Using a dynamic laser monitoring technique,the solubility of 3-nitro-1,2,4-triazole-5-one(NTO)was investigated in two different binary systems,namely hydroxylamine nitrate(HAN)-water and boric acid(HB)-water ranging f...Using a dynamic laser monitoring technique,the solubility of 3-nitro-1,2,4-triazole-5-one(NTO)was investigated in two different binary systems,namely hydroxylamine nitrate(HAN)-water and boric acid(HB)-water ranging from 278.15 K to 318.15 K.The solubility in each system was found to be positively correlated with temperature.Furthermore,solubility data were analyzed using four equations:the modified Apelblat equation,Van’t Hoff equation,λh equation and CNIBS/R-K equations,and they provided satisfactory results for both two systems.The average root-mean-square deviation(105RMSD)values for these models were less than 13.93.Calculations utilizing the Van’t Hoff equation and Gibbs equations facilitated the derivation of apparent thermodynamic properties of NTO dissolution in the two systems,including values for Gibbs free energy,enthalpy and entropy.The%ζ_(H)is larger than%ζ_(TS),and all the%ζ_(H)data are≥58.63%,indicating that the enthalpy make a greater contribution than entropy to theΔG_(soln)^(Θ).展开更多
Thermodynamic modeling is still themostwidely usedmethod to characterize aerosol acidity,a critical physicochemical property of atmospheric aerosols.However,it remains unclear whether gas-aerosol partitioning should b...Thermodynamic modeling is still themostwidely usedmethod to characterize aerosol acidity,a critical physicochemical property of atmospheric aerosols.However,it remains unclear whether gas-aerosol partitioning should be incorporated when thermodynamicmodels are employed to estimate the acidity of coarse particles.In this work,field measurements were conducted at a coastal city in northern China across three seasons,and covered wide ranges of temperature,relative humidity and NH_(3) concentrations.We examined the performance of different modes of ISORROPIA-II(a widely used aerosol thermodynamic model)in estimating aerosol acidity of coarse and fine particles.The M0 mode,which incorporates gas-phase data and runs the model in the forward mode,provided reasonable estimation of aerosol acidity for coarse and fine particles.Compared to M0,the M1 mode,which runs the model in the forward mode but does not include gas-phase data,may capture the general trend of aerosol acidity but underestimates pH for both coarse and fine particles;M2,which runs the model in the reverse mode,results in large errors in estimated aerosol pH for both coarse and fine particles and should not be used for aerosol acidity calculations.However,M1 significantly underestimates liquid water contents for both fine and coarse particles,while M2 provides reliable estimation of liquid water contents.In summary,our work highlights the importance of incorporating gas-aerosol partitioning when estimating coarse particle acidity,and thus may help improve our understanding of acidity of coarse particles.展开更多
Ti-V-Fe-Mn body-centered cubic(BCC)solid solution alloys arouse extensive interests due to the superb hydrogen storage capacity.Understanding phase equilibrium that involves BCC phase is important when designing hydro...Ti-V-Fe-Mn body-centered cubic(BCC)solid solution alloys arouse extensive interests due to the superb hydrogen storage capacity.Understanding phase equilibrium that involves BCC phase is important when designing hydrogen storage materials.However,a reliable thermodynamic description of Ti-V-Fe-Mn system is lacking.To support thermodynamic modeling,ab initio calculations were conducted to determine formation enthalpies of theσand C14 Laves phases.The phase equilibria of Ti-V-Fe alloys at 1273 K and Ti-V-Mn alloys at 1273,1323 and 1373 K were investigated to elucidate the relationship between the BCC and C14 Laves phases.The thermodynamic parameters for the Ti-V-Fe system were revised.The thermodynamic description of the Ti-V-Mn system was established for the first time.Additionally,the V-Mn and V-Fe-Mn systems were thermodynamically reassessed for ensuring consistency in theσphase model.The computed results were comprehensively compared with experimental data,validating that model parameters were reliable.Furthermore,the thermodynamic database for the Ti-V-Fe-Mn system was adopted for predicting phase constitutions of as-cast hydrogen storage alloys,further demonstrating the practical applicability and reliability of the model parameters.展开更多
