-3D dataset shows great potential to deepen our understanding of the urban environment and creates new horizons for numerous 3D urban studies. 展开更多
关键词 three-dimensional Global mapping Building volume Building height Building space inequality
在线阅读 下载PDF
Three-dimensional line-of-sight-angle-constrained leader-following cooperative interception guidance law with prespecified impact time 被引量:2
13
作者 Hao YOU Xinlong CHANG Jiufen ZHAO 《Chinese Journal of Aeronautics》 2025年第1期491-506,共16页
To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D lea... To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law. 展开更多
关键词 three-dimensional cooperative interception Leader-following missiles Prespecified impact time LOS-angle-constrained Fixed-time stability Global integral sliding mode
原文传递
Correction:A Lightweight Approach for Skin Lesion Detection through Optimal Features Fusion
14
作者 Khadija Manzoor Fiaz Majeed +5 位作者 Ansar Siddique Talha Meraj Hafiz Tayyab Rauf Mohammed A.El-Meligy Mohamed Sharaf Abd Elatty E.Abd Elgawad 《Computers, Materials & Continua》 SCIE EI 2025年第1期1459-1459,共1页
In the article“A Lightweight Approach for Skin Lesion Detection through Optimal Features Fusion”by Khadija Manzoor,Fiaz Majeed,Ansar Siddique,Talha Meraj,Hafiz Tayyab Rauf,Mohammed A.El-Meligy,Mohamed Sharaf,Abd Ela... In the article“A Lightweight Approach for Skin Lesion Detection through Optimal Features Fusion”by Khadija Manzoor,Fiaz Majeed,Ansar Siddique,Talha Meraj,Hafiz Tayyab Rauf,Mohammed A.El-Meligy,Mohamed Sharaf,Abd Elatty E.Abd Elgawad Computers,Materials&Continua,2022,Vol.70,No.1,pp.1617–1630.DOI:10.32604/cmc.2022.018621,URL:https://www.techscience.com/cmc/v70n1/44361,there was an error regarding the affiliation for the author Hafiz Tayyab Rauf.Instead of“Centre for Smart Systems,AI and Cybersecurity,Staffordshire University,Stoke-on-Trent,UK”,the affiliation should be“Independent Researcher,Bradford,BD80HS,UK”. 展开更多
关键词 FUSION SKIN feature
在线阅读 下载PDF
A Two-Stage Feature Extraction Approach for Green Energy Consumers in Retail Electricity Markets Using Clustering and TF–IDF Algorithms 被引量:1
15
作者 Wei Yang Weicong Tan +6 位作者 Zhijian Zeng Ren Li Jie Qin Yuting Xie Yongjun Zhang Runting Cheng Dongliang Xiao 《Energy Engineering》 2025年第5期1697-1713,共17页
The rapid development of electricity retail market has prompted an increasing number of electricity consumers to sign green electricity contracts with retail electricity companies,which poses greater challenges for th... The rapid development of electricity retail market has prompted an increasing number of electricity consumers to sign green electricity contracts with retail electricity companies,which poses greater challenges for the market service for green energy consumers.This study proposed a two-stage feature extraction approach for green energy consumers leveraging clustering and termfrequency-inverse document frequency(TF-IDF)algorithms within a knowledge graph framework to provide an information basis that supports the green development of the retail electricity market.First,the multi-source heterogeneous data of green energy consumers under an actual market environment is systematically introduced and the information is categorized into discrete,interval,and relational features.A clustering algorithm was employed to extract features of the trading behavior of green energy consumers in the first stage using the parameter data of green retail electricity contracts.Then,TF-IDF algorithm was applied in the second stage to extract features for green energy consumers in different clusters.Finally,the effectiveness of the proposed approach was validated based on the actual operational data in a southern province of China.It is shown that the most significant discrepancy between the retail trading behaviors of green energy consumers is the power share of green retail packages,whose averaged values are 25.64%,50%,39.66%,and 24.89%in four different clusters,respectively.Additionally,power supply bureaus and electricity retail companies affects the behavior of the green energy consumers most significantly. 展开更多
关键词 Green energy consumer feature extraction knowledge graph retail electricity market
在线阅读 下载PDF
A Lightweight Multiscale Feature Fusion Network for Solar Cell Defect Detection
16
作者 Xiaoyun Chen Lanyao Zhang +3 位作者 Xiaoling Chen Yigang Cen Linna Zhang Fugui Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期521-542,共22页
