The relations of bulk modulus, shear modulus, Young's modulus and the Poisson's ratio with porosity of foam plastics are determined by a three phase spheroidal model commonly used in Composite Mechanics. The r...The relations of bulk modulus, shear modulus, Young's modulus and the Poisson's ratio with porosity of foam plastics are determined by a three phase spheroidal model commonly used in Composite Mechanics. The results are compared with those using differential scheme. It is shown that the material properties derived from the present model normally are larger than those obtained by differential scheme for foam plastics with identical porosity. The differences in shear moduli and Young's moduli obtained by the two methods are small but they are larger for bulk moduli of incompressible matrix and Poisson's ratios. The Young's moduli of high density foam plastics derived by the present model agree better with experimental ones.展开更多
The 3Φinduction motor is a broadly used electric machine in industrial applications,which plays a vital role in industries because of having plenty of beneficial impacts like low cost and easiness but the problems lik...The 3Φinduction motor is a broadly used electric machine in industrial applications,which plays a vital role in industries because of having plenty of beneficial impacts like low cost and easiness but the problems like decrease in motor speed due to load,high consumption of current and high ripple occurrence of ripples have reduced its preferences.The ultimate objective of this study is to control change in motor speed due to load variations.An improved Trans Z Source Inverter(ΓZSI)with a clamping diode is employed to maintain constant input voltage,reduce ripples and voltage overshoot.To operate induction motor at rated speed,different controllers are used.The conventional Proportional-Inte-gral(PI)controller suffers from high settling time and maximum peak overshoot.To overcome these limitations,Fractional Order Proportional Integral Derivative(FOPID)controller optimized by Gray Wolf Optimization(GWO)technique is employed to provide better performance by eliminating maximum peak overshoot pro-blems.The proposed speed controller provides good dynamic response and controls the induction motor more effectively.The complete setup is implemented in MATLAB Simulation to verify the simulation results.The proposed approach provides optimal performance with high torque and speed along with less steady state error.展开更多
Whenever a squirrel cage induction motor is started, notable electromechanical torque and current pulsations occur. The adverse effects of starting torque pulsations and high inrush current in induction motor are elim...Whenever a squirrel cage induction motor is started, notable electromechanical torque and current pulsations occur. The adverse effects of starting torque pulsations and high inrush current in induction motor are eliminated using digital power electronic soft starting schemes that guarantee higher degrees of compliance of the requirements of an ideal soft starter for the induction motor. Soft starters are cheap, simple, reliable and occupy less volume. In this paper, an experimental setup of soft starting technique with extinction angle AC voltage controller and a speed and stator current based closed loop scheme is demonstrated using Artificial Neural Network (ANN) and Fuzzy Logic Control (FLC) by the way of MATLAB/SIMULINK based simulation. The ANN based soft starting scheme produces best results in terms of smooth starting torque and least inrush current. The results thus obtained were satisfactory and promising.展开更多
The main objective of this research work is to develop a simple state estimation calculator in LabView for three phase power system network. LabView based state estimation calculator has been chosen as the main platfo...The main objective of this research work is to develop a simple state estimation calculator in LabView for three phase power system network. LabView based state estimation calculator has been chosen as the main platform because it is a user friendly and easy to apply in power systems. This research work is intended to simultaneously acclimate the power system engineers with the utilization of LabView with electrical power systems. This proposed work will discuss about the configuration and the improvement of the intelligent instructional VI (virtual instrument) modules in power systems for state estimation solutions. In the proposed model state estimation has been carried out and model has been developed such that it can accommodate the latest versions of state estimation algorithm.展开更多
This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in considerati...This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in consideration and the entire simulation is carried in Matlab/Simulink environment. The rated power for the generator is fixed at 1.5 KW and number of pole at 20. It is observed under low wind speed of6 m/s, a turbine having approximately1 mof radius and2.6 mof height develops 150 Nm mechanical torque that can generate power up to 1.5 KW. The generator is designed using modeling tool and is fabricated. The fabricated generator is tested in the laboratory with the simulation result for the error analysis. The range of error is about 5%-27% for the same output power value. The limitations and possible causes for error are presented and discussed.展开更多
