为了解决在工业物联网(industrial Internet of things,IIoT)环境下,现有的调度算法在调度工作流中对数据安全、响应时间有一定要求的任务所带来的完工时间上升、成本增加的问题,提出一种基于雾环境负载率而变化的任务调度策略,并使用...为了解决在工业物联网(industrial Internet of things,IIoT)环境下,现有的调度算法在调度工作流中对数据安全、响应时间有一定要求的任务所带来的完工时间上升、成本增加的问题,提出一种基于雾环境负载率而变化的任务调度策略,并使用改进的蜣螂优化算法对工作流调度问题进行求解。改进的算法使用HEFT(heterogeneous earliest finish time)算法对蜣螂种群进行初始化,降低了原始算法中随机性带来的影响。同时引入了镜面反射和反向学习思想,提高了算法的搜索性能。实验结果表明,该算法相比于其他一些传统的调度算法在完工时间与成本方面都有一定的性能提升。展开更多
为解决在IIoT(industrial internet of things)环境下,现有的调度算法调度工作流中通信频繁、数据传输量大的任务所带来的完工时间上升、成本增加等影响的问题,提出一种基于聚类的工作流多雾协同调度算法。通过二分K均值算法对工作流中...为解决在IIoT(industrial internet of things)环境下,现有的调度算法调度工作流中通信频繁、数据传输量大的任务所带来的完工时间上升、成本增加等影响的问题,提出一种基于聚类的工作流多雾协同调度算法。通过二分K均值算法对工作流中的任务进行聚类,基于聚类结果,在多个雾服务器之间使用改进的免疫粒子群优化算法进行任务调度。实验结果表明,该算法相比其它一些传统的调度算法在完工时间、成本、负载均衡方面都有一定提升。展开更多
Protecting Supervisory Control and Data Acquisition-Industrial Internet of Things(SCADA-IIoT)systems against intruders has become essential since industrial control systems now oversee critical infrastructure,and cybe...Protecting Supervisory Control and Data Acquisition-Industrial Internet of Things(SCADA-IIoT)systems against intruders has become essential since industrial control systems now oversee critical infrastructure,and cyber attackers more frequently target these systems.Due to their connection of physical assets with digital networks,SCADA-IIoT systems face substantial risks from multiple attack types,including Distributed Denial of Service(DDoS),spoofing,and more advanced intrusion methods.Previous research in this field faces challenges due to insufficient solutions,as current intrusion detection systems lack the necessary accuracy,scalability,and adaptability needed for IIoT environments.This paper introduces CyberFortis,a novel cybersecurity framework aimed at detecting and preventing cyber threats in SCADA-IIoT systems.CyberFortis presents two key innovations:Firstly,Siamese Double Deep Q-Network with Autoencoders(Siamdqn-AE)FusionNet,which enhances intrusion detection by combining deep Q-Networks with autoencoders for improved attack detection and feature extraction;and secondly,the PopHydra Optimiser,an innovative solution to compute reinforcement learning discount factors for better model performance and convergence.This method combines Siamese deep Q-Networks with autoencoders to create a system that can detect different types of attacks more effectively and adapt to new challenges.CyberFortis is better than current top attack detection systems,showing higher scores in important areas like accuracy,precision,recall,and F1-score,based on data from CICIoT 2023,UNSW-NB 15,and WUSTL-IIoT datasets.Results from the proposed framework show a 97.5%accuracy rate,indicating its potential as an effective solution for SCADA-IIoT cybersecurity against emerging threats.The research confirms that the proposed security and resilience methods are successful in protecting vital industrial control systems within their operational environments.展开更多
The rapid development of the industrial internet of things(IIoT)has brought huge benefits to factories equipped with IIoT technology,each of which represents an IIoT domain.More and more domains are choosing to cooper...The rapid development of the industrial internet of things(IIoT)has brought huge benefits to factories equipped with IIoT technology,each of which represents an IIoT domain.More and more domains are choosing to cooperate with each other to produce better products for greater profits.Therefore,in order to protect the security and privacy of IIoT devices in cross-domain communication,lots of cross-domain authentication schemes have been proposed.However,most schemes expose the domain to which the IIoT device belongs,or introduce a single point of failure in multi-domain cooperation,thus introducing unpredictable risks to each domain.We propose a more secure and efficient domain-level anonymous cross-domain authentication(DLCA)scheme based on alliance blockchain.The proposed scheme uses group signatures with decentralized tracing technology to provide domain-level anonymity to each IIoT device and allow the public to trace the real identity of the malicious pseudonym.In addition,DLCA takes into account the limited resource characteristics of IIoT devices to design an efficient cross-domain authentication protocol.Security analysis and performance evaluation show that the proposed scheme can be effectively used in the cross-domain authentication scenario of industrial internet of things.展开更多
