The thermodynamic charge performance of a variable-mass thermodynamic system was investigated by the simulation modeling and experimental analysis. Three sets of experiments were conducted for various charge time and ...The thermodynamic charge performance of a variable-mass thermodynamic system was investigated by the simulation modeling and experimental analysis. Three sets of experiments were conducted for various charge time and charge steam flow under three different control strategies of charge valve. Characteristic performance parameters from the average sub-cooled degree and the charging energy coefficient point of views were also defined to evaluate and predict the charge performance of system combined with the simulation model and experimental data. The results show that the average steam flow reflects the average sub-cooled degree qualitatively, while the charging energy coefficients of 74.6%, 69.9% and 100% relate to the end value of the average sub-cooled degree at 2.1, 2.9 and 0 respectively for the three sets of experiments. The mean and maximum deviations of the results predicted from those by experimental data are smaller than 6.8% and 10.8%, respectively. In conclusion, the decrease of average steam flow can effectively increase the charging energy coefficient in the same charge time condition and therefore improve the thermodynamic charge performance of system. While the increase of the charging energy coefficient by extending the charge time needs the consideration of the operating frequency for steam users.展开更多
At low temperatures the configurational phase space of a macroscopic complex system (e.g., a spin-glass) of N - 10^23 interacting particles may split into an exponential number Ωs - exp(const × N) of ergodic...At low temperatures the configurational phase space of a macroscopic complex system (e.g., a spin-glass) of N - 10^23 interacting particles may split into an exponential number Ωs - exp(const × N) of ergodic sub-spaces (thermodynamic states). It is usually assumed that the equilibrium collective behavior of such a system is determined by its ground thermodynamic states of the minimal free-energy density, and that the equilibrium free energies follow the distribution of exponentied decay. But actually for some complex systems, the equilibrium free-energy values may follow a Gaussian distribution within an intermediate temperature range, and consequently their equilibrium properties are contributed by excited thermodynamic states. Based on this analysis, the re-weighting parameter y in the cavity approach of spin-glasses is easily understood. Depending on the free-energy distribution, the optimal y can either be equal to or be strictly less than the inverse temperature β.展开更多
The paper deals with the performing of a critical analysis of the problems arising in matching the classical models of the statistical and phenomenological thermodynamics. The performed analysis shows that some concep...The paper deals with the performing of a critical analysis of the problems arising in matching the classical models of the statistical and phenomenological thermodynamics. The performed analysis shows that some concepts of the statistical and phenomenological methods of describing the classical systems do not quite correlate with each other. Particularly, in these methods various caloric ideal gas equations of state are employed, while the possibility existing in the thermodynamic cyclic processes to obtain the same distributions both due to a change of the particle concentration and owing to a change of temperature is not allowed for in the statistical methods. The above-mentioned difference of the equations of state is cleared away when using in the statistical functions corresponding to the canonical Gibbs equations instead of the Planck’s constant a new scale factor that depends on the parameters of a system and coincides with the Planck’s constant in going of the system to the degenerate state. Under such an approach, the statistical entropy is transformed into one of the forms of heat capacity. In its turn, the agreement of the methods under consideration in the question as to the dependence of the molecular distributions on the concentration of particles, apparently, will call for further refinement of the physical model of ideal gas and the techniques for its statistical description.展开更多
Ti-V-Fe-Mn body-centered cubic(BCC)solid solution alloys arouse extensive interests due to the superb hydrogen storage capacity.Understanding phase equilibrium that involves BCC phase is important when designing hydro...Ti-V-Fe-Mn body-centered cubic(BCC)solid solution alloys arouse extensive interests due to the superb hydrogen storage capacity.Understanding phase equilibrium that involves BCC phase is important when designing hydrogen storage materials.However,a reliable thermodynamic description of Ti-V-Fe-Mn system is lacking.To support thermodynamic modeling,ab initio calculations were conducted to determine formation enthalpies of theσand C14 Laves phases.The phase equilibria of Ti-V-Fe alloys at 1273 K and Ti-V-Mn alloys at 1273,1323 and 1373 K were investigated to elucidate the relationship between the BCC and C14 Laves phases.The thermodynamic parameters for the Ti-V-Fe system were revised.The thermodynamic description of the Ti-V-Mn system was established for the first time.Additionally,the V-Mn and V-Fe-Mn systems were thermodynamically reassessed for ensuring consistency in theσphase model.The computed results were comprehensively compared with experimental data,validating that model parameters were reliable.Furthermore,the thermodynamic database for the Ti-V-Fe-Mn system was adopted for predicting phase constitutions of as-cast hydrogen storage alloys,further demonstrating the practical applicability and reliability of the model parameters.展开更多
Mg-Zn-Mn alloys have the advantages of low cost,excellent mechanical properties,and high corrosion resistance.To clarify the phase equilibria of Mg-Zn-Mn alloy in the Mg-rich corners,the present work experimentally in...Mg-Zn-Mn alloys have the advantages of low cost,excellent mechanical properties,and high corrosion resistance.To clarify the phase equilibria of Mg-Zn-Mn alloy in the Mg-rich corners,the present work experimentally investigated the phase equilibria in the Mg-rich corner at 300-400°C with equilibrated alloy method using electron probe micro analyzer(EPMA),X-ray diffractometer(XRD),transmission electron microscopy(TEM),and differential scanning calorimeter(DSC).Mn atoms were found to dissolve into MgZn_(2) to form a ternary solid-solution type compound,in which Mn content can be up to 15.1at%at 400°C.Three-phase equilibrium ofα-Mg+MgZn_(2)+α-Mn and liquid+α-Mg+MgZn_(2) were confirmed at 400°C.Subsequently,thermodynamic modeling of the Mg-Zn-Mn system was carried out using the CALPHAD method based on the experimental data of this work and literature data.The calculated invariant reaction Liquid+α-Mn→α-Mg+MgZn_(2) at 430°C shows good agreement with the DSC results.In addition,the results of solidification path calculations explain the microstructure in the ascast and annealed alloys well.The agreement between the calculated results and experimental data proves the self-consistency of the thermodynamic database,which can provide guidance for the compositional design of Mg-Zn-Mn alloys.展开更多