The new three phase VFVA sine wave generator is presented in this paper. A new sampling holding three phase VFVA sine wave generator’s principle, circuit and experimentation waveform are introduced. The principle of ...The new three phase VFVA sine wave generator is presented in this paper. A new sampling holding three phase VFVA sine wave generator’s principle, circuit and experimentation waveform are introduced. The principle of this sampling holding circuit is simple and the realization of har’dware circuit is easy. Here we describe the three phase reference sine wave which is produced by this generator’s circuit and is required by PWM inverter is described in this paper, and also introduced the speed control and harmonir analysis of PWM inverter variable frequency.展开更多
One of the very important functions of three-phase inverter is to maintain the symmetric three-phase output voltage when the three-phase loads are unbalanced. Although the traditional symmetrical component decomposing...One of the very important functions of three-phase inverter is to maintain the symmetric three-phase output voltage when the three-phase loads are unbalanced. Although the traditional symmetrical component decomposing and superimpose theory can keep the voltage balance through compensating the positive-, negative- and zero-sequence components of the output voltage of inverter, however, this method is time-consuming and not suitable for control. Aiming at high power medium frequency inverter source, a P+Resonant (Proportion and Resonant) controller which ensured a balanced three phase output voltage under unbalanced load is proposed in this paper. The regulator was proved to be applicable to both three-phase three-wire system and three-phase four-wire system and developed two methods of realization. The simulation results verified that this method can suppressed effectively the output voltage distorted caused by the unbalanced load and attained a high quality voltage waveforms.展开更多
Recursive state estimation methods have aroused substantial attraction among many researchers and in particular, the drives research fraternity has shown increased interest in recent years. State estimators that surro...Recursive state estimation methods have aroused substantial attraction among many researchers and in particular, the drives research fraternity has shown increased interest in recent years. State estimators that surrogate direct measurements play an integral part in the operation of modern a.c. drives. Their robustness and accuracy are very much decisive for the performance of the drive. In this paper, a comparative analysis of the three nonlinear filtering schemes to estimate the states of a three phase induction motor on the simulated model is presented. The efficacy of Ensemble Kalman Filter (EnKF) against the traditional Jacobian based Filter or Extended Kalman Filter (EKF) and almost forbidden, hitherto least-attempted Unscented Kalman Filter (UKF) is very much exemplified. Theoretical aspects and comparative simulation results are investigated comprehensively with respect to three different scenarios viz., step changes in load torque, speed reversal, and low speed operation. Also, “Monte Carlo Simulation” runs have been exploited very extensively to show the superior practical usefulness of EnKF, by which the minimum mean square error (MMSE), which is often used as the performance index, ostensibly gets mitigated very radically by the proposed approach. The results throw light on alleviating the intrinsic intricacies encountered in EKF in parlance with the observer theory.展开更多
The primary objective of this research problem is to analyze the Rayleigh wave propagation in homogeneous isotropic half space with mass diffusion in Three Phase Lag(TPL)thermoelasticity at two temperature.The governi...The primary objective of this research problem is to analyze the Rayleigh wave propagation in homogeneous isotropic half space with mass diffusion in Three Phase Lag(TPL)thermoelasticity at two temperature.The governing equations of thermodiffusive elastic half space have been solved using the normal mode analysis in order to obtain the Rayleigh wave frequency equation at relevant boundary conditions.The variation of various parameters like non-dimensional speed,attenuation coefficient,penetration depth and specific loss corresponding to thermodiffusion parameter,relaxation time,wave number and frequency has been obtained.The effect of these parameters on Rayleigh wave propagation in thermoelastic half space are graphically demonstrated and variations of all these parameters have been compared within Lord-Shulman(L-S),Green-Nagdhi(GN-III)and Three Phase Lag(TPL)theory of thermoelasticity.展开更多
