期刊文献+
共找到1,132篇文章
< 1 2 57 >
每页显示 20 50 100
Thermoelectrical properties of(FeNi)_xCo_(4-x)Sb_(12) prepared by MA-SPS
1
作者 Kegao Liu Jiuxing Zhang 《Journal of University of Science and Technology Beijing》 CSCD 2008年第3期272-275,共4页
Bulk skutterudite (FeNi)xCo4-xSbl2 with x varying from 0.05 to 1.0 were prepared by mechanical alloying and spark plasma sintering (MA-SPS). The phases of the samples were analyzed by X-ray diffraction, and their ... Bulk skutterudite (FeNi)xCo4-xSbl2 with x varying from 0.05 to 1.0 were prepared by mechanical alloying and spark plasma sintering (MA-SPS). The phases of the samples were analyzed by X-ray diffraction, and their thermoelectrical properties were tested by electrical constant instrument and laser thermal constant instrument. The experimental results show that bulk (FeNi)xCo4-xSb12 have the characteristic of typical semiconductor electricity. The addition of FeNi improves the electrical properties to a large extent; the samples of bulk (FeNi)xCo4-xSbl2 (x = 0.05-1.0) are n-type semiconducting materials; the increase of FeNi content can decrease the absolute value of Seebeck coefficient and therefore decrease the ZT value; FeNi with a higher content when x 〉 0.5 leads to an evident increase in thermal conductivity and also a decrease in ZT value. In general, for ZT value, the optimal added content of FeNi is 0.25-0.5 and the maximum ZT value is 0.2467 when x = 0.5 at 500℃. 展开更多
关键词 thermoelectrical materials thermoelectrical properties SKUTTERUDITE mechanical alloying spark plasma sintering
在线阅读 下载PDF
Effect of Mg addition on mechanical and thermoelectrical properties of Al-Al_2O_3 nanocomposite 被引量:1
2
作者 A.WAGIH 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第11期2810-2817,共8页
The effects of Mg addition on mechanical thermo-electrical properties of Al.Mg/5%Al2O3 nanocomposite with differentMg contents (0, 5%, 10% and 20%) produced by mechanical alloying were studied. Scanning electron mic... The effects of Mg addition on mechanical thermo-electrical properties of Al.Mg/5%Al2O3 nanocomposite with differentMg contents (0, 5%, 10% and 20%) produced by mechanical alloying were studied. Scanning electron microscopy analysis (SEM),X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM) were used to characterize the produced powder. Theresults show that addition of Mg forms a predominant phase (Al.Mg solid solution). By increasing the mass fraction of Mg, thecrystallite size decreases and the lattice strain increases which results from the atomic penetration of Mg atoms into the substitutionalsites of Al lattice. The microhardness of the composite increases with the increase of the Mg content. The thermal and electricalconductivities increase linearly with the temperature increase in the inspected temperature range. Moreover, the thermalconductivity increases with the increase of Mg content. 展开更多
关键词 Al.Al2O3 nanocomposite Mg mechanical alloying MICROHARDNESS thermoelectrical properties
在线阅读 下载PDF
Engineering the Thermoelectrical Properties of PEDOT:PSS by Alkali Metal Ion Effect 被引量:1
3
作者 Jingjin Dong Jian Liu +3 位作者 Xinkai Qiu Ryan Chiechi L.Jan Anton Koster Giuseppe Portale 《Engineering》 SCIE EI 2021年第5期647-654,共8页
Engineering the electrical properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)holds great potential for various applications such as sensors,thermoelectric(TE)generators,and hole transport... Engineering the electrical properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)holds great potential for various applications such as sensors,thermoelectric(TE)generators,and hole transport layers in solar cells.Various strategies have been applied to achieve optimal electrical properties,including base solution post-treatments.However,the working mechanism and the exact details of the structural transformations induced by base post-treatments are still unclear.In this work,we present a comparative study on the post-treatment effects of using three common and green alkali base solutions:namely LiOH,NaOH,and KOH.The structural modifications induced in the film by the base post-treatments are studied by techniques including atomic force microscopy,grazing-incidence wide-angle X-ray scattering,ultraviolet–visible–near-infrared spectroscopy,and attenuated total reflectance Fourier-transform infrared spectroscopy.Base-induced structural modifications are responsible for an improvement in the TE power factor of the films,which depends on the basic solution used.The results are explained on the basis of the different affinity between the alkali cations and the PSS chains,which determines PEDOT dedoping.The results presented here shed light on the structural reorganization occurring in PEDOT:PSS when exposed to high-pH solutions and may serve as inspiration to create future pH-/ion-responsive devices for various applications. 展开更多