The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for...The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.展开更多
With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smar...With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smart equipment is not trustworthy,so the issue of data authenticity needs to be addressed.The SM2 digital signature algorithm can provide an authentication mechanism for data to solve such problems.Unfortunately,it still suffers from the problem of key exposure.In order to address this concern,this study first introduces a key-insulated scheme,SM2-KI-SIGN,based on the SM2 algorithm.This scheme boasts strong key insulation and secure keyupdates.Our scheme uses the elliptic curve algorithm,which is not only more efficient but also more suitable for IIoT-cloud environments.Finally,the security proof of SM2-KI-SIGN is given under the Elliptic Curve Discrete Logarithm(ECDL)assumption in the random oracle.展开更多
In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to im...In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to improve IIoT service efficiency.There are two types of costs for this kind of IoT network:a communication cost and a computing cost.For service efficiency,the communication cost of data transmission should be minimized,and the computing cost in the edge cloud should be also minimized.Therefore,in this paper,the communication cost for data transmission is defined as the delay factor,and the computing cost in the edge cloud is defined as the waiting time of the computing intensity.The proposed method selects an edge cloud that minimizes the total cost of the communication and computing costs.That is,a device chooses a routing path to the selected edge cloud based on the costs.The proposed method controls the data flows in a mesh-structured network and appropriately distributes the data processing load.The performance of the proposed method is validated through extensive computer simulation.When the transition probability from good to bad is 0.3 and the transition probability from bad to good is 0.7 in wireless and edge cloud states,the proposed method reduced both the average delay and the service pause counts to about 25%of the existing method.展开更多
With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we p...With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we propose an intelligent service computing framework.In the framework,we take the long-term rewards of its important participants,edge service providers,as the optimization goal,which is related to service delay and computing cost.Considering the different update frequencies of data deployment and service offloading,double-timescale reinforcement learning is utilized in the framework.In the small-scale strategy,the frequent concurrency of services and the difference in service time lead to the fuzzy relationship between reward and action.To solve the fuzzy reward problem,a reward mapping-based reinforcement learning(RMRL)algorithm is proposed,which enables the agent to learn the relationship between reward and action more clearly.The large time scale strategy adopts the improved Monte Carlo tree search(MCTS)algorithm to improve the learning speed.The simulation results show that the strategy is superior to popular reinforcement learning algorithms such as double Q-learning(DDQN)and dueling Q-learning(dueling-DQN)in learning speed,and the reward is also increased by 14%.展开更多