Instabilities in grid-connected inverters can arise from a number of sources, including mismatched parameters, grid impedance, faults, and feedback delays. Park’s transformation provides accurate control over reactiv...Instabilities in grid-connected inverters can arise from a number of sources, including mismatched parameters, grid impedance, faults, and feedback delays. Park’s transformation provides accurate control over reactive and active (real) power. This enhances the overall efficiency of the system by enabling operators to control reactive power compensation and optimize energy flow. In dynamic settings, this guarantees greater system stability and faster response times. The current paper aims to improve the grid system by utilizing the dq0 controller. The current work focuses on the analysis based on simulations and theory, where the state space equation serves as the basis for dq-axis current decoupling. A MATLAB platform was used to simulate the complete system. TDH values of 2.45%, or less than 5%, in the given results are acceptable. The suggested controller was hence appropriate for grid system applications.展开更多
Taking three-phase electrode adjusting system of submerged arc furnace as study object which has nonlinear, time-variant, multivariable and strong coupling features, a neural adaptive PSD(proportion, sum and different...Taking three-phase electrode adjusting system of submerged arc furnace as study object which has nonlinear, time-variant, multivariable and strong coupling features, a neural adaptive PSD(proportion, sum and differential) dispersive decoupling controller was developed by combining neural adaptive PSD algorithm with dispersive decoupling network. In this work, the production technology process and control difficulties of submerged arc furnace were simply introduced, the necessity of establishing a neural adaptive PSD dispersive decoupling controller was discussed, the design method and the implementation steps of the controller are expounded in detail, and the block diagram of the controlled system is presented. By comparison with experimental results of the conventional PID controller and the adaptive PSD controller, the decoupling ability, adaptive ability, self-learning ability and robustness of the neural adaptive PSD dispersive decoupling controller have been testified effectively. The controller is applicable to the three-phase electrode adjusting system of submerged arc furnace, and it will play an important role for achieving the power balance of three-phrase electrodes, saving energy and reducing consumption in the process of smelting.展开更多
On basis of the Burgers model, a new model consisting of modified dashpot and Van Der Poel model was derived from rheological and viscoelastic theory. Subsequently, triaxial repeated load permanent deformation tests o...On basis of the Burgers model, a new model consisting of modified dashpot and Van Der Poel model was derived from rheological and viscoelastic theory. Subsequently, triaxial repeated load permanent deformation tests of AC16 asphalt mixtures were conducted to validate this new developed model. Parameters of new developed model were obtained by a nonlinear regression analysis of test data, and then permanent strains and flow number of each mixture were calculated. The experimental results prove that the new developed model can well describe three phases permanent deformation of asphalt mixture under repeated load and it can be used for pavement mechanical analysis and rutting prediction.展开更多
Vapor liquid solid three phase equilibria of ethanol water 4A molecular sieve system are studied experimentally and theoritically. It is proved that the addition of adsorbent does not chang...Vapor liquid solid three phase equilibria of ethanol water 4A molecular sieve system are studied experimentally and theoritically. It is proved that the addition of adsorbent does not change the equilibrium relation between vapor and bulk liquid phase. A calculation procedure is proposed to predict vapor liquid solid (adsorbent) three phase euquilibria.展开更多
Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressur...Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressure fluctuations obtained from a gas liquid solid three phase self aspirated reversed flow jet loop reactor,respectively.The results indicate that the local fractal dimensions and the local largest Lyapunov exponents in both the jet region and the tubular region inside the draft tube increase with the increase in the jet liquid flowrates and the solid loadings,the local fractal dimension profiles are similar to those of the largest Lyapunov exponent,the local largest lyapunov exponents are positive for all cases,and the flow behavior of such a reactor is chaotic.The local nonlinear characteristic parameters such as the local fractal dimension and the local largest Lyapunov exponent could be applied to further study the flow properties such as the flow regime transitions and flow structures of this three phase jet loop reactor.展开更多