The phase equilibria relationship of the system RbCl-PEG6000-H2O were investigated at temperatures of 288.2,298.2,and 308.2 K,the compositions of solid-liquid equilibria(SLE)and liquid-liquid equilibria(LLE)were deter...The phase equilibria relationship of the system RbCl-PEG6000-H2O were investigated at temperatures of 288.2,298.2,and 308.2 K,the compositions of solid-liquid equilibria(SLE)and liquid-liquid equilibria(LLE)were determined.The complete phase diagrams,binodal curve diagrams,and tie-line diagrams were all plotted.Results show that both solid-liquid equilibria and liquid-liquid equilibria relationships at each studied temperature.The complete phase diagrams at 288.2 K,298.2 K and 308.2 K consist of six phase regions:unsaturated liquid region(L),two saturated solutions with one solid phase of RbCl(L_S),one saturated liquid phase with two solid phases of PEG6000 and RbCl(2S+L),an aqueous two-phase region(2L),and a region with two liquids and one solid phase of RbCl(2L_S).With the increase in temperature,the layering ability of the aqueous two-phase system increases,and both regions(2L)and(2L_S)increase.The binodal curves were fitted using the nonlinear equations proposed by Mistry,Hu,and Jayapal.Additionally,the tie-line data were correlated with the Othmer-Tobias,Bancroft,Hand,and Bachman equations.The liquid-liquid equilibria at 288.2 K,298.2 K and 308.2 K were calculated using the NRTL model.The findings confirm that the experimental and calculated values are in close agreement,demonstrating the model’s effectiveness in representing the system’s behavior.展开更多
With the legislative development,the organic and inorganic composition separation has become the primary requirement for sewer sediment disposal,however the relevant technology has been rarely reported and the driving...With the legislative development,the organic and inorganic composition separation has become the primary requirement for sewer sediment disposal,however the relevant technology has been rarely reported and the driving mechanism was still unclear.In this study,direct disintegration of biopolymers and indirect broken of connection point were investigated on the hydrolysis and component separation.Three typical sewer sediment treatment approaches,i.e.,alkaline,thermal and cation exchange treatments were proposed,which represented the hydrolysis-driving forces of chemical hydrolysis,physical hydrolysis and innovative cation bridging break-age.The results showed that the organic and inorganic separation rates of sewer sediment driven by alkaline,thermal and cation exchange treatments reached 21.26%,23.80%,and 19.56%-48.0%,respectively,compared to 4.43%in control.The secondary structure of proteins was disrupted,transitioning from𝛼α-helix to𝛽β-turn and random coil.Meanwhile,much biopolymers were released from solid to the liquid phase.From thermody-namic perspective,sewer sediment deposition was controlled by short-range interfacial interactions described by extended Derjaguin-Landau-Verwey-Overbeek theory.Additionally,the separation of organic and inorganic components was positively correlated with the thermodynamic parameters(Corr=0.87),highlighted the robust-ness of various driving forces.And the flocculation energy barriers were 2.40(alkaline),1.60 times(thermal),and 4.02–4.97 times(cation exchange)compared to control group.The findings revealed the contrition differ-ence of direct disintegration of gelatinous biopolymers and indirect breakage of composition connection sites in sediment composition separation,filling the critical gaps in understanding the specific mechanisms of sediment biopolymer disintegration and intermolecular connection breakage.展开更多
(NbZrHfTi)C high-entropy ceramics,as an emerging class of ultra-high-temperature materials,have garnered significant interest due to their unique multi-principal-element crystal structure and exceptional hightemperatu...(NbZrHfTi)C high-entropy ceramics,as an emerging class of ultra-high-temperature materials,have garnered significant interest due to their unique multi-principal-element crystal structure and exceptional hightemperature properties.This study systematically investigates the mechanical properties of(NbZrHfTi)C high-entropy ceramics by employing first-principles density functional theory,combined with the Debye-Grüneisen model,to explore the variations in their thermophysical properties with temperature(0–2000 K)and pressure(0–30 GPa).Thermodynamically,the calculated mixing enthalpy and Gibbs free energy confirm the feasibility of forming a stable single-phase solid solution in(NbZrHfTi)C.The calculated results of the elastic stiffness constant indicate that the material meets the mechanical stability criteria of the cubic crystal system,further confirming the structural stability.Through evaluation of key mechanical parameters—bulk modulus,shear modulus,Young’s modulus,and Poisson’s ratio—we provide comprehensive insight into the macro-mechanical behaviour of the material and its correlation with the underlying microstructure.Notably,compared to traditional binary carbides and their average properties,(NbZrHfTi)C exhibits higher Vickers hardness(Approximately 28.5 GPa)and fracture toughness(Approximately 3.4 MPa⋅m^(1/2)),which can be primarily attributed to the lattice distortion and solid-solution strengthening mechanism.The study also utilizes the quasi-harmonic approximation method to predict the material’s thermophysical properties,including Debye temperature(initial value around 563 K),thermal expansion coefficient(approximately 8.9×10^(−6) K−1 at 2000 K),and other key parameters such as heat capacity at constant volume.The results show that within the studied pressure and temperature ranges,(NbZrHfTi)C consistently maintains a stable phase structure and good thermomechanical properties.The thermal expansion coefficient increasing with temperature,while heat capacity approaches the Dulong-Petit limit at elevated temperatures.These findings underscore the potential of(NbZrHfTi)C applications in ultra-high temperature thermal protection systems,cutting tool coatings,and nuclear structural materials.展开更多