Effective control of time-sensitive industrial applications depends on the real-time transmission of data from underlying sensors.Quantifying the data freshness through age of information(AoI),in this paper,we jointly...Effective control of time-sensitive industrial applications depends on the real-time transmission of data from underlying sensors.Quantifying the data freshness through age of information(AoI),in this paper,we jointly design sampling and non-slot based scheduling policies to minimize the maximum time-average age of information(MAoI)among sensors with the constraints of average energy cost and finite queue stability.To overcome the intractability involving high couplings of such a complex stochastic process,we first focus on the single-sensor time-average AoI optimization problem and convert the constrained Markov decision process(CMDP)into an unconstrained Markov decision process(MDP)by the Lagrangian method.With the infinite-time average energy and AoI expression expended as the Bellman equation,the singlesensor time-average AoI optimization problem can be approached through the steady-state distribution probability.Further,we propose a low-complexity sub-optimal sampling and semi-distributed scheduling scheme for the multi-sensor scenario.The simulation results show that the proposed scheme reduces the MAoI significantly while achieving a balance between the sampling rate and service rate for multiple sensors.展开更多
Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady perform...Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks.展开更多
工业物联网(Industrial Internet of Things,IIoT)是第六代移动通信系统(6th Generation Mobile Communication System,6G)的典型应用。提出了一种新的基于几何的工业物联网环境非平稳随机模型(Geometry-based Stochastic Model,GBSM)...工业物联网(Industrial Internet of Things,IIoT)是第六代移动通信系统(6th Generation Mobile Communication System,6G)的典型应用。提出了一种新的基于几何的工业物联网环境非平稳随机模型(Geometry-based Stochastic Model,GBSM)。该模型通过速度分解细化IIoT下信道模型中散射体组成的簇的生灭过程,对不同运动方向间信道非平稳特性的区别进行了建模。仿真结果表明,该模型能较好地表征不同运动方向对信道特性的影响,能够有效地反映信道传播环境中簇的数量。与参考模型以及射线追踪仿真的时延均方扩展和角度均方扩展拟合结果验证了该模型具有较高的精度。展开更多
在当前工业物联网(industrial Internet of things,IIoT)设备的跨域身份认证和数据共享中,边缘服务器和区块链起到了快速转发和存储的作用.现有的跨域认证与数据共享方案面临着多种安全风险,并且还存在着设备端计算和通信开销大、认证...在当前工业物联网(industrial Internet of things,IIoT)设备的跨域身份认证和数据共享中,边缘服务器和区块链起到了快速转发和存储的作用.现有的跨域认证与数据共享方案面临着多种安全风险,并且还存在着设备端计算和通信开销大、认证结构复杂的问题.因此,提出了一种基于区块链的轻量级工业物联网跨域认证与数据共享方案,能够实现设备的跨域匿名认证与数据共享.同时,引入了分布式密钥生成技术来构建服务密钥,并以此设计了一种轻量级的消息认证算法,能有效实现服务信息的设备端保密,同时极大限度地减少了资源消耗.详细的安全性分析表明该方案满足不可伪造性、机密性、不可链接性和匿名性.性能分析表明该方案在计算开销、通信开销和区块链查询效率上均优于相关方案.展开更多
Dear Editor,Industrial Internet of things(IIoT) is a typical application of cyberphysical system(CPS). In the IIoT, wireless communication is an inevitable trend to replace the deployment-limited wired transmission fo...Dear Editor,Industrial Internet of things(IIoT) is a typical application of cyberphysical system(CPS). In the IIoT, wireless communication is an inevitable trend to replace the deployment-limited wired transmission for cases with large-scale and mobile devices. However, wireless communication gives rise to critical issues related to physical security, such as malicious detections and attacks [1].展开更多
文摘为了解决在工业物联网(industrial Internet of things,IIoT)环境下,现有的调度算法在调度工作流中对数据安全、响应时间有一定要求的任务所带来的完工时间上升、成本增加的问题,提出一种基于雾环境负载率而变化的任务调度策略,并使用改进的蜣螂优化算法对工作流调度问题进行求解。改进的算法使用HEFT(heterogeneous earliest finish time)算法对蜣螂种群进行初始化,降低了原始算法中随机性带来的影响。同时引入了镜面反射和反向学习思想,提高了算法的搜索性能。实验结果表明,该算法相比于其他一些传统的调度算法在完工时间与成本方面都有一定的性能提升。
文摘为解决在IIoT(industrial internet of things)环境下,现有的调度算法调度工作流中通信频繁、数据传输量大的任务所带来的完工时间上升、成本增加等影响的问题,提出一种基于聚类的工作流多雾协同调度算法。通过二分K均值算法对工作流中的任务进行聚类,基于聚类结果,在多个雾服务器之间使用改进的免疫粒子群优化算法进行任务调度。实验结果表明,该算法相比其它一些传统的调度算法在完工时间、成本、负载均衡方面都有一定提升。
基金financially supported by the Ongoing Research Funding Program(ORF-2025-846),King Saud University,Riyadh,Saudi Arabia.