关键词 PEDOT:PSS Thermoelectric properties Alkali base solutions POST-TREATMENT Structure-property relationship Grazing-incidence wide-angle X-ray SCATTERING
在线阅读 下载PDF
Thermoelectrical Investigation of Rare Earth Sulfide Materials 被引量:1
4
作者 V.V. Sokolov V.V. Bakovetz +1 位作者 S.M. Luguev N.V. Lugueva 《Advances in Materials Physics and Chemistry》 2012年第4期25-27,共3页
Results? are presented on synthesis?? and crystal growth of? Gd2S3-Dy2S3 solid solution sulfides and study of their thermoelectric properties in the range of temperatures 80-400 K. Gd0.2Dy0.8S1.48 composition has the ... Results? are presented on synthesis?? and crystal growth of? Gd2S3-Dy2S3 solid solution sulfides and study of their thermoelectric properties in the range of temperatures 80-400 K. Gd0.2Dy0.8S1.48 composition has the best values of thermoelectric efficiency 0.39 x 10-3/K at 400 K. 展开更多
关键词 Gd2S3 - Dy2S3Solid SOLUTION Sulfides Synthesis GROWTH of CRYSTALS THERMOELECTRIC Properties
在线阅读 下载PDF
Bipolar Thermoelectrical Transport of SnSe Nanoplate in Low Temperature
5
作者 Li-Yan Zhou Qi Zheng +1 位作者 Li-Hong Bao Wen-Jie Liang 《Chinese Physics Letters》 SCIE CAS CSCD 2020年第1期69-73,共5页
Bulk SnSe is an excellent thermoelectrical material with the highest figure-of-merit value of ZT=2.&making it promising in applications.Temperature-dependent electrical and thermoelectrical properties of SnSe nano... Bulk SnSe is an excellent thermoelectrical material with the highest figure-of-merit value of ZT=2.&making it promising in applications.Temperature-dependent electrical and thermoelectrical properties of SnSe nanoplates are studied at low temperature.Conductivity drops and rises again as temperature is lowered.The Seebeck coefficient is positive at room temperature and becomes negative at low temperature.The change of the sign of the Seebeck coefficient indicates influence of bipolar transport of the semiconductive SnSe nanoplate.The bipolar transport is caused by the Fermi energy changing with temperature due to different contributions from donors and acceptors at different temperatures. 展开更多
关键词 PLATE highest THERMOELECTRIC
原文传递
THERMOELECTRICAL POWER IN A HIGH T_c (Y_(0.5)Ba_(0.5))_3Cu_3O_(9-x) SUPERCONDUCTOR
6
作者 阎守胜 陆培祥 +2 位作者 贾秋萍 马红 夏国强 《Chinese Science Bulletin》 SCIE EI CAS 1988年第17期1420-1422,共3页
The recent discovery of superconductivity above 90 K in the oxide Y-Ba-Cu-O has generated an intense research in this field. This report deals with the thermoelectric power (TEP) of a typical high T_c oxide supercondu... The recent discovery of superconductivity above 90 K in the oxide Y-Ba-Cu-O has generated an intense research in this field. This report deals with the thermoelectric power (TEP) of a typical high T_c oxide superconductor prepared at Peking University. 展开更多
关键词 thermoelectrical POWER HIGH TEMPERATURE SUPERCONDUCTOR
在线阅读 下载PDF
An Emerging Liquid‑Crystalline Conducting Polymer Thermoelectrics:Opportunities and Challenges
7
作者 Zhenqiang Ye Mingdong Zhang +3 位作者 Junyang Deng Lirong Liang Chunyu Du Guangming Chen 《Nano-Micro Letters》 2026年第3期240-273,共34页
Thermoelectric(TE)materials,being capable of converting waste heat into electricity,are pivotal for sustainable energy solutions.Among emerging TE materials,organic TE materials,particularly conjugated polymers,are ga... Thermoelectric(TE)materials,being capable of converting waste heat into electricity,are pivotal for sustainable energy solutions.Among emerging TE materials,organic TE materials,particularly conjugated polymers,are gaining prominence due to their unique combination of mechanical flexibility,environmental compatibility,and solution-processable fabrication.A notable candidate in this field is poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene)(PBTTT),a liquid-crystalline conjugated polymer,with high charge carrier mobility and adaptability to melt-processing techniques.Recent advancements have propelled PBTTT’s figure of merit from below 0.1 to a remarkable 1.28 at 368 K,showcasing its potential for practical applications.This review systematically examines strategies to enhance PBTTT’s TE performance through doping(solution,vapor,and anion exchange doping),composite engineering,and aggregation state controlling.Recent key breakthroughs include ion exchange doping for stable charge modulation,multi-heterojunction architectures reducing thermal conductivity,and proton-coupled electron transfer doping for precise Fermi-level tuning.Despite great progress,challenges still persist in enhancing TE conversion efficiency,balancing or decoupling electrical conductivity,Seebeck coefficient and thermal conductivity,and leveraging melt-processing scalability of PBTTT.By bridging fundamental insights with applied research,this work provides a roadmap for advancing PBTTT-based TE materials toward efficient energy harvesting and wearable electronics. 展开更多