Solar cell defect detection is crucial for quality inspection in photovoltaic power generation modules.In the production process,defect samples occur infrequently and exhibit random shapes and sizes,which makes it cha... Solar cell defect detection is crucial for quality inspection in photovoltaic power generation modules.In the production process,defect samples occur infrequently and exhibit random shapes and sizes,which makes it challenging to collect defective samples.Additionally,the complex surface background of polysilicon cell wafers complicates the accurate identification and localization of defective regions.This paper proposes a novel Lightweight Multiscale Feature Fusion network(LMFF)to address these challenges.The network comprises a feature extraction network,a multi-scale feature fusion module(MFF),and a segmentation network.Specifically,a feature extraction network is proposed to obtain multi-scale feature outputs,and a multi-scale feature fusion module(MFF)is used to fuse multi-scale feature information effectively.In order to capture finer-grained multi-scale information from the fusion features,we propose a multi-scale attention module(MSA)in the segmentation network to enhance the network’s ability for small target detection.Moreover,depthwise separable convolutions are introduced to construct depthwise separable residual blocks(DSR)to reduce the model’s parameter number.Finally,to validate the proposed method’s defect segmentation and localization performance,we constructed three solar cell defect detection datasets:SolarCells,SolarCells-S,and PVEL-S.SolarCells and SolarCells-S are monocrystalline silicon datasets,and PVEL-S is a polycrystalline silicon dataset.Experimental results show that the IOU of our method on these three datasets can reach 68.5%,51.0%,and 92.7%,respectively,and the F1-Score can reach 81.3%,67.5%,and 96.2%,respectively,which surpasses other commonly usedmethods and verifies the effectiveness of our LMFF network. 展开更多
关键词 Defect segmentation multi-scale feature fusion multi-scale attention depthwise separable residual block
在线阅读 下载PDF
Retrospective analysis of pathological types and imaging features in pancreatic cancer: A comprehensive study
17
作者 Yang-Gang Luo Mei Wu Hong-Guang Chen 《World Journal of Gastrointestinal Oncology》 SCIE 2025年第1期121-129,共9页
BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features ... BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features is crucial for early detection and appropriate treatment planning.AIM To retrospectively analyze the relationship between different pathological types of pancreatic cancer and their corresponding imaging features.METHODS We retrospectively analyzed the data of 500 patients diagnosed with pancreatic cancer between January 2010 and December 2020 at our institution.Pathological types were determined by histopathological examination of the surgical spe-cimens or biopsy samples.The imaging features were assessed using computed tomography,magnetic resonance imaging,and endoscopic ultrasound.Statistical analyses were performed to identify significant associations between pathological types and specific imaging characteristics.RESULTS There were 320(64%)cases of pancreatic ductal adenocarcinoma,75(15%)of intraductal papillary mucinous neoplasms,50(10%)of neuroendocrine tumors,and 55(11%)of other rare types.Distinct imaging features were identified in each pathological type.Pancreatic ductal adenocarcinoma typically presents as a hypodense mass with poorly defined borders on computed tomography,whereas intraductal papillary mucinous neoplasms present as characteristic cystic lesions with mural nodules.Neuroendocrine tumors often appear as hypervascular lesions in contrast-enhanced imaging.Statistical analysis revealed significant correlations between specific imaging features and pathological types(P<0.001).CONCLUSION This study demonstrated a strong association between the pathological types of pancreatic cancer and imaging features.These findings can enhance the accuracy of noninvasive diagnosis and guide personalized treatment approaches. 展开更多
关键词 Pancreatic cancer Pathological types Imaging features Retrospective analysis Diagnostic accuracy
暂未订购
New Features and New Challenges of U.S.-Europe Relations Under Trump 2.0 被引量:1
18
作者 Zhao Huaipu 《Contemporary World》 2025年第3期47-52,共6页
During Donald Trump’s first term,the“Trump Shock”brought world politics into an era of uncertainties and pulled the transatlantic alliance down to its lowest point in history.The Trump 2.0 tsunami brewed by the 202... During Donald Trump’s first term,the“Trump Shock”brought world politics into an era of uncertainties and pulled the transatlantic alliance down to its lowest point in history.The Trump 2.0 tsunami brewed by the 2024 presidential election of the United States has plunged the U.S.-Europe relations into more gloomy waters,ushering in a more complex and turbulent period of adjustment. 展开更多