The distributions of local structural units of calcium silicate melts were quantified by means of classical molecular dynamics simulation and a newly constructed structural thermodynamic model. The distribution of fiv...The distributions of local structural units of calcium silicate melts were quantified by means of classical molecular dynamics simulation and a newly constructed structural thermodynamic model. The distribution of five kinds of Si-O tetrahedra Qi from these two methods was compared with each other and also with the experimental Raman spectra, an excellent agreement was achieved. These not only displayed the panorama distribution of microstructural units in the whole composition range, but also proved that the thermodynamic model is suitable for the utilization as the subsequent application model of spectral experiments for the thermodynamic calculation. Meanwhile, the five refined regions mastered by different disproportionating reactions were obtained. Finally, the distributions of two kinds of connections between Qi were obtained, denoted as Qi-Ca-Qj and Qi-[Ob]-Qj, from the thermodynamic model, and a theoretical verification was given that the dominant connections for any composition are equivalent connections.展开更多
A universal thermodynamic model of calculating mass action concentrations for structural units or ion couples in ternary and binary strong electrolyte aqueous solution was developed based on the ion and molecule coexi...A universal thermodynamic model of calculating mass action concentrations for structural units or ion couples in ternary and binary strong electrolyte aqueous solution was developed based on the ion and molecule coexistence theory and verified in four kinds of binary aqueous solutions and two kinds of ternary aqueous solutions. The calculated mass action concentrations of structural units or ion couples in four binary aqueous solutions and two ternary solutions at 298.15 K have good agreement with the reported activity data from literatures after shifting the standard state and concentration unit. Therefore, the calculated mass action concentrations of structural units or ion couples from the developed universal thermodynamic model for ternary and binary aqueous solutions can be applied to predict reaction ability of components in ternary and binary strong electrolyte aqueous solutions. It is also proved that the assumptions applied in the developed thermodynamic model are correct and reasonable, i.e., strong electrolyte aqueous solution is composed of cations and anions as simple ions, H2O as simple molecule and other hydrous salt compounds as complex molecules. The calculated mass action concentrations of structural units or ion couples in ternary and binary strong electrolyte aqueous solutions strictly follow the mass action law.展开更多
According to the ion and molecule coexistence theory, a thermodynamic model of lead oxide activity in PbO-CaO-SiO2-FeO-Fe2O3 slag system was established at the temperature of 1273-1733 K. The activities of Pb O in sla...According to the ion and molecule coexistence theory, a thermodynamic model of lead oxide activity in PbO-CaO-SiO2-FeO-Fe2O3 slag system was established at the temperature of 1273-1733 K. The activities of Pb O in slag were calculated, and their equal activity curves were plotted. The influences of slag basicity Q, iron oxide rate R and temperature T on activity NPb O and activity coefficient γPbO were also investigated. Results show that the calculated values of γPb O are in good agreement with the reported experimental data, showing that the model can wholly embody the slag structural characteristics. NPbO departures positively from Raoult values, and increases with increasing Pb O content in slag but changes little with T. γPbO increases with increasing Q, and goes through the maximum with increasing R for basic slag(Q0.3). Results can be applied to the thermodynamic research and operational optimization of modern lead smelting technologies.展开更多
A coupled thermodynamic model of inclusions precipitation both in liquid and solid phase and microseg- regation of solute elements during solidification of heat-resistant steel containing cerium was established. Then ...A coupled thermodynamic model of inclusions precipitation both in liquid and solid phase and microseg- regation of solute elements during solidification of heat-resistant steel containing cerium was established. Then the model was validated by the SEM analysis of the industrial products. The type and amount of inclusions in solidifica- tion structure of 253MA heat-resistant steel were predicted by the model, and the valuable results for the inclusions controlling in 253MA steel were obtained. When the cerium addition increases, the types of inclusions transform from SiO2 and MnS to Ce2 O3 and Ce2O2 S in 253MA steel and the precipitation temperature of SiO2 and MnS decrea- ses. The inclusions CeS and CeN convert to Ce2 O3 and Ce2 O2 S as the oxygen content increases and Ce2 O3 and CeN convert to Ce2 O2 S, Ce3 S4, and MnS as the sulfur content increases. The formation temperature of SiO2 increases when the oxygen content increases and the MnS precipitation temperature increases when the sulfur content increa ses. There is only a small quantity of inclusions containing cerium in 253MA steel with high cleanliness, i. e. , low oxygen and sulfur contents. By contrast, a mass of SiO2 , MnS and Ce2 O2 S are formed in steel when the oxygen and sulfur contents are high enough. The condition that MnS precipitates in 253MA steel is 1.2wEo[O] +W[s]〉0. 01% and SiO2 precipitates when 2w[O] +wrs[S]〉0. 017% (W[S]0. 005%) and w[O]〉0. 006% (w[S]〉0. 005%).展开更多
