期刊文献+
共找到4,896篇文章
< 1 2 245 >
每页显示 20 50 100
Enhanced electrode-level diagnostics for lithium-ion battery degradation using physics-informed neural networks 被引量:1
1
作者 Rui Xiong Yinghao He +2 位作者 Yue Sun Yanbo Jia Weixiang Shen 《Journal of Energy Chemistry》 2025年第5期618-627,共10页
For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models... For the diagnostics and health management of lithium-ion batteries,numerous models have been developed to understand their degradation characteristics.These models typically fall into two categories:data-driven models and physical models,each offering unique advantages but also facing limitations.Physics-informed neural networks(PINNs)provide a robust framework to integrate data-driven models with physical principles,ensuring consistency with underlying physics while enabling generalization across diverse operational conditions.This study introduces a PINN-based approach to reconstruct open circuit voltage(OCV)curves and estimate key ageing parameters at both the cell and electrode levels.These parameters include available capacity,electrode capacities,and lithium inventory capacity.The proposed method integrates OCV reconstruction models as functional components into convolutional neural networks(CNNs)and is validated using a public dataset.The results reveal that the estimated ageing parameters closely align with those obtained through offline OCV tests,with errors in reconstructed OCV curves remaining within 15 mV.This demonstrates the ability of the method to deliver fast and accurate degradation diagnostics at the electrode level,advancing the potential for precise and efficient battery health management. 展开更多
关键词 Lithium-ion batteries Electrode level Ageing diagnosis Physics-informed neural network Convolutional neural networks
在线阅读 下载PDF
Aspect-Level Sentiment Analysis of Bi-Graph Convolutional Networks Based on Enhanced Syntactic Structural Information
2
作者 Junpeng Hu Yegang Li 《Journal of Computer and Communications》 2025年第1期72-89,共18页
Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dep... Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dependent syntactic trees, which improves the classification performance of the models to some extent. However, the technical limitations of dependent syntactic trees can introduce considerable noise into the model. Meanwhile, it is difficult for a single graph convolutional network to aggregate both semantic and syntactic structural information of nodes, which affects the final sentence classification. To cope with the above problems, this paper proposes a bi-channel graph convolutional network model. The model introduces a phrase structure tree and transforms it into a hierarchical phrase matrix. The adjacency matrix of the dependent syntactic tree and the hierarchical phrase matrix are combined as the initial matrix of the graph convolutional network to enhance the syntactic information. The semantic information feature representations of the sentences are obtained by the graph convolutional network with a multi-head attention mechanism and fused to achieve complementary learning of dual-channel features. Experimental results show that the model performs well and improves the accuracy of sentiment classification on three public benchmark datasets, namely Rest14, Lap14 and Twitter. 展开更多
关键词 Aspect-level Sentiment Analysis Sentiment Knowledge Multi-Head Attention Mechanism Graph Convolutional networks
在线阅读 下载PDF
Parameter Method Data Processing for CPⅢ Precise Trigonometric Leveling Network 被引量:1
3
作者 Jianzhang LI Haowen YAN 《Journal of Geodesy and Geoinformation Science》 2020年第3期67-75,共9页
In view of the limitation of the difference method,the adjustment model of CPⅢprecise trigonometric leveling control network based on the parameter method was proposed in the present paper.The experiment results show... In view of the limitation of the difference method,the adjustment model of CPⅢprecise trigonometric leveling control network based on the parameter method was proposed in the present paper.The experiment results show that this model has a simple algorithm and high data utilization,avoids the negative influences caused by the correlation among the data acquired from the difference method and its accuracy is improved compared with the difference method.In addition,the strict weight of CPⅢprecise trigonometric leveling control network was also discussed in this paper.The results demonstrate that the ranging error of trigonometric leveling can be neglected when the vertical angle is less than 3 degrees.The accuracy of CPⅢprecise trigonometric leveling control network has not changed significantly before and after strict weight. 展开更多