关键词 Thermoelectric materials POLYMER PBTTT LIQUID-CRYSTALLINE
在线阅读 下载PDF
Bioinspired self-adaptive thermoelectric device with hydrogen bonding-enhanced robustness
8
作者 Feng-Qi Xu Rongzhuang Song +6 位作者 Cheng Chen Bo Li Jie-Long Xu Xin-Lin Li Heng-An Wu Yin-Bo Zhu Jian-Wei Liu 《Nano Research》 2026年第1期1213-1221,共9页
Electronic devices capable of perceiving and responding to environmental changes are essential for applications in human-machine interaction,monitoring systems,and robotics.However,most existing devices struggle with ... Electronic devices capable of perceiving and responding to environmental changes are essential for applications in human-machine interaction,monitoring systems,and robotics.However,most existing devices struggle with the separation of sensing and actuation,resulting in complex integration and limited responsiveness.Here,inspired by the interplay between sensory and muscle cells in sea anemones,we present an intelligent thermoelectric device that seamlessly combines multimodal sensing with autonomous thermal actuation,achieving a closed-loop sensory-motor reflex.The device exhibits excellent temperature sensitivity(0.2℃)and pressure resolution(0.03 mm),attributable to its threedimensional(3D)architecture and hierarchical conductive network.Molecular dynamics simulations reveal that a dynamic hydrogen-bonding network enhances stress dissipation and interfacial adhesion,ensuring exceptional mechanical stability over 140,000 cycles.Notably,it also features thermal self-adaptation,actively triggering a protection mechanism to avoid high-temperature stimuli via thermoresponsive deformation,with an adjustable actuation threshold.This work advances intelligent electronics with real-time decision-making and environmental interaction. 展开更多
关键词 thermoelectric device multifunctional sensing thermal self-actuation biomimetic structure hydrogen-bond network
原文传递
Cement-Based Thermoelectric Materials, Devices and Applications
9
作者 Wanqiang Li Chunyu Du +1 位作者 Lirong Liang Guangming Chen 《Nano-Micro Letters》 2026年第1期750-781,共32页
Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement ... Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement fails to reconcile ecological responsibility with advanced functional performance.By incorporating tailored fillers into cement matrices,the resulting composites achieve enhanced thermoelectric(TE)conversion capabilities.These materials can harness solar radiation from building envelopes and recover waste heat from indoor thermal gradients,facilitating bidirectional energy conversion.This review offers a comprehensive and timely overview of cementbased thermoelectric materials(CTEMs),integrating material design,device fabrication,and diverse applications into a holistic perspective.It summarizes recent advancements in TE performance enhancement,encompassing fillers optimization and matrices innovation.Additionally,the review consolidates fabrication strategies and performance evaluations of cement-based thermoelectric devices(CTEDs),providing detailed discussions on their roles in monitoring and protection,energy harvesting,and smart building.We also address sustainability,durability,and lifecycle considerations of CTEMs,which are essential for real-world deployment.Finally,we outline future research directions in materials design,device engineering,and scalable manufacturing to foster the practical application of CTEMs in sustainable and intelligent infrastructure. 展开更多
关键词 Functional cement Thermoelectric materials Device structure Smart building
在线阅读 下载PDF
Droplets Self-Draining on the Horizontal Slippery Surface for Real-Time Anti-/De-Icing
10
作者 Xiao Han Xu Sun +4 位作者 Di Zhao Mingjia Sun Kesong Liu Liping Heng Lei Jiang 《Nano-Micro Letters》 2026年第2期584-598,共15页