The precise tuning of magnetic nanoparticle size and magnetic domains,thereby shaping magnetic properties.However,the dynamic evolution mechanisms of magnetic domain configurations in relation to electromagnetic(EM)at...The precise tuning of magnetic nanoparticle size and magnetic domains,thereby shaping magnetic properties.However,the dynamic evolution mechanisms of magnetic domain configurations in relation to electromagnetic(EM)attenuation behavior remain poorly understood.To address this gap,a thermodynamically controlled periodic coordination strategy is proposed to achieve precise modulation of magnetic nanoparticle spacing.This approach unveils the evolution of magnetic domain configurations,progressing from individual to coupled and ultimately to crosslinked domain configurations.A unique magnetic coupling phenomenon surpasses the Snoek limit in low-frequency range,which is observed through micromagnetic simulation.The crosslinked magnetic configuration achieves effective low-frequency EM wave absorption at 3.68 GHz,encompassing nearly the entire C-band.This exceptional magnetic interaction significantly enhances radar camouflage and thermal insulation properties.Additionally,a robust gradient metamaterial design extends coverage across the full band(2–40 GHz),effectively mitigating the impact of EM pollution on human health and environment.This comprehensive study elucidates the evolution mechanisms of magnetic domain configurations,addresses gaps in dynamic magnetic modulation,and provides novel insights for the development of high-performance,low-frequency EM wave absorption materials.展开更多
The Fe-Ti binary system was re-assessed using the CALPHAD method in order to improve the capability of being extrapolated to a ternary or higher-order system. Compared with previous assessments, the main focus was put...The Fe-Ti binary system was re-assessed using the CALPHAD method in order to improve the capability of being extrapolated to a ternary or higher-order system. Compared with previous assessments, the main focus was put on the thermodynamic description of the two intermetallic compounds Fe2Ti and FeTi. The C14_Laves phase Fe2Ti was described by the two-sublattice model, which is widely used at present. By checking the homogeneity range on the boundary of the ternary systems involving the binary, the phase boundary of this compound was further confirmed. The FeTi phase with a BCC_B2 crystal structure was treated as the ordered phase of the BCC_A2 phase and a unified Gibbs energy function was used to describe both the ordered and disordered phases. Reproduction of the specific heat capacities of these compounds was another aspect paid particular attention to. Comprehensive comparisons of the calculated and experimental results regarding the phase diagram and thermodynamic properties show a good agreement between them and prove the validity of the present thermodynamic description.展开更多
The Co-Cr-W ternary system was critically assessed using the CALPHAD technique.The solution phases including the liquid,γ-Co,ε-Co and α-Cr were described by a substitutional solution model.The σ,μ and R phases we...The Co-Cr-W ternary system was critically assessed using the CALPHAD technique.The solution phases including the liquid,γ-Co,ε-Co and α-Cr were described by a substitutional solution model.The σ,μ and R phases were described by three-sublattice models of(Co,W)8(Cr,W)4(Co,Cr,W)18,(Co,Cr,W)7W2(Co,Cr,W)4 and(Co,W)27(Cr,W)14(Co,Cr,W)12,respectively,in order to reproduce their homogeneity ranges.A self-consistent set of thermodynamic parameters for each phase was derived.The calculated isothermal sections at 1 000,1 200 and 1 350 ℃ are in good agreement with the experimental data.A eutectoid reaction of R μ+γ-Co+σ in this ternary system was predicted to occur at 1 022 ℃.展开更多
The thermal decomposition process ofjarosite residue and the solubility of various oxides presented in the decomposed residue in NH4C1-H20 system were studied. The results of heat decomposition ofjarosite residue show...The thermal decomposition process ofjarosite residue and the solubility of various oxides presented in the decomposed residue in NH4C1-H20 system were studied. The results of heat decomposition ofjarosite residue show that the insoluble ZnFe2O4 phase in the residue can be decomposed at temperatures ranging from 500 ℃ to 650 ℃ for 1 h. The OLI Systems software was used to study the thermodynamics of the solubility of various metal oxides existing in the decomposed residue in NH4CI-H20 system. The results show that the solubility ofZnO, PbO, CdO, CuO and Ag20 is high, while the solubility of Fe203 is less than 10-4 mol/L in the pH range from 4.0 to 9.0. The calculated data are in accordance with the experimental results.展开更多
Thermodynamics of the precipitation from Li-Fe(II)-P-H2O system at 298 K was investigated.The results demonstrate that LiFePO4 can be formed at room temperature under pH value of 0-11.3,and the impurities Li3PO4 and...Thermodynamics of the precipitation from Li-Fe(II)-P-H2O system at 298 K was investigated.The results demonstrate that LiFePO4 can be formed at room temperature under pH value of 0-11.3,and the impurities Li3PO4 and Fe(OH)2 will be yielded at pH value above 11.3 and 12.9,respectively.The optimum pH value for LiFePO4 precipitation is 8-10.5.Considering the low rate of phase transformation kinetics,metastable Li-Fe(II)-P-H2O system was also studied.The results indicate that equimolar ratio of co-precipitation precursor Fe3(PO4)2.8H2O and Li3PO4 cannot be obtained at the initial molar ratio 1:1:1 and 1:1:3 of Li:Fe:P.In contrast,equimolar ratio of the co-precipitation precursor can be yielded by adjusting the pH value to 7-9.2,matching the molar ratio 3:1:1 of Li:Fe:P,meaning that Li+-excess is one of the essential conditions for LiFePO4 preparation by co-precipitation method.展开更多
According to the principles of simultaneous equilibrium and mass equilibrium, the thermodynamics model of the precipitation-coordination equilibrium of Ni2+-C2H8N2- 2-2 4C O -H2O system was established, and calculati...According to the principles of simultaneous equilibrium and mass equilibrium, the thermodynamics model of the precipitation-coordination equilibrium of Ni2+-C2H8N2- 2-2 4C O -H2O system was established, and calculation for the relationships between concentration of each substance in solution and parameters was carried out, including pH value, concentrations of ethylenediamine and oxalate by MATLAB program. The results show that Ni exists as Ni2+and [Ni(C2O4)n]2-2n mainly at pH〈1 and pH=1-6, respectively. When pH〉6, the complex between Ni2+and ethylenediamine is predominant. The precursor of Ni microfiber was prepared by an oxalate precipitation process using ethylenediamine as a coordination agent, and the role of ethylenediamine in the growth of the precursor fiber was discussed. The Ni microfiber can be obtained by a thermal decomposition-reduction process of the precursor in N2 and H2 mixed atmosphere. The diameters and aspect ratios of the obtained Ni microfibers are 0.2-1 μm and 20-30, respectively.展开更多
