Fourfold benzocyclobutene-functionalized perylene bisimide(PBI 4) has been synthesized and its structure was characterized by FTIR,MS and NMR.PBI 4 can react either with itself,or the appropriate dienophiles to form...Fourfold benzocyclobutene-functionalized perylene bisimide(PBI 4) has been synthesized and its structure was characterized by FTIR,MS and NMR.PBI 4 can react either with itself,or the appropriate dienophiles to form the corresponding products under appropriate temperature.The polymer film obtained from the reaction of PBI 4 with methyl vinyl silicone rubber possessed excellent film forming properties including flatness.The optical properties of PBI 4 and polymer film obtained from the reaction of PBI 4 and methyl vinyl silicone rubber have been determined by UV/vis and fluorescence spectroscopy.展开更多
Sodium-doped carbon nitride nanotubes (Nax-CNNTs) were prepared by a green and simple two-step method and applied in photocatalytic water splitting for the first time. Transmission electron microscopy (TEM) elemen...Sodium-doped carbon nitride nanotubes (Nax-CNNTs) were prepared by a green and simple two-step method and applied in photocatalytic water splitting for the first time. Transmission electron microscopy (TEM) element mapping and X-ray photoelectron spectroscopy (XPS) measurements confirm that sodium was successfully introduced in the carbon nitride nanotubes (CNNTs), and the intrinsic structure of graphitic carbon nitride (g-C3N4) was also maintained in the products. Moreover, the porous structure of the CNNTs leads to relatively large specific surface areas. Photocatalytic tests indicate that the porous tubular structure and Na+ doping can synergistically enhance the hydrogen evolution rate under visible light (λ 〉 420 nm) irradiation in the presence of sacrificial agents, leading to a hydrogen evolution rate as high as 143 μmol·h-1 (20 mg catalyst). Moreover, other alkali metal-doped CNNTs, such as Lix-CNNTs and Kx-CNNTs, were tested; both materials were found to enhance the hydrogen evolution rate, but to a lower extent compared with the Nax-CNNTs. This highlights the general applicability of the present method to prepare alkali metal-doped CNNTs; a preliminary mechanism for the photocatalytic hydrogen evolution reaction in the Nax-CNNTs is also proposed.展开更多
基金supported by the Science and Technology Development Foundation of China Academy of Engineering Physics (Nos.2012A0302015,2012B0302050 and 2013B0302051)Doctoral Fund of Southwest University of Science and Technology (No.13zx7133)
文摘Fourfold benzocyclobutene-functionalized perylene bisimide(PBI 4) has been synthesized and its structure was characterized by FTIR,MS and NMR.PBI 4 can react either with itself,or the appropriate dienophiles to form the corresponding products under appropriate temperature.The polymer film obtained from the reaction of PBI 4 with methyl vinyl silicone rubber possessed excellent film forming properties including flatness.The optical properties of PBI 4 and polymer film obtained from the reaction of PBI 4 and methyl vinyl silicone rubber have been determined by UV/vis and fluorescence spectroscopy.
基金The authors would like to thank the financial support from Sakura Science Program (Japan Science and Technology Agency), National Natural Science Foundation of China (Nos. 51627803, 51402348, 11474333, 91433205, 51421002, and 51372270) and the Knowledge Innovation Program of the Chinese Academy of Sciences.
文摘Sodium-doped carbon nitride nanotubes (Nax-CNNTs) were prepared by a green and simple two-step method and applied in photocatalytic water splitting for the first time. Transmission electron microscopy (TEM) element mapping and X-ray photoelectron spectroscopy (XPS) measurements confirm that sodium was successfully introduced in the carbon nitride nanotubes (CNNTs), and the intrinsic structure of graphitic carbon nitride (g-C3N4) was also maintained in the products. Moreover, the porous structure of the CNNTs leads to relatively large specific surface areas. Photocatalytic tests indicate that the porous tubular structure and Na+ doping can synergistically enhance the hydrogen evolution rate under visible light (λ 〉 420 nm) irradiation in the presence of sacrificial agents, leading to a hydrogen evolution rate as high as 143 μmol·h-1 (20 mg catalyst). Moreover, other alkali metal-doped CNNTs, such as Lix-CNNTs and Kx-CNNTs, were tested; both materials were found to enhance the hydrogen evolution rate, but to a lower extent compared with the Nax-CNNTs. This highlights the general applicability of the present method to prepare alkali metal-doped CNNTs; a preliminary mechanism for the photocatalytic hydrogen evolution reaction in the Nax-CNNTs is also proposed.