关键词 CPⅢleveling control network precise trigonometric leveling parameter method minimum norm quadratic unbiased estimate
在线阅读 下载PDF
Relationship Between Changes of River-lake Networks and Water Levels in Typical Regions of Taihu Lake Basin,China 被引量:6
4
作者 YIN Yixing XU Youpeng CHEN Ying 《Chinese Geographical Science》 SCIE CSCD 2012年第6期673-682,共10页
The typical regions of the Taihu Lake Basin,China,were selected to analyze the variation characteristics of river-lake networks under intensive human activities.The characteristics of the fractal dimension of river ne... The typical regions of the Taihu Lake Basin,China,were selected to analyze the variation characteristics of river-lake networks under intensive human activities.The characteristics of the fractal dimension of river networks and lakes for different periods were investigated and the influences of river system evolution on water level changes were further explored through the comparison of their fractal characters.The results are as follows:1) River network development of the study area is becoming more monotonous and more simple;the number of lakes is reducing significantly,and the water surface ratio has dropped significantly since the 1980s.2) The box dimension of the river networks in all the cities of the study area decreased slowly from the 1960s to the 1980s,while the decrease was significant from the 1980s to the 2000s.The variations of lake correlation dimension are similar to those of the river network box dimensions.This is unfavorable for the storage capacity of the river networks and lakes.3) The Hurst exponents of water levels were all between 0.5 and 1.0 from the 1960s to the 1980s,while decreased in the 2000s,indicating the decline in persistence and increase in the complexity of water level series.The paper draws a conclusion that the relationship between the fractal dimension of river-lake networks and the Hurst exponents of the water level series can reveal the impacts of river system changes on flood disasters to some extent:the disappearance of river networks and lakes will increase the possibility of flood occurrence. 展开更多
关键词 river network LAKE water level changes FRACTAL Taihu Lake Basin
在线阅读 下载PDF
Groundwater Level Prediction Using Artificial Neural Networks: A Case Study in Tra Noc Industrial Zone, Can Tho City, Vietnam 被引量:2
5
作者 Tran Van Ty Le Van Phat Huynh Van Hiep 《Journal of Water Resource and Protection》 2018年第9期870-883,共14页
The objective of this study is to predict groundwater levels (GWLs) under different impact factors using Artificial Neural Network (ANN) for a case study in Tra Noc Industrial Zone, Can Tho City, Vietnam. This can be ... The objective of this study is to predict groundwater levels (GWLs) under different impact factors using Artificial Neural Network (ANN) for a case study in Tra Noc Industrial Zone, Can Tho City, Vietnam. This can be achieved by evaluating the current state of groundwater resources (GWR) exploitation, use and dynamics;setting-up, calibrating and validating the ANN;and then predicting GWLs at different lead times. The results show that GWLs in the study area have been found to reduce rapidly from 2000 to 2015, especially in the Middle-upper Pleistocene (qp2-3) and upper Pleistocene (qp3) due to the over-withdrawals from the enterprises for production purposes. Concerning this problem, an Official Letter of the People’s Committee of Can Tho City was issued and taken into enforcement in 2012 resulting in the reduction of exploitation. The calibrated ANN structures have successfully demonstrated that the GWLs can be predicted considering different impact factors. The predicted results will help to raise awareness and to draw an attention of the local/central government for a clear GWR management policy for the Mekong delta, especially the industrial zones in the urban areas such as Can Tho city. 展开更多
关键词 GROUNDWATER Resources (GWR) GROUNDWATER levels (GWLs) Artificial Neural network (ANN) Prediction TRA NOC Industrial Zone
暂未订购
Artificial Neural Network Modeling of Healthy Risk Level Induced by Aircraft Pollutant Impacts around Soekarno Hatta International Airport 被引量:1
6
作者 Salah Khardi Jermanto Setia Kurniawan +1 位作者 Irwan Katili Setyo Moersidik 《Journal of Environmental Protection》 2013年第8期28-39,共12页