Based on the available experimental data,the Bi-Ni binary system was optimized thermodynamically by the CALPHAD method.The solution phases,including liquid,fcc_A1(Ni) and rhombohedral_A7(Bi),were described as subs...Based on the available experimental data,the Bi-Ni binary system was optimized thermodynamically by the CALPHAD method.The solution phases,including liquid,fcc_A1(Ni) and rhombohedral_A7(Bi),were described as substitutional solution phases,of which the excess Gibbs energies were expressed with the Redlich-Kister polynomial.The intermetallic compound,BiNi,was modeled using three sublattices(Bi)(Ni,Va)(Ni,Va) considering its crystal structure(NiAs-type) and the compatibility of thermodynamic database in the multi-component systems,while Bi3Ni was treated as a stoichiometric compound.Finally,a set of self-consistent thermodynamic parameters formulating the Gibbs energies of various phases in this binary system were obtained.The calculated results are in reasonable agreement with the reported experimental data.展开更多
Thermodynamics for chemical vapor synthesis (CVS) of Nb nanopowder in NbCl5-H2-Ar system was investigated by using FactSage software. The validation experiments were conducted to confirm the thermodynamics points. T...Thermodynamics for chemical vapor synthesis (CVS) of Nb nanopowder in NbCl5-H2-Ar system was investigated by using FactSage software. The validation experiments were conducted to confirm the thermodynamics points. The results indicate that under the atmospheric pressure, the reduction approach from NbCl5(g) to Nb(s) is a stage-wise process with the formation of complex sub-chlorides, and is controllable at low hydrogen ratio (mole ratio of n(NbCl5):n(H2)<1:180) and low temperature (<1050 °C). Furthermore, a reasonable amount of inert loading gas is favorable to increase the reduction ratio of NbCl5 and the powder yield. The as-synthesized Nb nanopowder with the homogeneous size of 30-50 nm and the powder yield of 85% (mass fraction) is obtained by the CVS process under n(NbCl5):n(H2):n(Ar)=1:120:1 and 950 °C with the NbCl5 reduction rate of 96.1%.展开更多
According to the ion and molecule coexistence theory, a thermodynamic model of lead oxide activity in PbO-CaO-SiO2-FeO-Fe2O3 slag system was established at the temperature of 1273-1733 K. The activities of Pb O in sla...According to the ion and molecule coexistence theory, a thermodynamic model of lead oxide activity in PbO-CaO-SiO2-FeO-Fe2O3 slag system was established at the temperature of 1273-1733 K. The activities of Pb O in slag were calculated, and their equal activity curves were plotted. The influences of slag basicity Q, iron oxide rate R and temperature T on activity NPb O and activity coefficient γPbO were also investigated. Results show that the calculated values of γPb O are in good agreement with the reported experimental data, showing that the model can wholly embody the slag structural characteristics. NPbO departures positively from Raoult values, and increases with increasing Pb O content in slag but changes little with T. γPbO increases with increasing Q, and goes through the maximum with increasing R for basic slag(Q0.3). Results can be applied to the thermodynamic research and operational optimization of modern lead smelting technologies.展开更多
This paper is intended to determine physical parameters describing volumetric heat capacity and thermal conductivity of sea ice in u quasi-linear thermodynamic system using field observations. The quasi-linear thermod...This paper is intended to determine physical parameters describing volumetric heat capacity and thermal conductivity of sea ice in u quasi-linear thermodynamic system using field observations. The quasi-linear thermodynamic system of sea ice with unknown physical parameters is described, and the existence and uniqueness of its solution is proved. Then the physical parameters are taken as control variable, temperature devi- ations as objective function, and a parameter identification model is established. The existence of its optimal solution is discussed. To solve the identification model, a new algorithm containing genetic algorithm, Hooke- Jeeves algorithm and semi-implicit finite difference scheme is constructed. The physical parameters are calculated using the obser- vations measured at Nella Fjord around Zhongshan Station, Antarctic in CHINARE 2006. For comparability and consistency with other works, a new internationM standard named TEOS-10 is used. To examine the validity of the identified results, another sim- ulation for temperature profiles in different measurement period is operated. Numerical results show that better simulations of temperature distribution are possible with the identified parameters than EC1993. Therefore not only the identified parameters can be applied in sea ice modeling, but also this study can enrich and supplement observations of sea ice.展开更多
The thermodynamic re-assessment of Au-Pt binary system was carried out by using the Calphad method and based on the recent experimental data. The Gibbs energies of face-centred cubic and liquid phases were described b...The thermodynamic re-assessment of Au-Pt binary system was carried out by using the Calphad method and based on the recent experimental data. The Gibbs energies of face-centred cubic and liquid phases were described by a sub-regular solution model with the Redlich-Kister equation. Much effort was taken to reproduce the phase equilibrium results and thermodynamic properties of the solid phase, including the activity and mixing enthalpy. The constraint of the third law of thermodynamics was also considered in the assessment. According to the presently assessed results, the miscibility gap region in the Au-Pt system slightly shifts to the Au-rich side, and the critical !0oint of the miscibility gap is about 1200 ℃ and Au-56% Pt.展开更多
基金Project(20080431380) supported by the China Postdoctoral Science Foundation
文摘The thermodynamic charge performance of a variable-mass thermodynamic system was investigated by the simulation modeling and experimental analysis. Three sets of experiments were conducted for various charge time and charge steam flow under three different control strategies of charge valve. Characteristic performance parameters from the average sub-cooled degree and the charging energy coefficient point of views were also defined to evaluate and predict the charge performance of system combined with the simulation model and experimental data. The results show that the average steam flow reflects the average sub-cooled degree qualitatively, while the charging energy coefficients of 74.6%, 69.9% and 100% relate to the end value of the average sub-cooled degree at 2.1, 2.9 and 0 respectively for the three sets of experiments. The mean and maximum deviations of the results predicted from those by experimental data are smaller than 6.8% and 10.8%, respectively. In conclusion, the decrease of average steam flow can effectively increase the charging energy coefficient in the same charge time condition and therefore improve the thermodynamic charge performance of system. While the increase of the charging energy coefficient by extending the charge time needs the consideration of the operating frequency for steam users.