Undesired ice accumulation on infrastructure and transportation systems leads to catastrophic events and significant economic losses.Although various anti-icing surfaces with photothermal effects can initially prevent... Undesired ice accumulation on infrastructure and transportation systems leads to catastrophic events and significant economic losses.Although various anti-icing surfaces with photothermal effects can initially prevent icing,any thawy droplets remaining on the horizontal surface can quickly re-freezing once the light diminishes.To address these challenges,we have developed a self-draining slippery surface(SDSS)that enables the thawy droplets to self-remove on the horizontal surface,thereby facilitating real-time anti-icing with the aid of sunlight(100 m W cm^(-2)).This is achieved by sandwiching a thin pyroelectric layer between slippery surface and photothermal film.Due to the synergy between the photothermal and pyroelectric layers,the SDSS not only maintains a high surface temperature of 19.8±2.2℃at the low temperature(-20.0±1.0℃),but also generates amount of charge through thermoelectric coupling.Thus,as cold droplets dropped on the SDSS,electrostatic force pushes the droplets off the charged surface because of the charge transfer mechanism.Even if the surface freezes overnight,the ice can melt and drain off the SDSS within 10 min of exposure to sunlight at-20.0±1.0℃,leaving a clean surface.This work provides a new perspective on the anti-icing system in the real-world environments. 展开更多
关键词 Slippery surfaces Droplet self-draining Anti-/de-icing Thermoelectric coupling Charge transfer
在线阅读 下载PDF
All‑Fiber Integrated Thermoelectrically Powered Physiological Monitoring Biosensor 被引量:5
11
作者 Xing Qing Huijun Chen +9 位作者 Fanjia Zeng Kangyu Jia Qing Shu Jianmei Wu Huimin Xu Weiwei Lei Dan Liu Xungai Wang Mufang Li Dong Wang 《Advanced Fiber Materials》 SCIE EI 2023年第3期1025-1036,共12页
Advanced fabric electronics for long-term personal physiological monitoring,with a self-sufficient energy source,high integrity,sensitivity,wearing comfort,and homogeneous components are urgently desired.Instead of as... Advanced fabric electronics for long-term personal physiological monitoring,with a self-sufficient energy source,high integrity,sensitivity,wearing comfort,and homogeneous components are urgently desired.Instead of assembling a self-powered biosensor,comprising a variety of materials with different levels of hardness,and supplementing with a booster or energy storage device,herein,an all-fiber integrated thermoelectrically powered physiological monitoring device(FPMD),is proposed and evaluated for production at an industrial scale.For the first time,an organic electrochemical transistor(OECT)biosensor is enabled by thermoelectric fabrics(TEFs)adaptively,sustainably and steadily without any additional accessories.Moreover,both the OECT and TEFs are constructed using a cotton/poly(3,4-ethylenedioxythiophene):poly(styrenesulfon ate)/dimethylsulfoxide/(3-glycidyloxypropyl)trimethoxysilane(PDG)yarn,which is lightweight,robust(90°bending for 1000 cycles)and sweat-resistant(ΔR/R0=1.9%).A small temperature gradient(ΔT=2.2 K)between the environment and the human body can drive the high-gain OECT(71.08 mS)with high fidelity,and a good signal to noise ratio.For practical applications,the on-body FPMD produced an enduring and steady output signal and demonstrated a linear monitoring region(sensitivity of 30.4 NCR(normalized current response)/dec,10 nM~50µM)for glucose in artificial sweat with reliable performance regarding anti-interference and reproducibility.This device can be expanded to the monitoring of various bio-markers and provides a new strategy for constructing wearable,comfortable,highly integrated and self-powered biosensors. 展开更多
关键词 Self-powered biosensor All-fiber integrated device Thermoelectric fabrics Fiber-assembled transistor Personal healthcare monitoring
原文传递
Exploration of the copper–niobium composite superconducting cavities for pursuing extremely high operational stability at IMP 被引量:1
12
作者 Shi-Chun Huang Yuan He +16 位作者 Long Peng Chun-Long Li Sheng-Xue Zhang Meng-Xin Xu Zi-Qin Yang Hao Guo Lu-Bei Liu Ping-Ran Xiong An-Dong Wu Qing-Wei Chu Xiao-Fei Niu Teng Tan Zhi-Jun Wang Jun-Hui Zhang Sheng-Hu Zhang Hong-Wei Zhao Wen-Long Zhan 《Nuclear Science and Techniques》 2025年第5期19-29,共11页
Theoretically,copper–niobium(Cu-Nb)composite superconducting cavities have excellent potential for high thermal and mechanical stability.They can appropriately exploit the high-gradient surface processing recipes dev... Theoretically,copper–niobium(Cu-Nb)composite superconducting cavities have excellent potential for high thermal and mechanical stability.They can appropriately exploit the high-gradient surface processing recipes developed for the bulk niobium(Nb)cavity and the thick copper(Cu)layer’s high thermal conductivity and rigidity,thereby enhancing the operational stability of the bulk Nb cavities.This study conducted a global review of the technical approaches employed for fabricating Cu-Nb composite superconducting cavities.We explored Cu-Nb composite superconducting cavities based on two technologies at the Institute of Modern Physics,Chinese