Aircraft pollutant emissions are an important part of sources of pollution that directly or indirectly affect human health and ecosystems. This research suggests an Artificial Neural Network model to determine the hea... Aircraft pollutant emissions are an important part of sources of pollution that directly or indirectly affect human health and ecosystems. This research suggests an Artificial Neural Network model to determine the healthy risk level around Soekarno Hatta International Airport-Cengkareng Indonesia. This ANN modeling is a flexible method, which enables to recognize highly complex non-linear correlations. The network was trained with real measurement data and updated with new measurements, enhancing its quality and making it the ideal method for this research. Measurements of aircraft pollutant emissions are carried out with the aim to be used as input data and to validate the developed model. The obtained results concerned the improved ANN architecture model based on pollutant emissions as input variables. ANN model processes variables—hidden layers—and gives an output variable corresponding to a healthy risk level. This model is characterized by a 4-10-1 scheme. Based on ANN criteria, the best validation performance is achieved at epoch 28 from 34 epochs with the Mean Squared Error (MSE) of 9 × 10-3. The correlation between targets and outputs is confirmed. It validated a close relationship between targets and outputs. The network output errors value approaches zero. Further research is needed with the aim to enlarge the scheme of the ANN model by increasing its input variables. This is one of the major key defining environmental capacities of an airport that should be applied by Indonesian airport authorities. These would institute policies to manage or reduce pollutant emissions considering population and income growth to be socially positive. 展开更多
关键词 AIRCRAFT POLLUTANT Emissions Artificial Neural network HEALTHY Risk level
暂未订购
Groundwater level prediction based on hybrid hierarchy genetic algorithm and RBF neural network 被引量:1
7
作者 屈吉鸿 黄强 +1 位作者 陈南祥 徐建新 《Journal of Coal Science & Engineering(China)》 2007年第2期170-174,共5页
As the traditional non-linear systems generally based on gradient descent optimization method have some shortage in the field of groundwater level prediction, the paper, according to structure, algorithm and shortcomi... As the traditional non-linear systems generally based on gradient descent optimization method have some shortage in the field of groundwater level prediction, the paper, according to structure, algorithm and shortcoming of the conventional radial basis function neural network (RBF NN), presented a new improved genetic algorithm (GA): hybrid hierarchy genetic algorithm (HHGA). In training RBF NN, the algorithm can automatically determine the structure and parameters of RBF based on the given sample data. Compared with the traditional groundwater level prediction model based on back propagation (BP) or RBF NN, the new prediction model based on HHGA and RBF NN can greatly increase the convergence speed and precision. 展开更多
关键词 hybrid hierarchy genetic algorithm radial basis function neural network groundwater level prediction model
在线阅读 下载PDF
Malicious Node Detection Using Confidence Level Evaluation in a Grid-Based Wireless Sensor Network 被引量:1
8
作者 Min-Cheol Shin Yoon-Hwa Choi 《Wireless Sensor Network》 2013年第3期52-60,共9页
In this paper, we present a malicious node detection scheme using confidence-level evaluation in a grid-based wireless sensor network. The sensor field is divided into square grids, where sensor nodes in each grid for... In this paper, we present a malicious node detection scheme using confidence-level evaluation in a grid-based wireless sensor network. The sensor field is divided into square grids, where sensor nodes in each grid form a cluster with a cluster head. Each cluster head maintains the confidence levels of its member nodes based on their readings and reflects them in decision-making. Two thresholds are used to distinguish between false alarms due to malicious nodes and events. In addition, the center of an event region is estimated, if necessary, to enhance the event and malicious node detection accuracy. Experimental results show that the scheme can achieve high malicious node detection accuracy without sacrificing normal sensor nodes. 展开更多
关键词 Sensor networks MALICIOUS NODE Detection Grid-Based WSN FAULTS CONFIDENCE levelS
暂未订购
NARX neural network approach for the monthly prediction of groundwater levels in Sylhet Sadar, Bangladesh 被引量:1
9
作者 Abdullah Al Jami Meher Uddin Himel +2 位作者 Khairul Hasan Shilpy Rani Basak Ayesha Ferdous Mita 《Journal of Groundwater Science and Engineering》 2020年第2期118-126,共9页