基金supported by National Natural Science Foundation of China under Grant No.10774150
文摘At low temperatures the configurational phase space of a macroscopic complex system (e.g., a spin-glass) of N - 10^23 interacting particles may split into an exponential number Ωs - exp(const × N) of ergodic sub-spaces (thermodynamic states). It is usually assumed that the equilibrium collective behavior of such a system is determined by its ground thermodynamic states of the minimal free-energy density, and that the equilibrium free energies follow the distribution of exponentied decay. But actually for some complex systems, the equilibrium free-energy values may follow a Gaussian distribution within an intermediate temperature range, and consequently their equilibrium properties are contributed by excited thermodynamic states. Based on this analysis, the re-weighting parameter y in the cavity approach of spin-glasses is easily understood. Depending on the free-energy distribution, the optimal y can either be equal to or be strictly less than the inverse temperature β.
文摘The paper deals with the performing of a critical analysis of the problems arising in matching the classical models of the statistical and phenomenological thermodynamics. The performed analysis shows that some concepts of the statistical and phenomenological methods of describing the classical systems do not quite correlate with each other. Particularly, in these methods various caloric ideal gas equations of state are employed, while the possibility existing in the thermodynamic cyclic processes to obtain the same distributions both due to a change of the particle concentration and owing to a change of temperature is not allowed for in the statistical methods. The above-mentioned difference of the equations of state is cleared away when using in the statistical functions corresponding to the canonical Gibbs equations instead of the Planck’s constant a new scale factor that depends on the parameters of a system and coincides with the Planck’s constant in going of the system to the degenerate state. Under such an approach, the statistical entropy is transformed into one of the forms of heat capacity. In its turn, the agreement of the methods under consideration in the question as to the dependence of the molecular distributions on the concentration of particles, apparently, will call for further refinement of the physical model of ideal gas and the techniques for its statistical description.
基金supported by the Natural Science Foundation of Shanghai(No.24ZR1425100)Young Elite Scientists Sponsorship Program by China Association for Science and Technology(No.YESS20210357)+1 种基金the financial supports from the open foundation of Guangxi Key Laboratory of Information Materials,Guilin University of Electronic Technology(No.211009-K)State Key Laboratory of Advanced Special Steel,Shanghai Key Laboratory of Advanced Ferrometallurgy and the Science and Technology Commission of Shanghai Municipality(No.19DZ2270200).
文摘Ti-V-Fe-Mn body-centered cubic(BCC)solid solution alloys arouse extensive interests due to the superb hydrogen storage capacity.Understanding phase equilibrium that involves BCC phase is important when designing hydrogen storage materials.However,a reliable thermodynamic description of Ti-V-Fe-Mn system is lacking.To support thermodynamic modeling,ab initio calculations were conducted to determine formation enthalpies of theσand C14 Laves phases.The phase equilibria of Ti-V-Fe alloys at 1273 K and Ti-V-Mn alloys at 1273,1323 and 1373 K were investigated to elucidate the relationship between the BCC and C14 Laves phases.The thermodynamic parameters for the Ti-V-Fe system were revised.The thermodynamic description of the Ti-V-Mn system was established for the first time.Additionally,the V-Mn and V-Fe-Mn systems were thermodynamically reassessed for ensuring consistency in theσphase model.The computed results were comprehensively compared with experimental data,validating that model parameters were reliable.Furthermore,the thermodynamic database for the Ti-V-Fe-Mn system was adopted for predicting phase constitutions of as-cast hydrogen storage alloys,further demonstrating the practical applicability and reliability of the model parameters.
基金financial support by the National Key Research and Development Program of China(No.2023YFB3809101)the National Natural Science Foundation of China(Nos.52371010 and 52422407)+1 种基金the Science and Technology Committee of Shanghai,China(No.21ZR1423600)the Open Project of State Key Laboratory of Baiyunobo Rare Earth Resources Researches and Comprehensive Utilization,China.
文摘Mg-Zn-Mn alloys have the advantages of low cost,excellent mechanical properties,and high corrosion resistance.To clarify the phase equilibria of Mg-Zn-Mn alloy in the Mg-rich corners,the present work experimentally investigated the phase equilibria in the Mg-rich corner at 300-400°C with equilibrated alloy method using electron probe micro analyzer(EPMA),X-ray diffractometer(XRD),transmission electron microscopy(TEM),and differential scanning calorimeter(DSC).Mn atoms were found to dissolve into MgZn_(2) to form a ternary solid-solution type compound,in which Mn content can be up to 15.1at%at 400°C.Three-phase equilibrium ofα-Mg+MgZn_(2)+α-Mn and liquid+α-Mg+MgZn_(2) were confirmed at 400°C.Subsequently,thermodynamic modeling of the Mg-Zn-Mn system was carried out using the CALPHAD method based on the experimental data of this work and literature data.The calculated invariant reaction Liquid+α-Mn→α-Mg+MgZn_(2) at 430°C shows good agreement with the DSC results.In addition,the results of solidification path calculations explain the microstructure in the ascast and annealed alloys well.The agreement between the calculated results and experimental data proves the self-consistency of the thermodynamic database,which can provide guidance for the compositional design of Mg-Zn-Mn alloys.