Academy of Sciences(IMP,CAS),including their manufacturing processes,radio-frequency(RF)characteristics,and mechanical performance.These cavities exhibit robust mechanical stability.First,the investigation of several 1.3 GHz single-cell elliptical cavities using the Cu-Nb composite sheets indicated that the wavy structure at the Cu-Nb interface influenced the reliable welding of the Cu-Nb composite parts.We observed the generation and trapping of magnetic flux density during the T_c crossing of Nb in cooldown process.The cooling rates during the T_c crossing of Nb exerted a substantial impact on the performance of the cavities.Furthermore,we measured and analyzed the surface resistance R_(s)attributed to the trapped magnetic flux induced by the Seebeck effect after quenching events.Second,for the first time,a low-beta bulk Nb cavity was plated with Cu on its outer surface using electroplating technology.We achieved a high peak electric field E_(pk)of~88.8 MV/m at 2 K and the unloaded quality factor Q_(0)at the E_(pk)of 88.8 MV/m exceeded 1×10^(10).This demonstrated that the electroplating Cu on the bulk Nb cavity is a practical method of developing the Cu-Nb composite superconducting cavity with superior thermal stability.The results presented here provide valuable insights for applying Cu-Nb composite superconducting cavities in superconducting accelerators with stringent operational stability requirements. 展开更多
关键词 Superconducting radio-frequency cavities Cu-Nb composite Mechanical and thermal stability thermoelectrical effect Magnetic flux trapping effect
在线阅读 下载PDF
Efficient Reduction of Carrier Concentration in SnTe:The Case of Gd Doping 被引量:1
13
作者 Siqi Lin Shiyun Wang +4 位作者 Yanjiao Li Zhenyu Lai Xiaotang Yang Xinyu Lu Min Jin 《Acta Metallurgica Sinica(English Letters)》 2025年第5期859-868,共10页
Lead-free SnTe with naturally non-stoichiometric vacancies has a limited thermoelectric performance due to a deviated carrier concentration from the optimum.In this paper,we experimentally demonstrated that Gd with+3 ... Lead-free SnTe with naturally non-stoichiometric vacancies has a limited thermoelectric performance due to a deviated carrier concentration from the optimum.In this paper,we experimentally demonstrated that Gd with+3 valence state as a novel n-type dopant is an effective solution for reducing carrier concentration in SnTe.A lowest value of 7.6×10^(18) cm^(−3) has been achieved.Yet with the involvement of Gd doping,the slightly modified band structure requires a further Sndeficiency compensation to enhance the overall figure of merit zT.As a consequence,in the specific sample Sn_(0.91)Gd_(0.07)Te,we successfully achieved a low lattice thermal conductivity of 0.8 W/(m K)due to the high doping level and an improved zT approaching 0.8 at 850 K. 展开更多
关键词 SnTe Band engineering SOLUBILITY Thermoelectric performance
原文传递
Muscle‑Inspired Anisotropic Aramid Nanofibers Aerogel Exhibiting High‑Efficiency Thermoelectric Conversion and Precise Temperature Monitoring for Firefighting Clothing 被引量:1
14
作者 Zhicai Yu Yuhang Wan +8 位作者 Mi Zhou Md Hasib Mia Siqi Huo Lele Huang Jie Xu Qing Jiang Zhenrong Zheng Xiaodong Hu Hualing He 《Nano-Micro Letters》 2025年第9期213-236,共24页
Enhancing the firefighting protective clothing with exceptional thermal barrier and temperature sensing functions to ensure high fire safety for firefighters has long been anticipated,but it remains a major challenge.... Enhancing the firefighting protective clothing with exceptional thermal barrier and temperature sensing functions to ensure high fire safety for firefighters has long been anticipated,but it remains a major challenge.Herein,inspired by the human muscle,an anisotropic fire safety aerogel(ACMCA)with precise self-actuated temperature monitoring performance is developed by combining aramid nanofibers with eicosane/MXene to form an anisotropically oriented conductive network.By combining the two synergies of the negative temperaturedependent thermal conductive eicosane,which induces a high-temperature differential,and directionally ordered MXene that establishes a conductive network along the directional freezing direction.The resultant ACMCA exhibited remarkable thermoelectric properties,with S values reaching 46.78μV K^(−1)andκvalues as low as 0.048 W m^(−1)K^(−1)at room temperature.Moreover,the prepared anisotropic aerogel ACMCA exhibited electrical responsiveness to temperature variations,facilitating its application in intelligent temperature monitoring systems.The designed anisotropic aerogel ACMCA could be incorporated into the firefighting clothing as a thermal barrier layer,demonstrating a wide temperature sensing range(50-400℃)and a rapid response time for early high-temperature alerts(~1.43 s).This work provides novel insights into the design and application of temperature-sensitive anisotropic aramid nanofibers aerogel in firefighting clothing. 展开更多