关键词 new features turbulent period Trump U S Europe relations presidential election new challenges UNCERTAINTIES transatlantic alliance
在线阅读 下载PDF
Three-dimensional models:from cell culture to Patient-Derived Organoid and its application to future liposarcoma research
19
作者 SAYUMI TAHARA SYDNEY RENTSCH +4 位作者 FERNANDA COSTAS CASAL DE FARIA PATRICIA SARCHET ROMA KARNA FEDERICA CALORE RAPHAEL E.POLLOCK 《Oncology Research》 SCIE 2025年第1期1-13,共13页
Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma ... Liposarcoma is one of the most common soft tissue sarcomas,however,its occurrence rate is still rare compared to other cancers.Due to its rarity,in vitro experiments are an essential approach to elucidate liposarcoma pathobiology.Conventional cell culture-based research(2D cell culture)is still playing a pivotal role,while several shortcomings have been recently under discussion.In vivo,mouse models are usually adopted for pre-clinical analyses with expectations to overcome the issues of 2D cell culture.However,they do not fully recapitulate human dedifferentiated liposarcoma(DDLPS)characteristics.Therefore,three-dimensional(3D)culture systems have been the recent research focus in the cell biology field with the expectation to overcome at the same time the disadvantages of 2D cell culture and in vivo animal models and fill in the gap between them.Given the liposarcoma rarity,we believe that 3D cell culture techniques,including 3D cell cultures/co-cultures,and Patient-Derived tumor Organoids(PDOs),represent a promising approach to facilitate liposarcoma investigation and elucidate its molecular mechanisms and effective therapy development.In this review,we first provide a general overview of 3D cell cultures compared to 2D cell cultures.We then focus on one of the recent 3D cell culture applications,Patient-Derived Organoids(PDOs),summarizing and discussing several PDO methodologies.Finally,we discuss the current and future applications of PDOs to sarcoma,particularly in the field of liposarcoma. 展开更多
关键词 Cell culture LIPOSARCOMA Patient-Derived Organoid(PDO) SPHEROID three-dimensional(3D)cell culture
暂未订购
Feature pyramid attention network for audio-visual scene classification 被引量:1
20
作者 Liguang Zhou Yuhongze Zhou +3 位作者 Xiaonan Qi Junjie Hu Tin Lun Lam Yangsheng Xu 《CAAI Transactions on Intelligence Technology》 2025年第2期359-374,共16页
Audio-visual scene classification(AVSC)poses a formidable challenge owing to the intricate spatial-temporal relationships exhibited by audio-visual signals,coupled with the complex spatial patterns of objects and text... Audio-visual scene classification(AVSC)poses a formidable challenge owing to the intricate spatial-temporal relationships exhibited by audio-visual signals,coupled with the complex spatial patterns of objects and textures found in visual images.The focus of recent studies has predominantly revolved around extracting features from diverse neural network structures,inadvertently neglecting the acquisition of semantically meaningful regions and crucial components within audio-visual data.The authors present a feature pyramid attention network(FPANet)for audio-visual scene understanding,which extracts semantically significant characteristics from audio-visual data.The authors’approach builds multi-scale hierarchical features of sound spectrograms and visual images using a feature pyramid representation and localises the semantically relevant regions with a feature pyramid attention module(FPAM).A dimension alignment(DA)strategy is employed to align feature maps from multiple layers,a pyramid spatial attention(PSA)to spatially locate essential regions,and a pyramid channel attention(PCA)to pinpoint significant temporal frames.Experiments on visual scene classification(VSC),audio scene classification(ASC),and AVSC tasks demonstrate that FPANet achieves performance on par with state-of-the-art(SOTA)approaches,with a 95.9 F1-score on the ADVANCE dataset and a relative improvement of 28.8%.Visualisation results show that FPANet can prioritise semantically meaningful areas in audio-visual signals. 展开更多
关键词 dimension alignment feature pyramid attention network pyramid channel attention pyramid spatial attention semantic relevant regions
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部