基金supported by the National Natural Science Foundation of China(U1507111).
文摘The phase equilibria relationship of the system RbCl-PEG6000-H2O were investigated at temperatures of 288.2,298.2,and 308.2 K,the compositions of solid-liquid equilibria(SLE)and liquid-liquid equilibria(LLE)were determined.The complete phase diagrams,binodal curve diagrams,and tie-line diagrams were all plotted.Results show that both solid-liquid equilibria and liquid-liquid equilibria relationships at each studied temperature.The complete phase diagrams at 288.2 K,298.2 K and 308.2 K consist of six phase regions:unsaturated liquid region(L),two saturated solutions with one solid phase of RbCl(L_S),one saturated liquid phase with two solid phases of PEG6000 and RbCl(2S+L),an aqueous two-phase region(2L),and a region with two liquids and one solid phase of RbCl(2L_S).With the increase in temperature,the layering ability of the aqueous two-phase system increases,and both regions(2L)and(2L_S)increase.The binodal curves were fitted using the nonlinear equations proposed by Mistry,Hu,and Jayapal.Additionally,the tie-line data were correlated with the Othmer-Tobias,Bancroft,Hand,and Bachman equations.The liquid-liquid equilibria at 288.2 K,298.2 K and 308.2 K were calculated using the NRTL model.The findings confirm that the experimental and calculated values are in close agreement,demonstrating the model’s effectiveness in representing the system’s behavior.
基金supported by Shaanxi Key Research and Development Program(No.2024SF-YBXM-546)the National Natural Science Foundation of China(No.52470161)the State Key Laboratory of Pollution Control and Resource Reuse Foundation(No.PCRRF21007).
文摘With the legislative development,the organic and inorganic composition separation has become the primary requirement for sewer sediment disposal,however the relevant technology has been rarely reported and the driving mechanism was still unclear.In this study,direct disintegration of biopolymers and indirect broken of connection point were investigated on the hydrolysis and component separation.Three typical sewer sediment treatment approaches,i.e.,alkaline,thermal and cation exchange treatments were proposed,which represented the hydrolysis-driving forces of chemical hydrolysis,physical hydrolysis and innovative cation bridging break-age.The results showed that the organic and inorganic separation rates of sewer sediment driven by alkaline,thermal and cation exchange treatments reached 21.26%,23.80%,and 19.56%-48.0%,respectively,compared to 4.43%in control.The secondary structure of proteins was disrupted,transitioning from𝛼α-helix to𝛽β-turn and random coil.Meanwhile,much biopolymers were released from solid to the liquid phase.From thermody-namic perspective,sewer sediment deposition was controlled by short-range interfacial interactions described by extended Derjaguin-Landau-Verwey-Overbeek theory.Additionally,the separation of organic and inorganic components was positively correlated with the thermodynamic parameters(Corr=0.87),highlighted the robust-ness of various driving forces.And the flocculation energy barriers were 2.40(alkaline),1.60 times(thermal),and 4.02–4.97 times(cation exchange)compared to control group.The findings revealed the contrition differ-ence of direct disintegration of gelatinous biopolymers and indirect breakage of composition connection sites in sediment composition separation,filling the critical gaps in understanding the specific mechanisms of sediment biopolymer disintegration and intermolecular connection breakage.
基金supported by the National Natural Science Foundation of China(Nos.92166105 and 52005053)High-Tech Industry Science and Technology Innovation Leading Program of Hunan Province(No.2020GK2085)the Science and Technology Innovation Program of Hunan Province(No.2021RC3096).
文摘(NbZrHfTi)C high-entropy ceramics,as an emerging class of ultra-high-temperature materials,have garnered significant interest due to their unique multi-principal-element crystal structure and exceptional hightemperature properties.This study systematically investigates the mechanical properties of(NbZrHfTi)C high-entropy ceramics by employing first-principles density functional theory,combined with the Debye-Grüneisen model,to explore the variations in their thermophysical properties with temperature(0–2000 K)and pressure(0–30 GPa).Thermodynamically,the calculated mixing enthalpy and Gibbs free energy confirm the feasibility of forming a stable single-phase solid solution in(NbZrHfTi)C.The calculated results of the elastic stiffness constant indicate that the material meets the mechanical stability criteria of the cubic crystal system,further confirming the structural stability.Through evaluation of key mechanical parameters—bulk modulus,shear modulus,Young’s modulus,and Poisson’s ratio—we provide comprehensive insight into the macro-mechanical behaviour of the material and its correlation with the underlying microstructure.Notably,compared to traditional binary carbides and their average properties,(NbZrHfTi)C exhibits higher Vickers hardness(Approximately 28.5 GPa)and fracture toughness(Approximately 3.4 MPa⋅m^(1/2)),which can be primarily attributed to the lattice distortion and solid-solution strengthening mechanism.The study also utilizes the quasi-harmonic approximation method to predict the material’s thermophysical properties,including Debye temperature(initial value around 563 K),thermal expansion coefficient(approximately 8.9×10^(−6) K−1 at 2000 K),and other key parameters such as heat capacity at constant volume.The results show that within the studied pressure and temperature ranges,(NbZrHfTi)C consistently maintains a stable phase structure and good thermomechanical properties.The thermal expansion coefficient increasing with temperature,while heat capacity approaches the Dulong-Petit limit at elevated temperatures.These findings underscore the potential of(NbZrHfTi)C applications in ultra-high temperature thermal protection systems,cutting tool coatings,and nuclear structural materials.