文摘Protecting Supervisory Control and Data Acquisition-Industrial Internet of Things(SCADA-IIoT)systems against intruders has become essential since industrial control systems now oversee critical infrastructure,and cyber attackers more frequently target these systems.Due to their connection of physical assets with digital networks,SCADA-IIoT systems face substantial risks from multiple attack types,including Distributed Denial of Service(DDoS),spoofing,and more advanced intrusion methods.Previous research in this field faces challenges due to insufficient solutions,as current intrusion detection systems lack the necessary accuracy,scalability,and adaptability needed for IIoT environments.This paper introduces CyberFortis,a novel cybersecurity framework aimed at detecting and preventing cyber threats in SCADA-IIoT systems.CyberFortis presents two key innovations:Firstly,Siamese Double Deep Q-Network with Autoencoders(Siamdqn-AE)FusionNet,which enhances intrusion detection by combining deep Q-Networks with autoencoders for improved attack detection and feature extraction;and secondly,the PopHydra Optimiser,an innovative solution to compute reinforcement learning discount factors for better model performance and convergence.This method combines Siamese deep Q-Networks with autoencoders to create a system that can detect different types of attacks more effectively and adapt to new challenges.CyberFortis is better than current top attack detection systems,showing higher scores in important areas like accuracy,precision,recall,and F1-score,based on data from CICIoT 2023,UNSW-NB 15,and WUSTL-IIoT datasets.Results from the proposed framework show a 97.5%accuracy rate,indicating its potential as an effective solution for SCADA-IIoT cybersecurity against emerging threats.The research confirms that the proposed security and resilience methods are successful in protecting vital industrial control systems within their operational environments.
文摘The rapid development of the industrial internet of things(IIoT)has brought huge benefits to factories equipped with IIoT technology,each of which represents an IIoT domain.More and more domains are choosing to cooperate with each other to produce better products for greater profits.Therefore,in order to protect the security and privacy of IIoT devices in cross-domain communication,lots of cross-domain authentication schemes have been proposed.However,most schemes expose the domain to which the IIoT device belongs,or introduce a single point of failure in multi-domain cooperation,thus introducing unpredictable risks to each domain.We propose a more secure and efficient domain-level anonymous cross-domain authentication(DLCA)scheme based on alliance blockchain.The proposed scheme uses group signatures with decentralized tracing technology to provide domain-level anonymity to each IIoT device and allow the public to trace the real identity of the malicious pseudonym.In addition,DLCA takes into account the limited resource characteristics of IIoT devices to design an efficient cross-domain authentication protocol.Security analysis and performance evaluation show that the proposed scheme can be effectively used in the cross-domain authentication scenario of industrial internet of things.
文摘The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.
基金This work was supported in part by the National Natural Science Foundation of China(Nos.62072074,62076054,62027827,62002047)the Sichuan Science and Technology Innovation Platform and Talent Plan(Nos.2020JDJQ0020,2022JDJQ0039)+2 种基金the Sichuan Science and Technology Support Plan(Nos.2020YFSY0010,2022YFQ0045,2022YFS0220,2023YFG0148,2021YFG0131)the YIBIN Science and Technology Support Plan(No.2021CG003)the Medico-Engineering Cooperation Funds from University of Electronic Science and Technology of China(Nos.ZYGX2021YGLH212,ZYGX2022YGRH012).
文摘With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smart equipment is not trustworthy,so the issue of data authenticity needs to be addressed.The SM2 digital signature algorithm can provide an authentication mechanism for data to solve such problems.Unfortunately,it still suffers from the problem of key exposure.In order to address this concern,this study first introduces a key-insulated scheme,SM2-KI-SIGN,based on the SM2 algorithm.This scheme boasts strong key insulation and secure keyupdates.Our scheme uses the elliptic curve algorithm,which is not only more efficient but also more suitable for IIoT-cloud environments.Finally,the security proof of SM2-KI-SIGN is given under the Elliptic Curve Discrete Logarithm(ECDL)assumption in the random oracle.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No.2021R1C1C1013133)supported by the Institute of Information and Communications Technology Planning and Evaluation (IITP)grant funded by the Korea Government (MSIT) (RS-2022-00167197,Development of Intelligent 5G/6G Infrastructure Technology for The Smart City)supported by the Soonchunhyang University Research Fund.
文摘In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to improve IIoT service efficiency.There are two types of costs for this kind of IoT network:a communication cost and a computing cost.For service efficiency,the communication cost of data transmission should be minimized,and the computing cost in the edge cloud should be also minimized.Therefore,in this paper,the communication cost for data transmission is defined as the delay factor,and the computing cost in the edge cloud is defined as the waiting time of the computing intensity.The proposed method selects an edge cloud that minimizes the total cost of the communication and computing costs.That is,a device chooses a routing path to the selected edge cloud based on the costs.The proposed method controls the data flows in a mesh-structured network and appropriately distributes the data processing load.The performance of the proposed method is validated through extensive computer simulation.When the transition probability from good to bad is 0.3 and the transition probability from bad to good is 0.7 in wireless and edge cloud states,the proposed method reduced both the average delay and the service pause counts to about 25%of the existing method.