Groundwater is important for managing the water supply in agricultural countries like Bangladesh. Therefore, the ability to predict the changes of groundwater level is necessary for jointly planning the uses of ground... Groundwater is important for managing the water supply in agricultural countries like Bangladesh. Therefore, the ability to predict the changes of groundwater level is necessary for jointly planning the uses of groundwater resources. In this study, a new nonlinear autoregressive with exogenous inputs(NARX) network has been applied to simulate monthly groundwater levels in a well of Sylhet Sadar at a local scale. The Levenberg-Marquardt(LM) and Bayesian Regularization(BR) algorithms were used to train the NARX network, and the results were compared to determine the best architecture for predicting monthly groundwater levels over time. The comparison between LM and BR showed that NARX-BR has advantages over predicting monthly levels based on the Mean Squared Error(MSE), coefficient of determination(R^2), and Nash-Sutcliffe coefficient of efficiency(NSE). The results show that BR is the most accurate method for predicting groundwater levels with an error of ± 0.35 m. This method is applied to the management of irrigation water source, which provides important information for the prediction of local groundwater fluctuation at local level during a short period. 展开更多
关键词 NARX neural networks Artificial neural networks Groundwater level Levenberg-Marquardt Algorithm(LMA) Bayesian Regularization Algorithm(BRA)
在线阅读 下载PDF
Towards efficient deep neural network training by FPGA-based batch-level parallelism 被引量:4
10
作者 Cheng Luo Man-Kit Sit +3 位作者 Hongxiang Fan Shuanglong Liu Wayne Luk Ce Guo 《Journal of Semiconductors》 EI CAS CSCD 2020年第2期51-62,共12页
Training deep neural networks(DNNs)requires a significant amount of time and resources to obtain acceptable results,which severely limits its deployment in resource-limited platforms.This paper proposes DarkFPGA,a nov... Training deep neural networks(DNNs)requires a significant amount of time and resources to obtain acceptable results,which severely limits its deployment in resource-limited platforms.This paper proposes DarkFPGA,a novel customizable framework to efficiently accelerate the entire DNN training on a single FPGA platform.First,we explore batch-level parallelism to enable efficient FPGA-based DNN training.Second,we devise a novel hardware architecture optimised by a batch-oriented data pattern and tiling techniques to effectively exploit parallelism.Moreover,an analytical model is developed to determine the optimal design parameters for the DarkFPGA accelerator with respect to a specific network specification and FPGA resource constraints.Our results show that the accelerator is able to perform about 10 times faster than CPU training and about a third of the energy consumption than GPU training using 8-bit integers for training VGG-like networks on the CIFAR dataset for the Maxeler MAX5 platform. 展开更多
关键词 deep neural network TRAINING FPGA batch-level parallelism
在线阅读 下载PDF
Earthquake disaster chain model based on complex networks for urban engineering systems 被引量:3
11
作者 Lu Zheng Yan Deyu Jiang Huanjun 《Journal of Southeast University(English Edition)》 EI CAS 2024年第3期230-237,共8页
According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was d... According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was developed using principles from complex network theory.The vulnerability and risk level of each edge in this model were calculated,and high-risk edges and disaster chains were identified.The analysis reveals that the edge“floods→building collapses”has the highest vulnerability.Implementing measures to mitigate this edge is crucial for delaying the spread of secondary disasters.The highest risk is associated with the edge“building collapses→casualties,”and increased risks are also identified for chains such as“earthquake→building collapses→casualties,”“earthquake→landslides and debris flows→dammed lakes,”and“dammed lakes→floods→building collapses.”Following an earthquake,the prompt implementation of measures is crucial to effectively disrupt these chains and minimize the damage from secondary disasters. 展开更多
关键词 EARTHQUAKE disaster chain seismic resilience secondary disaster complex network VULNERABILITY risk level
在线阅读 下载PDF
Research on confirmation of basic technological parameters of tension levellers based on neural network and genetic algorithm
12
作者 彭晓晖 徐宏喆 +2 位作者 李盼 王社昌 任玉成 《Journal of Pharmaceutical Analysis》 SCIE CAS 2008年第3期160-163,177,共5页