We study the mathematical model of three phase compressible flows through porous media. Under the condition that the rock, water and oil are incompressible, and the compressibility of gas is small, we present a finite...We study the mathematical model of three phase compressible flows through porous media. Under the condition that the rock, water and oil are incompressible, and the compressibility of gas is small, we present a finite element scheme to the initial-boundary value problem of the nonlinear system of equations, then by the convergence of the scheme we prove that the problem admits a weak solution.展开更多
Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loos...Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes,TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC^(3D), which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress.展开更多
Based on the momentum theorem, the fluid governing equation in a lifting pipe is proposed by use of the method combining theoretical analysis with empirical correlations related to the previous research, and the perfo...Based on the momentum theorem, the fluid governing equation in a lifting pipe is proposed by use of the method combining theoretical analysis with empirical correlations related to the previous research, and the performance of an airlift pump can be clearly characterized by the triangular relationship among the volumetric flux of air, water and solid particles, which are obtained respectively by using numerical calculation. The meso-scale river sand is used as tested particles to examine the theoretical model. Results of the model are compared with the data in three-phase flow obtained prior to the development of the present model, by an independent experimental team that used the physical conditions of the present approach. The analytical error can be controlled within 12% for predicting the volumetric flux of water and is smaller than that (±16%) of transporting solid particles in three-phase flow. The experimental results and computations are in good agreement for air-water two-phase flow within a margin of ±8%. Reasonable agreement justifies the use of the present model for engineering design purposes.展开更多
The present work is concerned with the solution of a problem on thermoelastic interactions in a functional graded material due to thermal shock in the context of the fractional order three-phase lag model. The governi...The present work is concerned with the solution of a problem on thermoelastic interactions in a functional graded material due to thermal shock in the context of the fractional order three-phase lag model. The governing equations of fractional order generalized thermoelasticity with three-phase lag model for functionally graded materials(FGM)(i.e., material with spatially varying material properties) are established. The analytical solution in the transform domain is obtained by using the eigenvalue approach.The inversion of Laplace transform is done numerically. The graphical results indicate that the fractional parameter has significant effects on all the physical quantities. Thus, we can consider the theory of fractional order generalized thermoelasticity an improvement on studying elastic materials.展开更多
A three-phase confocal elliptical cylinder model is proposed to analyze micromechanics of one-dimensional hexagonal piezoelectric quasicrystal (PQC) compos- ites. Exact solutions of the phonon, phason, and electric ...A three-phase confocal elliptical cylinder model is proposed to analyze micromechanics of one-dimensional hexagonal piezoelectric quasicrystal (PQC) compos- ites. Exact solutions of the phonon, phason, and electric fields are obtained by using the conformal mapping combined with the Laurent expansion technique when the model is subject to far-field anti-plane mechanical and in-plane electric loadings. The effective elec- troelastic constants of several different composites made up of PQC, quasicrystal (QC), and piezoelectric (PE) materials are predicted by the generalized self-consistent method. Numerical examples are conducted to show the effects of the volume fraction and the cross-sectional shape of inclusion (or fiber) on the effective electroelastic constants of these composites. Compared with other micromechanical methods, the generalized self- consistent and Mori-Tanaka methods can predict the effective electroelastic constants of the composites consistently.展开更多
基金Supported by the National Natural Science Foundation of China and Laboratory for Nonlinear Mechanics of Continuous Media,Institute of Mechanics,Chinese Academy of Sciences.
文摘The relations of bulk modulus, shear modulus, Young's modulus and the Poisson's ratio with porosity of foam plastics are determined by a three phase spheroidal model commonly used in Composite Mechanics. The results are compared with those using differential scheme. It is shown that the material properties derived from the present model normally are larger than those obtained by differential scheme for foam plastics with identical porosity. The differences in shear moduli and Young's moduli obtained by the two methods are small but they are larger for bulk moduli of incompressible matrix and Poisson's ratios. The Young's moduli of high density foam plastics derived by the present model agree better with experimental ones.