基金supported by the National Natural Science Foundation of China(22265021,52231007,and 12327804)the Aeronautical Science Foundation of China(2020Z056056003)Jiangxi Provincial Natural Science Foundation(20232BAB212004).
文摘The precise tuning of magnetic nanoparticle size and magnetic domains,thereby shaping magnetic properties.However,the dynamic evolution mechanisms of magnetic domain configurations in relation to electromagnetic(EM)attenuation behavior remain poorly understood.To address this gap,a thermodynamically controlled periodic coordination strategy is proposed to achieve precise modulation of magnetic nanoparticle spacing.This approach unveils the evolution of magnetic domain configurations,progressing from individual to coupled and ultimately to crosslinked domain configurations.A unique magnetic coupling phenomenon surpasses the Snoek limit in low-frequency range,which is observed through micromagnetic simulation.The crosslinked magnetic configuration achieves effective low-frequency EM wave absorption at 3.68 GHz,encompassing nearly the entire C-band.This exceptional magnetic interaction significantly enhances radar camouflage and thermal insulation properties.Additionally,a robust gradient metamaterial design extends coverage across the full band(2–40 GHz),effectively mitigating the impact of EM pollution on human health and environment.This comprehensive study elucidates the evolution mechanisms of magnetic domain configurations,addresses gaps in dynamic magnetic modulation,and provides novel insights for the development of high-performance,low-frequency EM wave absorption materials.
基金Project (IP08-092009) supported by Sino Swiss Science and Technology Cooperation (SSSTC)Project (50971136) supported by the National Natural Science Foundation of ChinaProject (1343-71134001013) supported by the Scholarship Award for Excellent Doctoral Student granted by Ministry of Education of China
文摘The Fe-Ti binary system was re-assessed using the CALPHAD method in order to improve the capability of being extrapolated to a ternary or higher-order system. Compared with previous assessments, the main focus was put on the thermodynamic description of the two intermetallic compounds Fe2Ti and FeTi. The C14_Laves phase Fe2Ti was described by the two-sublattice model, which is widely used at present. By checking the homogeneity range on the boundary of the ternary systems involving the binary, the phase boundary of this compound was further confirmed. The FeTi phase with a BCC_B2 crystal structure was treated as the ordered phase of the BCC_A2 phase and a unified Gibbs energy function was used to describe both the ordered and disordered phases. Reproduction of the specific heat capacities of these compounds was another aspect paid particular attention to. Comprehensive comparisons of the calculated and experimental results regarding the phase diagram and thermodynamic properties show a good agreement between them and prove the validity of the present thermodynamic description.
基金Project(50771027)supported by the National Basic Research Program of ChinaProject(50771027)supported by the National Natural Science Foundation of China
文摘The Co-Cr-W ternary system was critically assessed using the CALPHAD technique.The solution phases including the liquid,γ-Co,ε-Co and α-Cr were described by a substitutional solution model.The σ,μ and R phases were described by three-sublattice models of(Co,W)8(Cr,W)4(Co,Cr,W)18,(Co,Cr,W)7W2(Co,Cr,W)4 and(Co,W)27(Cr,W)14(Co,Cr,W)12,respectively,in order to reproduce their homogeneity ranges.A self-consistent set of thermodynamic parameters for each phase was derived.The calculated isothermal sections at 1 000,1 200 and 1 350 ℃ are in good agreement with the experimental data.A eutectoid reaction of R μ+γ-Co+σ in this ternary system was predicted to occur at 1 022 ℃.
基金Project(51090385) supported by the National Natural Science Foundation of China
文摘The thermal decomposition process ofjarosite residue and the solubility of various oxides presented in the decomposed residue in NH4C1-H20 system were studied. The results of heat decomposition ofjarosite residue show that the insoluble ZnFe2O4 phase in the residue can be decomposed at temperatures ranging from 500 ℃ to 650 ℃ for 1 h. The OLI Systems software was used to study the thermodynamics of the solubility of various metal oxides existing in the decomposed residue in NH4CI-H20 system. The results show that the solubility ofZnO, PbO, CdO, CuO and Ag20 is high, while the solubility of Fe203 is less than 10-4 mol/L in the pH range from 4.0 to 9.0. The calculated data are in accordance with the experimental results.
基金Project (2007CB613603) supported by the National Basic Research Program of China
文摘Thermodynamics of the precipitation from Li-Fe(II)-P-H2O system at 298 K was investigated.The results demonstrate that LiFePO4 can be formed at room temperature under pH value of 0-11.3,and the impurities Li3PO4 and Fe(OH)2 will be yielded at pH value above 11.3 and 12.9,respectively.The optimum pH value for LiFePO4 precipitation is 8-10.5.Considering the low rate of phase transformation kinetics,metastable Li-Fe(II)-P-H2O system was also studied.The results indicate that equimolar ratio of co-precipitation precursor Fe3(PO4)2.8H2O and Li3PO4 cannot be obtained at the initial molar ratio 1:1:1 and 1:1:3 of Li:Fe:P.In contrast,equimolar ratio of the co-precipitation precursor can be yielded by adjusting the pH value to 7-9.2,matching the molar ratio 3:1:1 of Li:Fe:P,meaning that Li+-excess is one of the essential conditions for LiFePO4 preparation by co-precipitation method.