Confirmation of basic technological parameters of tension levellers is the most important factor of leveling strip. Up to now, most factories have used experts’ experience to decide these parameters, without any esta... Confirmation of basic technological parameters of tension levellers is the most important factor of leveling strip. Up to now, most factories have used experts’ experience to decide these parameters, without any established rule to follow. For better quality of strip, a valid method is needed to decide technological parameters precisely and reasonably. In this paper, a method is used based on neural network and genetic algorithm. Neural network has a good ability to extract rules from work process of tension levellers. Then using neural network, which has learned from a lot of working samples, to be the evaluation of fitness, genetic algorithm could easily find the best or better technological parameters. At the end of this paper, examinations are given to show the effect of this method. 展开更多
关键词 tension levellers neural network genetic algorithm strip flatness
在线阅读 下载PDF
CMLP: Exploiting Caches at Multiple Levels of Proxies to Enhance Seamless Mobility Support in Information-Centric Networks
13
作者 Haoqiu Huang Lanlan Rui +2 位作者 Weiwei Zheng Danmei Niu Xuesong Qiu 《China Communications》 SCIE CSCD 2016年第10期86-107,共22页
The recent evolution of the Internet towards "Information-centric" transfer modes has renewed the interest in exploiting proxies to enhance seamless mobility. In this work, we focus on the case of multiple l... The recent evolution of the Internet towards "Information-centric" transfer modes has renewed the interest in exploiting proxies to enhance seamless mobility. In this work, we focus on the case of multiple levels of proxies in ICN architectures, in which content requests from mobile subscribers and the corresponding items are proactively cached to these proxies at different levels. Specifically, we present a multiple-level proactive caching model that selects the appropriate subset of proxies at different levels and supports distributed online decision procedures in terms of the tradeoff between delay and cache cost. We show via extensive simulations the reduction of up to 31.63% in the total cost relative to Full Caching, in which caching in all 1-level neighbor proxies is performed, and up to 84.21% relative to No Caching, in which no caching is used. Moreover, the proposed model outperforms other approaches with a flat cache structure in terms of the total cost. 展开更多
关键词 Information-centric networking mobility multiple levels of proxies PUBLISH-SUBSCRIBE
在线阅读 下载PDF
Water level updating model for flow calculation of river networks
14
作者 Xiao-ling WU Xiao-hua XIANG +1 位作者 Li LI Chuan-hai WANG 《Water Science and Engineering》 EI CAS CSCD 2014年第1期60-69,共10页
Complex water movement and insufficient observation stations are the unfavorable factors in improving the accuracy of flow calculation of river networks. A water level updating model for river networks was set up base... Complex water movement and insufficient observation stations are the unfavorable factors in improving the accuracy of flow calculation of river networks. A water level updating model for river networks was set up based on a three-step method at key nodes, and model correction values were collected from gauge stations. To improve the accuracy of water level and discharge forecasts for the entire network, the discrete coefficients of the Saint-Venant equations for river sections were regarded as the media carrying the correction values from observation locations to other cross-sections of the river network system. To examine the applicability, the updating model was applied to flow calculation of an ideal river network and the Chengtong section of the Yangtze River. Comparison of the forecast results with the observed data demonstrates that this updating model can improve the forecast accuracy in both ideal and real river networks. 展开更多
关键词 plain river network cyclic looped channel network water level updating model hydrodynamic model error correction
在线阅读 下载PDF
Analysis of Lifetime of Large Wireless Sensor Networks Based on Multiple Battery Levels
15
作者 Ruihua ZHANG Zhiping JIA Dongfeng YUAN 《International Journal of Communications, Network and System Sciences》 2008年第2期136-143,共8页
Due to the limited transmission range, data sensed by each sensor has to be forwarded in a multi-hop fashion before being delivered to the sink. The sensors closer to the sink have to forward comparatively more messag... Due to the limited transmission range, data sensed by each sensor has to be forwarded in a multi-hop fashion before being delivered to the sink. The sensors closer to the sink have to forward comparatively more messages than sensors at the periphery of the network,and will deplete their batteries earlier. Besides the loss of the sensing capabilities of the nodes close to the sink, a more serious consequence of the death of the first tier of sensor nodes is the loss of connectivity between the nodes at the periphery of the network and the sink;it makes the wireless networks expire. To alleviate this undesired effect and maximize the useful lifetime of the network, we investigate the energy consumption of different tiers and the effect of multiple battery levels, and demonstrate an attractively simple scheme to redistribute the total energy budget in multiple battery levels by data traffic load. We show by theoretical analysis, as well as simulation, that this substantially improves the network lifetime. 展开更多