关键词 Human muscle inspired Anisotropic thermoelectric aerogel Temperature sensing High-temperature warning Firefighting clothing
在线阅读 下载PDF
MXene-based thermoelectric fabric integrated with temperature and strain sensing for health monitoring 被引量:1
15
作者 Jun Peng Fangqing Ge +4 位作者 Weiyi Han Tao Wu Jinglei Tang Yuning Li Chaoxia Wang 《Journal of Materials Science & Technology》 2025年第9期272-280,共9页
Wearable thermoelectric devices hold significant promise in the realm of self-powered wearable electron-ics,offering applications in energy harvesting,movement tracking,and health monitoring.Nevertheless,developing th... Wearable thermoelectric devices hold significant promise in the realm of self-powered wearable electron-ics,offering applications in energy harvesting,movement tracking,and health monitoring.Nevertheless,developing thermoelectric devices with exceptional flexibility,enduring thermoelectric stability,multi-functional sensing,and comfortable wear remains a challenge.In this work,a stretchable MXene-based thermoelectric fabric is designed to accurately discern temperature and strain stimuli.This is achieved by constructing an adhesive polydopamine(PDA)layer on the nylon fabric surface,which facilitates the subsequent MXene attachment through hydrogen bonding.This fusion results in MXene-based thermo-electric fabric that excels in both temperature sensing and strain sensing.The resultant MXene-based thermoelectric fabric exhibits outstanding temperature detection capability and cyclic stability,while also delivering excellent sensitivity,rapid responsiveness(60 ms),and remarkable durability in strain sens-ing(3200 cycles).Moreover,when affixed to a mask,this MXene-based thermoelectric fabric utilizes the temperature difference between the body and the environment to harness body heat,converting it into electrical energy and accurately discerning the body’s respiratory rate.In addition,the MXene-based ther-moelectric fabric can monitor the state of the body’s joint through its own deformation.Furthermore,it possesses the capability to convert solar energy into heat.These findings indicate that MXene-based ther-moelectric fabric holds great promise for applications in power generation,motion tracking,and health monitoring. 展开更多
关键词 Mxene thermoelectric fabric Temperature sensing Strain sensing Energy harvesting
原文传递
Cost-efficient sunlight-driven thermoelectric electrolysis over Mo-doped Ni_(5)P_(4)nanosheets for highly efficient alkaline water/seawater splitting 被引量:1
16
作者 Peng Gao Yanping Zhang +3 位作者 Min Wang Wanfei Yu Zihao Yan Jianbao Li 《Journal of Materials Science & Technology》 2025年第8期134-144,共11页
Thermoelectric water spitting to hydrogen systems has great potential in the production of environment-friendly fuel using renewable solar energy in the future.In this work,we prepared porous nanosheet Mo doping Ni_(5... Thermoelectric water spitting to hydrogen systems has great potential in the production of environment-friendly fuel using renewable solar energy in the future.In this work,we prepared porous nanosheet Mo doping Ni_(5)P_(4)catalysts on nickel foam with efficient hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)performance in alkaline media.Density Functional Theory(DFT)calculations and experimental studies have shown that Mo doping deadeneds the interaction between H and O atomic orbitals of transition state water molecules,effectively weakening the activation energy of H_(2)O dissociation.Therefore,Mo doping is favorable for enhancing HER activity with overpotential at 10 mA cm^(-2)of 93 mV and Tafel slope of 40.1 mV dec^(-1)in 1 M KOH.Besides,it exhibits high alkaline OER activity with an ultra-low overpotential of 200 mV at 10 mA cm^(-2).Moreover,this catalyst only needs 1.537 V in a dual-electrode configuration of the electrolytic cell,which is much lower than the commercial Pt/C-RuO_(2)couple(1.614 V).In addition,we have developed and constructed a solar thermoelectric generator(TEG)that is capable of floating on water.This TEG has a continuous power output and an exceptionally long lifespan,providing a stable power supply to the synthesized catalyst electrolyzer.It can produce a maximum power output of over 90 mW,meeting the requirement of converting solar radiation heat into usable electricity.As a result,the system achieves productivity of 0.11 mL min^(-1)H_(2).This solar thermal energy conversion technology shows the possibility of large-scale industrial production of H_(2)and provides a new idea for exploring heat source utilization. 展开更多