基金Project(CX2012B046)supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(20090162120080)supported by the Doctorate Fund of Education Minister of China
文摘According to the principles of simultaneous equilibrium and mass equilibrium, the thermodynamics model of the precipitation-coordination equilibrium of Ni2+-C2H8N2- 2-2 4C O -H2O system was established, and calculation for the relationships between concentration of each substance in solution and parameters was carried out, including pH value, concentrations of ethylenediamine and oxalate by MATLAB program. The results show that Ni exists as Ni2+and [Ni(C2O4)n]2-2n mainly at pH〈1 and pH=1-6, respectively. When pH〉6, the complex between Ni2+and ethylenediamine is predominant. The precursor of Ni microfiber was prepared by an oxalate precipitation process using ethylenediamine as a coordination agent, and the role of ethylenediamine in the growth of the precursor fiber was discussed. The Ni microfiber can be obtained by a thermal decomposition-reduction process of the precursor in N2 and H2 mixed atmosphere. The diameters and aspect ratios of the obtained Ni microfibers are 0.2-1 μm and 20-30, respectively.
基金Projects(50371104,50771106and50731002)supported by the National Natural Science Foundation of ChinaProject(2008K22)supported by the Scientific Research Foundation of Hunan Provincial Department of Land&Resources,ChinaProject supported by Geology Exploration Foundation of Hunan Provincial Department of Land&Resources,China
文摘Based on the available experimental data,the Bi-Ni binary system was optimized thermodynamically by the CALPHAD method.The solution phases,including liquid,fcc_A1(Ni) and rhombohedral_A7(Bi),were described as substitutional solution phases,of which the excess Gibbs energies were expressed with the Redlich-Kister polynomial.The intermetallic compound,BiNi,was modeled using three sublattices(Bi)(Ni,Va)(Ni,Va) considering its crystal structure(NiAs-type) and the compatibility of thermodynamic database in the multi-component systems,while Bi3Ni was treated as a stoichiometric compound.Finally,a set of self-consistent thermodynamic parameters formulating the Gibbs energies of various phases in this binary system were obtained.The calculated results are in reasonable agreement with the reported experimental data.
基金Project(51102015)supported by the National Natural Science Foundation of China
文摘Thermodynamics for chemical vapor synthesis (CVS) of Nb nanopowder in NbCl5-H2-Ar system was investigated by using FactSage software. The validation experiments were conducted to confirm the thermodynamics points. The results indicate that under the atmospheric pressure, the reduction approach from NbCl5(g) to Nb(s) is a stage-wise process with the formation of complex sub-chlorides, and is controllable at low hydrogen ratio (mole ratio of n(NbCl5):n(H2)<1:180) and low temperature (<1050 °C). Furthermore, a reasonable amount of inert loading gas is favorable to increase the reduction ratio of NbCl5 and the powder yield. The as-synthesized Nb nanopowder with the homogeneous size of 30-50 nm and the powder yield of 85% (mass fraction) is obtained by the CVS process under n(NbCl5):n(H2):n(Ar)=1:120:1 and 950 °C with the NbCl5 reduction rate of 96.1%.
基金Project(2013BAB03B05)supported by the National Key Technology R&D Program of China during the 12th Five-Year Plan Period,ChinaProject(20133BCB23018)supported by the Foundation for Young Scientist(Jinggang Star)of Jiangxi Province,ChinaProject(2012ZBAB206002)supported by the Natural Science Foundation of Jiangxi Province,China
文摘According to the ion and molecule coexistence theory, a thermodynamic model of lead oxide activity in PbO-CaO-SiO2-FeO-Fe2O3 slag system was established at the temperature of 1273-1733 K. The activities of Pb O in slag were calculated, and their equal activity curves were plotted. The influences of slag basicity Q, iron oxide rate R and temperature T on activity NPb O and activity coefficient γPbO were also investigated. Results show that the calculated values of γPb O are in good agreement with the reported experimental data, showing that the model can wholly embody the slag structural characteristics. NPbO departures positively from Raoult values, and increases with increasing Pb O content in slag but changes little with T. γPbO increases with increasing Q, and goes through the maximum with increasing R for basic slag(Q0.3). Results can be applied to the thermodynamic research and operational optimization of modern lead smelting technologies.
文摘This paper is intended to determine physical parameters describing volumetric heat capacity and thermal conductivity of sea ice in u quasi-linear thermodynamic system using field observations. The quasi-linear thermodynamic system of sea ice with unknown physical parameters is described, and the existence and uniqueness of its solution is proved. Then the physical parameters are taken as control variable, temperature devi- ations as objective function, and a parameter identification model is established. The existence of its optimal solution is discussed. To solve the identification model, a new algorithm containing genetic algorithm, Hooke- Jeeves algorithm and semi-implicit finite difference scheme is constructed. The physical parameters are calculated using the obser- vations measured at Nella Fjord around Zhongshan Station, Antarctic in CHINARE 2006. For comparability and consistency with other works, a new internationM standard named TEOS-10 is used. To examine the validity of the identified results, another sim- ulation for temperature profiles in different measurement period is operated. Numerical results show that better simulations of temperature distribution are possible with the identified parameters than EC1993. Therefore not only the identified parameters can be applied in sea ice modeling, but also this study can enrich and supplement observations of sea ice.
基金Project (50871028) supported by the National Natural Science Foundation of ChinaProjects (N100702001,N090502002) supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project (NCET-09-0272) supported by the Program for New Century Excellent Talents in University of Ministry of Education, ChinaProject (200803) supported by Northeastern University Research Foundation for Doctor Candidates,China
文摘The thermodynamic re-assessment of Au-Pt binary system was carried out by using the Calphad method and based on the recent experimental data. The Gibbs energies of face-centred cubic and liquid phases were described by a sub-regular solution model with the Redlich-Kister equation. Much effort was taken to reproduce the phase equilibrium results and thermodynamic properties of the solid phase, including the activity and mixing enthalpy. The constraint of the third law of thermodynamics was also considered in the assessment. According to the presently assessed results, the miscibility gap region in the Au-Pt system slightly shifts to the Au-rich side, and the critical !0oint of the miscibility gap is about 1200 ℃ and Au-56% Pt.