关键词 WIRELESS SENSOR networks Energy Efficient network LIFETIME BATTERY level
在线阅读 下载PDF
Swarming Computational Efficiency to Solve a Novel Third-Order Delay Differential Emden-Fowler System
16
作者 Wajaree Weera Zulqurnain Sabir +2 位作者 Muhammad Asif Zahoor Raja Sakda Noinang Thongchai Botmart 《Computers, Materials & Continua》 SCIE EI 2022年第12期4833-4849,共17页
The purpose of this research is to construct an integrated neuro swarming scheme using the procedures of the artificial neural networks(ANNs)with the use of global search particle swarm optimization(PSO)along with the... The purpose of this research is to construct an integrated neuro swarming scheme using the procedures of the artificial neural networks(ANNs)with the use of global search particle swarm optimization(PSO)along with the competent local search interior-point programming(IPP)called as ANN-PSOIPP.The proposed computational scheme is implemented for the numerical simulations of the third order nonlinear delay differential Emden-Fowler model(TON-DD-EFM).The TON-DD-EFM is based on two types along with the particulars of shape factor,delayed terms,and singular points.A merit function is performed using the optimization of PSOIPP to find the solutions to the TON-DD-EFM.The effectiveness of the ANN-PSOIPP is certified through the comparison with the exact results for solving four examples of the TON-DD-EFM.The scheme’s efficiency is observed by performing the absolute error in suitable measures found around 10−04 to 10−07.Furthermore,the statistical-based assessments for 100 trials are provided to compute the accuracy,stability,and constancy of the ANNPSOIPP for solving the TON-DD-EFM. 展开更多
关键词 third-order nonlinear emden-fowler system artificial neural network statistical results particle swarm optimization numerical experimentations local search programming
在线阅读 下载PDF
The Sensitivity of Model Results to Specification of Network-Based Level of Service Attributes: An Application of a Mixed Logit Model to Trave Mode Choice
17
作者 Bharat P. Bhatta 《Journal of Transportation Technologies》 2011年第3期34-46,共13页
The need for travel demand models is growing worldwide. Obtaining reasonably accurate level of service (LOS) attributes of different travel modes such as travel time and cost representing the performance of transporta... The need for travel demand models is growing worldwide. Obtaining reasonably accurate level of service (LOS) attributes of different travel modes such as travel time and cost representing the performance of transportation system is not a trivial task, especially in growing cities of developing countries. This study investigates the sensitivity of results of a travel mode choice model to different specifications of network-based LOS attributes using a mixed logit model. The study also looks at the possibilities of correcting some of the inaccuracies in network-based LOS attributes. Further, the study also explores the effects of different specifications of LOS data on implied values of time and aggregation forecasting. The findings indicate that the implied values of time are very sensitive to specification of data and model implying that utmost care must be taken if the purpose of the model is to estimate values of time. Models estimated on all specifications of LOS-data perform well in prediction, likely suggesting that the extra expense on developing a more detailed and accurate network models so as to derive more precise LOS attributes is unnecessary for impact analyses of some policies. 展开更多
关键词 Data SPECIFICATION level of Service Attributes TRAVEL Mode CHOICE network Models Mixed LOGIT ERROR Components LOGIT
暂未订购
AGGREGATE IMAGE BASED TEXTURE IDENTIFICATION USING GRAY LEVEL CO-OCCURRENCE PROBABILITY AND BP NEURAL NETWORK
18
作者 Chen Ken Wang Yicong +2 位作者 Zhao Pan Larry E. Banta Zhao Xuemei 《Journal of Electronics(China)》 2009年第3期428-432,共5页