关键词 Thermoelectric seawater spitting Ni_(5)P_(4) Mo doping HER OER
原文传递
Construction of Multifunctional Photothermal/Photocatalytic Materials Based on the Principle of Three Primary Colors:A Case Study of g-C_(3)N_(4)/Ag_(2)CrO_(4) 被引量:1
17
作者 Haiwen Wang Ting Wang +9 位作者 Zixian Zhu Sijie Ren Yu Huang Shangshu Qian Wanqi Tang Xuepeng Yin Hao Niu Xiaomeng Wang Tianpin Wu Shanmin Gao 《Carbon Energy》 2025年第6期145-159,共15页
The strategic design and synthesis of photothermal/photocatalytic materials are pivotal to realizing photothermal conversion water evaporation coupled with photocatalytic sewage purification functions.In this work,bas... The strategic design and synthesis of photothermal/photocatalytic materials are pivotal to realizing photothermal conversion water evaporation coupled with photocatalytic sewage purification functions.In this work,based on the principle of three primary colors,brick-red g-C_(3)N_(4)/Ag_(2)CrO_(4)composite was loaded onto a green polyurethane(PU)sponge using polyvinyl alcohol(PVA)as the linking agent.The resultant PU/PVA/g-C_(3)N_(4)/Ag_(2)CrO_(4)composite exhibits outstanding performance in simultaneous photothermal/photocatalytic water evaporation,pollutant degradation,sterilization,and thermoelectric generation.Under 1.0 kW m^(-2)irradiation,the water evaporation rate reaches 3.19 kg m^(-2)h-1,while a single thermoelectric module generates a maximum thermoelectric output power of 0.25 W m^(-2).Concurrently,rhodamine B(RhB)at a concentration of 4.0×10^(-4)mol L^(-1)undergoes complete photocatalytic degradation within 40 min.When the light intensity is 2.0 kW m^(-2),the evaporation rate soars to 8.52 kg m^(-2)h^(-1),and the thermoelectric power output increases to 1.1 W m^(-2).Furthermore,this photothermal/photocatalytic material based on the principle of three primary colors has excellent photothermal/photocatalytic antibacterial activity against Escherichia coli.By abandoning black light-absorbing materials,more active sites of the photocatalyst can be exposed.The g-C_(3)N_(4)/Ag_(2)CrO_(4)heterojunction accelerates the separation of photogenerated carriers,while the hydrophilic groups in the photothermal/photocatalytic materials reduce the water evaporation enthalpy.This research provides a novel approach for fabricating multi-function photothermal/photocatalytic materials,which could quicken the development of solution to freshwater and electricity energy shortages as well as environmental pollution issues. 展开更多
关键词 g-C_(3)N_(4)/Ag_(2)CrO_(4) photocatalytic PHOTOTHERMAL STERILIZATION thermoelectric generation three primary colors
在线阅读 下载PDF
Boosting the Thermoelectric Performance of Full-Heusler Fe_(2)VAl Alloy via Substituting Al Site with V
18
作者 ZHENG Yuanshun YU Jian +6 位作者 YE Xianfeng LIANG Dong ZHU Wanting NIE Xiaolei WEI Ping ZHAO Wenyu ZHANG Qingjie 《无机材料学报》 北大核心 2025年第12期1425-1432,共8页
Full-Heusler Fe_(2)VAl alloy has received significant attention for thermoelectric(TE)applications due to its high mechanical strength,favorable electrical transport behavior,and earth-abundant constituent elements.Ho... Full-Heusler Fe_(2)VAl alloy has received significant attention for thermoelectric(TE)applications due to its high mechanical strength,favorable electrical transport behavior,and earth-abundant constituent elements.However,its intrinsically high lattice thermal conductivity hinders the enhancement of the figure of merit(zT).In this study,a series of bulk materials with the nominal composition of Fe_(2)V_(1+x)Al_(1-x)(x=0-0.21)were prepared by the arc-melting method.Effects of substituting Al site with V on the phase composition,microstructure,band structure,and TE transport properties were systematically investigated.All materials exhibit a single phase with a partially disordered B2 structure.V-doping shifts the Fermi level into the conduction band,significantly enhancing the carrier concentration,and resulting in a high power factor of 4.5 mW·K^(-2)·m^(-1).Additionally,the lattice thermal conductivity is substantially reduced due to enhanced phonon scattering induced by the mass and stress fluctuations.Ultimately,a maximum zT of 0.14 is achieved for the material with x=0.15,which is nearly 280 times larger than that of undoped Fe_(2)VAl.This work demonstrates that substituting Al site with V can effectively improve the TE performance of Fe_(2)VAl alloy. 展开更多
关键词 Fe_(2)VAl-based full-Heusler alloy antisite defect microstructure thermoelectric performance
在线阅读 下载PDF
Accurate Measurements and Error Analysis of Bi_(2)Te_(3)-Based Low-Temperature Thermoelectrics
19