基金supported by the National Natural Science Foundation of China(No.62171051)。
文摘With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we propose an intelligent service computing framework.In the framework,we take the long-term rewards of its important participants,edge service providers,as the optimization goal,which is related to service delay and computing cost.Considering the different update frequencies of data deployment and service offloading,double-timescale reinforcement learning is utilized in the framework.In the small-scale strategy,the frequent concurrency of services and the difference in service time lead to the fuzzy relationship between reward and action.To solve the fuzzy reward problem,a reward mapping-based reinforcement learning(RMRL)algorithm is proposed,which enables the agent to learn the relationship between reward and action more clearly.The large time scale strategy adopts the improved Monte Carlo tree search(MCTS)algorithm to improve the learning speed.The simulation results show that the strategy is superior to popular reinforcement learning algorithms such as double Q-learning(DDQN)and dueling Q-learning(dueling-DQN)in learning speed,and the reward is also increased by 14%.
基金supported in part by the National Key R&D Program of China(No.2021YFB3300100)the National Natural Science Foundation of China(No.62171062)。
文摘Effective control of time-sensitive industrial applications depends on the real-time transmission of data from underlying sensors.Quantifying the data freshness through age of information(AoI),in this paper,we jointly design sampling and non-slot based scheduling policies to minimize the maximum time-average age of information(MAoI)among sensors with the constraints of average energy cost and finite queue stability.To overcome the intractability involving high couplings of such a complex stochastic process,we first focus on the single-sensor time-average AoI optimization problem and convert the constrained Markov decision process(CMDP)into an unconstrained Markov decision process(MDP)by the Lagrangian method.With the infinite-time average energy and AoI expression expended as the Bellman equation,the singlesensor time-average AoI optimization problem can be approached through the steady-state distribution probability.Further,we propose a low-complexity sub-optimal sampling and semi-distributed scheduling scheme for the multi-sensor scenario.The simulation results show that the proposed scheme reduces the MAoI significantly while achieving a balance between the sampling rate and service rate for multiple sensors.
基金supported by the Natural Science Foundation of China (No.62171051)。
文摘Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks.
文摘工业物联网(Industrial Internet of Things,IIoT)是第六代移动通信系统(6th Generation Mobile Communication System,6G)的典型应用。提出了一种新的基于几何的工业物联网环境非平稳随机模型(Geometry-based Stochastic Model,GBSM)。该模型通过速度分解细化IIoT下信道模型中散射体组成的簇的生灭过程,对不同运动方向间信道非平稳特性的区别进行了建模。仿真结果表明,该模型能较好地表征不同运动方向对信道特性的影响,能够有效地反映信道传播环境中簇的数量。与参考模型以及射线追踪仿真的时延均方扩展和角度均方扩展拟合结果验证了该模型具有较高的精度。
文摘在当前工业物联网(industrial Internet of things,IIoT)设备的跨域身份认证和数据共享中,边缘服务器和区块链起到了快速转发和存储的作用.现有的跨域认证与数据共享方案面临着多种安全风险,并且还存在着设备端计算和通信开销大、认证结构复杂的问题.因此,提出了一种基于区块链的轻量级工业物联网跨域认证与数据共享方案,能够实现设备的跨域匿名认证与数据共享.同时,引入了分布式密钥生成技术来构建服务密钥,并以此设计了一种轻量级的消息认证算法,能有效实现服务信息的设备端保密,同时极大限度地减少了资源消耗.详细的安全性分析表明该方案满足不可伪造性、机密性、不可链接性和匿名性.性能分析表明该方案在计算开销、通信开销和区块链查询效率上均优于相关方案.
基金partly supported by the National Natural Science Foundation of China(62273298,62273295)Hebei Natural Science Foundation(F2023203063,F2022203025)+1 种基金China Scholarship Council(CSC)(202308130180)Provincial Key Laboratory Performance Subsidy Project(22567612H)
文摘Dear Editor,Industrial Internet of things(IIoT) is a typical application of cyberphysical system(CPS). In the IIoT, wireless communication is an inevitable trend to replace the deployment-limited wired transmission for cases with large-scale and mobile devices. However, wireless communication gives rise to critical issues related to physical security, such as malicious detections and attacks [1].