文摘The 3Φinduction motor is a broadly used electric machine in industrial applications,which plays a vital role in industries because of having plenty of beneficial impacts like low cost and easiness but the problems like decrease in motor speed due to load,high consumption of current and high ripple occurrence of ripples have reduced its preferences.The ultimate objective of this study is to control change in motor speed due to load variations.An improved Trans Z Source Inverter(ΓZSI)with a clamping diode is employed to maintain constant input voltage,reduce ripples and voltage overshoot.To operate induction motor at rated speed,different controllers are used.The conventional Proportional-Inte-gral(PI)controller suffers from high settling time and maximum peak overshoot.To overcome these limitations,Fractional Order Proportional Integral Derivative(FOPID)controller optimized by Gray Wolf Optimization(GWO)technique is employed to provide better performance by eliminating maximum peak overshoot pro-blems.The proposed speed controller provides good dynamic response and controls the induction motor more effectively.The complete setup is implemented in MATLAB Simulation to verify the simulation results.The proposed approach provides optimal performance with high torque and speed along with less steady state error.
文摘Whenever a squirrel cage induction motor is started, notable electromechanical torque and current pulsations occur. The adverse effects of starting torque pulsations and high inrush current in induction motor are eliminated using digital power electronic soft starting schemes that guarantee higher degrees of compliance of the requirements of an ideal soft starter for the induction motor. Soft starters are cheap, simple, reliable and occupy less volume. In this paper, an experimental setup of soft starting technique with extinction angle AC voltage controller and a speed and stator current based closed loop scheme is demonstrated using Artificial Neural Network (ANN) and Fuzzy Logic Control (FLC) by the way of MATLAB/SIMULINK based simulation. The ANN based soft starting scheme produces best results in terms of smooth starting torque and least inrush current. The results thus obtained were satisfactory and promising.
文摘The main objective of this research work is to develop a simple state estimation calculator in LabView for three phase power system network. LabView based state estimation calculator has been chosen as the main platform because it is a user friendly and easy to apply in power systems. This research work is intended to simultaneously acclimate the power system engineers with the utilization of LabView with electrical power systems. This proposed work will discuss about the configuration and the improvement of the intelligent instructional VI (virtual instrument) modules in power systems for state estimation solutions. In the proposed model state estimation has been carried out and model has been developed such that it can accommodate the latest versions of state estimation algorithm.
文摘This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in consideration and the entire simulation is carried in Matlab/Simulink environment. The rated power for the generator is fixed at 1.5 KW and number of pole at 20. It is observed under low wind speed of6 m/s, a turbine having approximately1 mof radius and2.6 mof height develops 150 Nm mechanical torque that can generate power up to 1.5 KW. The generator is designed using modeling tool and is fabricated. The fabricated generator is tested in the laboratory with the simulation result for the error analysis. The range of error is about 5%-27% for the same output power value. The limitations and possible causes for error are presented and discussed.
文摘The new three phase VFVA sine wave generator is presented in this paper. A new sampling holding three phase VFVA sine wave generator’s principle, circuit and experimentation waveform are introduced. The principle of this sampling holding circuit is simple and the realization of har’dware circuit is easy. Here we describe the three phase reference sine wave which is produced by this generator’s circuit and is required by PWM inverter is described in this paper, and also introduced the speed control and harmonir analysis of PWM inverter variable frequency.
文摘One of the very important functions of three-phase inverter is to maintain the symmetric three-phase output voltage when the three-phase loads are unbalanced. Although the traditional symmetrical component decomposing and superimpose theory can keep the voltage balance through compensating the positive-, negative- and zero-sequence components of the output voltage of inverter, however, this method is time-consuming and not suitable for control. Aiming at high power medium frequency inverter source, a P+Resonant (Proportion and Resonant) controller which ensured a balanced three phase output voltage under unbalanced load is proposed in this paper. The regulator was proved to be applicable to both three-phase three-wire system and three-phase four-wire system and developed two methods of realization. The simulation results verified that this method can suppressed effectively the output voltage distorted caused by the unbalanced load and attained a high quality voltage waveforms.