作者 Jie Zhang Yixuan Ge +9 位作者 Minhua Huang Xiaohan Qin Chao Xin Linhan Wang Wenfeng Du Tianbo Lu Huaizhou Zhao Wenjie Liang Yongjun Cao Guodong Li 《Chinese Physics Letters》 2025年第5期100-116,共17页
The accurate characterization of thermoelectric properties at low temperatures is crucial for the development of high-performance thermoelectric cooling devices. While measurement errors of thermoelectric properties a... The accurate characterization of thermoelectric properties at low temperatures is crucial for the development of high-performance thermoelectric cooling devices. While measurement errors of thermoelectric properties at temperatures above room temperature have been extensively discussed, there is a lack of standard measurement protocols and error analyses for low-temperature transport properties. In this study, we present a measurement system capable of characterizing all three key thermoelectric parameters, i.e., Seebeck coefficient, electrical conductivity, and thermal conductivity, for a single sample across a temperature range of 10 K to 300 K. We investigated six representative commercial Bi_(2)Te_(3)-based samples(three N-type and three P-type). Using an error propagation model, we systematically analyzed the measurement uncertainties of the three intrinsic parameters and the resulting thermoelectric figure of merit. Our findings reveal that measurement uncertainties for both N-type and P-type Bi_(2)Te_(3)-based materials can be effectively maintained below 5% in the temperature range of 40 K to 300 K. However, the uncertainties increase to over 10% at lower temperatures, primarily due to the relatively smaller values of electrical resistivity and Seebeck coefficients in this regime. This work establishes foundational data for Bi_(2)Te_(3)-based thermoelectric materials and provides a framework for broader investigations of advanced low-temperature thermoelectrics. 展开更多
关键词 measurement system thermoelectric parameters low temperature measurements thermoelectric properties thermoelectric cooling devices error analyses standard measurement protocols characterization thermoelectric properties
原文传递
Engineering of copper sulfide-based nanomaterials for thermoelectric application
20
作者 Binqi He Kai Zhang Maiyong Zhu 《Green Energy & Environment》 2025年第4期619-688,共70页
In the context of diminishing energy resources and worsening greenhouse effect,thermoelectric materials have great potential for sustainable development due to their green and environmentally friendly characteristics.... In the context of diminishing energy resources and worsening greenhouse effect,thermoelectric materials have great potential for sustainable development due to their green and environmentally friendly characteristics.Among inorganic thermoelectric materials,copper sulfide compounds have greater potential than others due to their abundant element reserves on Earth,lower usage costs,non-toxicity,and good biocompatibility.Compared to organic thermoelectric materials,the"phonon liquid-electron crystal"(PLEC)feature of copper sulfide compounds makes them have stronger thermoelectric performance.This review summarizes the latest research progress in the synthesis methods and thermoelectric modification strategies of copper sulfide compounds.It first explains the importance of the solid-phase method in the manufacture of thermoelectric devices,and then focuses on the great potential of nanoscale synthesis technology based on liquid-phase method in the preparation of thermoelectric materials.Finally,it systematically discusses several strategies for regulating the thermoelectric performance of copper sulfide compounds,including adjusting the chemical proportion of Cu_(2-x)S and introducing element doping to regulate the crystal structure,phase composition,chemical composition,band structure,and nanoscale microstructure of copper sulfide compounds,and directly affecting ZT value by adjusting conductivity and thermal conductivity.In addition,it discusses composite engineering based on copper sulfide compounds,including inorganic,organic,and metal compounds,and discusses tri-component compounds derived from sulfide copper.Finally,it discusses the main challenges and prospects of the development of copper sulfide-based thermoelectric materials,hoping that this review will promote the development of copper sulfide-based thermoelectric materials. 展开更多
关键词 NANOMATERIALS thermoelectric materials organic thermoelectric materialsthephonon diminishing energy resources sustainable development solid phase method greenhouse effectthermoelectric materials inorganic thermoelectric materialscopper sulfide compounds
在线阅读 下载PDF
上一页 1 2 57 下一页 到第
使用帮助 返回顶部