Classifying the texture of granules in 2D images has aroused manifold research atten-tion for its technical challenges in image processing areas.This letter presents an aggregate texture identification approach by joi... Classifying the texture of granules in 2D images has aroused manifold research atten-tion for its technical challenges in image processing areas.This letter presents an aggregate texture identification approach by jointly using Gray Level Co-occurrence Probability(GLCP) and BP neural network techniques.First, up to 8 GLCP-associated texture feature parameters are defined and computed, and these consequent parameters next serve as the inputs feeding to the BP neural network to calculate the similarity to any of given aggregate texture type.A finite number of aggregate images of 3 kinds, with each containing specific type of mineral particles, are put to the identification test, experimentally proving the feasibility and robustness of the proposed method. 展开更多
关键词 Aggregate image Texture identification Gray level Co-occurrence Probability(GLCP) BP neural network
在线阅读 下载PDF
Anycast Transmission in Routing Modulation Level Spectrum Assignment (RMLSA) Problem on Space Division Multiplexing (SDM) Elastic Optical Networks (EON)
19
作者 Uche Okechukwu Enendu Joseph Ncube Asiya E. Asiya 《Journal of Computer and Communications》 2022年第5期14-44,共31页
With the rise of cloud computing in recent years, a large number of streaming media has yielded an exponential growth in network traffic. With the now present 5G and future 6G, the development of the Internet of Thing... With the rise of cloud computing in recent years, a large number of streaming media has yielded an exponential growth in network traffic. With the now present 5G and future 6G, the development of the Internet of Things (IoT), social networks, video on demand, and mobile multimedia platforms, the backbone network is bound to bear more traffic. The transmission capacity of Single Core Fiber (SCFs) may be limited in the future and Spatial Division Multiplexing (SDM) leveraging multi-core fibers promises to be one of the solutions for the future. Currently, Elastic optical networks (EONs) with multi-core fibers (MCFs) are a kind of SDM-enabled EONs (SDM-EON) used to enhance the capacity of transmission. The resource assignment in MCFs, however, will be subject to Inter-Core Crosstalk (IC-XT), hence, reducing the effectiveness of transmission. This research highlights the routing, modulation level, and spectrum assignment (RMLSA) problems with anycast traffic mode in SDM-EON. A multipath routing scheme is used to reduce the blocking rate of anycast traffic in SDM-EON with the limit of inter-core crosstalk. Hence, an integer linear programming (ILP) problem is formulated and a heuristic algorithm is proposed. Two core-assignment strategies: First-Fit (FF) and Random-Fit (RF) are used and their performance is evaluated through simulations. The simulation results show that the multipath routing method is better than the single-path routing method in terms of blocking ratio and spectrum utilization ratio. Moreover, the FF is better than the RF in low traffic load in terms of blocking ratio (BR), and the opposite in high traffic load. The FF is better than the RF in terms of a spectrum utilization ratio. In an anycast protection problem, the proposed algorithm has a lower BR than previous works. 展开更多
关键词 ANYCAST Crosstalk Elastic Optical networks Multi-Core Fibers Routing Mod-ulation level and Spectrum Assignment Space Division Multiplexing
在线阅读 下载PDF
Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity
20
作者 韩芳 王直杰 +1 位作者 范宏 龚涛 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第4期25-28,共4页
It is known that both excitatory and inhibitory neuronal networks can achieve robust synchronization only under certain conditions, such as long synaptic delay or low level of heterogeneity. In this work, robust synch... It is known that both excitatory and inhibitory neuronal networks can achieve robust synchronization only under certain conditions, such as long synaptic delay or low level of heterogeneity. In this work, robust synchronization can be found in an excitatory/inhibitory (E/I) neuronal network with medium synaptie delay and high level of heterogeneity, which often occurs in real neuronal networks. Two effects of post-synaptic potentials (PSP) to network synchronization are presented, and the synaptic contribution of excitatory and inhibitory neurons to robust synchronization in this E/I network is investigated. It is found that both excitatory and inhibitory neurons may contribute to robust synchronization in E/I networks, especially the excitatory PSP has a more positive effect on synchronization in E/I networks than that in excitatory networks. This may explain the strong robustness of synchronization in Eli neuronal networks. 展开更多
关键词 PSP Robust Synchronization in an E/I network with Medium Synaptic Delay and High level of Heterogeneity
暂未订购
上一页 1 2 245 下一页 到第
使用帮助 返回顶部