文摘Recursive state estimation methods have aroused substantial attraction among many researchers and in particular, the drives research fraternity has shown increased interest in recent years. State estimators that surrogate direct measurements play an integral part in the operation of modern a.c. drives. Their robustness and accuracy are very much decisive for the performance of the drive. In this paper, a comparative analysis of the three nonlinear filtering schemes to estimate the states of a three phase induction motor on the simulated model is presented. The efficacy of Ensemble Kalman Filter (EnKF) against the traditional Jacobian based Filter or Extended Kalman Filter (EKF) and almost forbidden, hitherto least-attempted Unscented Kalman Filter (UKF) is very much exemplified. Theoretical aspects and comparative simulation results are investigated comprehensively with respect to three different scenarios viz., step changes in load torque, speed reversal, and low speed operation. Also, “Monte Carlo Simulation” runs have been exploited very extensively to show the superior practical usefulness of EnKF, by which the minimum mean square error (MMSE), which is often used as the performance index, ostensibly gets mitigated very radically by the proposed approach. The results throw light on alleviating the intrinsic intricacies encountered in EKF in parlance with the observer theory.
文摘The primary objective of this research problem is to analyze the Rayleigh wave propagation in homogeneous isotropic half space with mass diffusion in Three Phase Lag(TPL)thermoelasticity at two temperature.The governing equations of thermodiffusive elastic half space have been solved using the normal mode analysis in order to obtain the Rayleigh wave frequency equation at relevant boundary conditions.The variation of various parameters like non-dimensional speed,attenuation coefficient,penetration depth and specific loss corresponding to thermodiffusion parameter,relaxation time,wave number and frequency has been obtained.The effect of these parameters on Rayleigh wave propagation in thermoelastic half space are graphically demonstrated and variations of all these parameters have been compared within Lord-Shulman(L-S),Green-Nagdhi(GN-III)and Three Phase Lag(TPL)theory of thermoelasticity.
文摘Instabilities in grid-connected inverters can arise from a number of sources, including mismatched parameters, grid impedance, faults, and feedback delays. Park’s transformation provides accurate control over reactive and active (real) power. This enhances the overall efficiency of the system by enabling operators to control reactive power compensation and optimize energy flow. In dynamic settings, this guarantees greater system stability and faster response times. The current paper aims to improve the grid system by utilizing the dq0 controller. The current work focuses on the analysis based on simulations and theory, where the state space equation serves as the basis for dq-axis current decoupling. A MATLAB platform was used to simulate the complete system. TDH values of 2.45%, or less than 5%, in the given results are acceptable. The suggested controller was hence appropriate for grid system applications.
基金Project(61174132) supported by the National Natural Science Foundation of ChinaProject(09JJ6098) supported by the Natural Science Foundation of Hunan Province, China
文摘Taking three-phase electrode adjusting system of submerged arc furnace as study object which has nonlinear, time-variant, multivariable and strong coupling features, a neural adaptive PSD(proportion, sum and differential) dispersive decoupling controller was developed by combining neural adaptive PSD algorithm with dispersive decoupling network. In this work, the production technology process and control difficulties of submerged arc furnace were simply introduced, the necessity of establishing a neural adaptive PSD dispersive decoupling controller was discussed, the design method and the implementation steps of the controller are expounded in detail, and the block diagram of the controlled system is presented. By comparison with experimental results of the conventional PID controller and the adaptive PSD controller, the decoupling ability, adaptive ability, self-learning ability and robustness of the neural adaptive PSD dispersive decoupling controller have been testified effectively. The controller is applicable to the three-phase electrode adjusting system of submerged arc furnace, and it will play an important role for achieving the power balance of three-phrase electrodes, saving energy and reducing consumption in the process of smelting.
基金Funded by the National Natural Science Foundation of China (No.50878054)
文摘On basis of the Burgers model, a new model consisting of modified dashpot and Van Der Poel model was derived from rheological and viscoelastic theory. Subsequently, triaxial repeated load permanent deformation tests of AC16 asphalt mixtures were conducted to validate this new developed model. Parameters of new developed model were obtained by a nonlinear regression analysis of test data, and then permanent strains and flow number of each mixture were calculated. The experimental results prove that the new developed model can well describe three phases permanent deformation of asphalt mixture under repeated load and it can be used for pavement mechanical analysis and rutting prediction.
文摘Vapor liquid solid three phase equilibria of ethanol water 4A molecular sieve system are studied experimentally and theoritically. It is proved that the addition of adsorbent does not change the equilibrium relation between vapor and bulk liquid phase. A calculation procedure is proposed to predict vapor liquid solid (adsorbent) three phase euquilibria.
文摘Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressure fluctuations obtained from a gas liquid solid three phase self aspirated reversed flow jet loop reactor,respectively.The results indicate that the local fractal dimensions and the local largest Lyapunov exponents in both the jet region and the tubular region inside the draft tube increase with the increase in the jet liquid flowrates and the solid loadings,the local fractal dimension profiles are similar to those of the largest Lyapunov exponent,the local largest lyapunov exponents are positive for all cases,and the flow behavior of such a reactor is chaotic.The local nonlinear characteristic parameters such as the local fractal dimension and the local largest Lyapunov exponent could be applied to further study the flow properties such as the flow regime transitions and flow structures of this three phase jet loop reactor.
文摘We study the mathematical model of three phase compressible flows through porous media. Under the condition that the rock, water and oil are incompressible, and the compressibility of gas is small, we present a finite element scheme to the initial-boundary value problem of the nonlinear system of equations, then by the convergence of the scheme we prove that the problem admits a weak solution.
基金supported by the National Natural Science Foundation of China(Grants No.51579170 and 51179118)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51321065)
文摘Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes,TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC^(3D), which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51374101 and 51474158)the National Basic Research Program of China(973 Program,Grant No.2014CB239203)the Scientific Research Project of Education Department of Hunan Province(Grant No.14B047)
文摘Based on the momentum theorem, the fluid governing equation in a lifting pipe is proposed by use of the method combining theoretical analysis with empirical correlations related to the previous research, and the performance of an airlift pump can be clearly characterized by the triangular relationship among the volumetric flux of air, water and solid particles, which are obtained respectively by using numerical calculation. The meso-scale river sand is used as tested particles to examine the theoretical model. Results of the model are compared with the data in three-phase flow obtained prior to the development of the present model, by an independent experimental team that used the physical conditions of the present approach. The analytical error can be controlled within 12% for predicting the volumetric flux of water and is smaller than that (±16%) of transporting solid particles in three-phase flow. The experimental results and computations are in good agreement for air-water two-phase flow within a margin of ±8%. Reasonable agreement justifies the use of the present model for engineering design purposes.
文摘The present work is concerned with the solution of a problem on thermoelastic interactions in a functional graded material due to thermal shock in the context of the fractional order three-phase lag model. The governing equations of fractional order generalized thermoelasticity with three-phase lag model for functionally graded materials(FGM)(i.e., material with spatially varying material properties) are established. The analytical solution in the transform domain is obtained by using the eigenvalue approach.The inversion of Laplace transform is done numerically. The graphical results indicate that the fractional parameter has significant effects on all the physical quantities. Thus, we can consider the theory of fractional order generalized thermoelasticity an improvement on studying elastic materials.
基金Projected supported by the National Natural Science Foundation of China(Nos.11502123 and11262012)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(No.2015JQ01)
文摘A three-phase confocal elliptical cylinder model is proposed to analyze micromechanics of one-dimensional hexagonal piezoelectric quasicrystal (PQC) compos- ites. Exact solutions of the phonon, phason, and electric fields are obtained by using the conformal mapping combined with the Laurent expansion technique when the model is subject to far-field anti-plane mechanical and in-plane electric loadings. The effective elec- troelastic constants of several different composites made up of PQC, quasicrystal (QC), and piezoelectric (PE) materials are predicted by the generalized self-consistent method. Numerical examples are conducted to show the effects of the volume fraction and the cross-sectional shape of inclusion (or fiber) on the effective electroelastic constants of these composites. Compared with other micromechanical methods, the generalized self- consistent and Mori-Tanaka methods can predict the effective electroelastic constants of the composites consistently.