Salt lake brine is a complex salt-water system under natural environment.Although many models can express the thermodynamic properties and phase equilibrium of electrolyte aqueous solution,the multi-temperature charac...Salt lake brine is a complex salt-water system under natural environment.Although many models can express the thermodynamic properties and phase equilibrium of electrolyte aqueous solution,the multi-temperature characteristics and predictability are still the goals of model development.In this study,a comprehensive thermodynamic model system is re-established based on the eNRTL model and some improvements:(1) new expression of long-range electrostatic term with symmetrical reference state is proposed to handle the electrolyte solution covering entire concentration range;(2) the temperature dependence of the binary interaction parameters is formulated with a Gibbs Helmholtz expression containing three temperature coefficients,the liquid parameters,which associated with Gibbs energy,enthalpy,and heat capacity contribution;and(3) liquid parameters and solid species data are regressed from properties and solubility data at full temperature range.Together the activity coefficient model,property models and parameters of liquid and solid offer a comprehensive thermodynamic model system for the typical bittern of MgCl2-CaCl2-H2 O binary and ternary systems,and it shows excellent agreement with the literature data for the ternary and binary systems.The successful prediction of complete phase diagram of ternary system shows that the model has the ability to deal with high concentration and high non-idealitv system,and the ability to extrapolate the temperature.展开更多
Based on mass balance and solubility product equations, a thermodynamic model enabling the calcula- tion of equilibrium carbonitride composition and relative amounts as a function of steel composition and tem- peratur...Based on mass balance and solubility product equations, a thermodynamic model enabling the calcula- tion of equilibrium carbonitride composition and relative amounts as a function of steel composition and tem- perature was developed, which provides a method to es- timate the carbonitride complete dissolution temperature for different steel compositions. Actual carbonitride pre- cipitation behavior was further verified in Ti-V-C-N microalloyed steel system. The model suggests that for higher IV] and [Ti] dissolved in steels, it is available to decrease the addition of C and N during alloy composi- tion design. The resultant longer fatigue life of the modified steel could be attributed to the more [V] and [Ti] dissolved in the matrix, inducing finer dispersion of carbonitrides. Therefore, this model is proved to be effective in determining better chemical composition for high-performance steels, leading to possible reductions in the cost of production and improvements in the combined mechanical properties of the steels.展开更多
It is still a challenging task to accurately and temperature-continuously express the thermodynamic properties and phase equilibrium behaviors of the salt-lake brine with multi-component,multitemperature and high conc...It is still a challenging task to accurately and temperature-continuously express the thermodynamic properties and phase equilibrium behaviors of the salt-lake brine with multi-component,multitemperature and high concentration.The essential subsystem of sulfate type brine,aqueous Li^(+)-Na^(+)-K^(+)-SO_(4)^(2-) and its subsystems across a temperature range from 250 K to 643 K are investigated with the improved comprehensive thermodynamic model.Liquid parameters(Δg_(IJ),Δh_(IJ),and ΔC_(p,IJ))associated with the contributions of Gibbs energy,enthalpy,and heat capacity to the binary interaction parameters,i.e.the temperature coefficients of eNRTL parameters formulated with a Gibbs Helmholtz expression,are determined via multi-objective optimization method.The solid constantsΔ_(f)G_(k)°^((298.15))andΔ_(f)H_(k)°^((298.15))of11 solid species occurred in the quaternary system are rebuilt from multi-temperature solubilities.The modeling results show the accurate representation of(1)solution properties and binary phase diagram at temperature ranges from eutectic points to 643 K;(2)isothermal phase diagrams for Li_(2)SO_(4)-Na_(2)SO_(4)-H_(2)O,Li_(2)SO_(4)-K_(2)SO_(4)-H_(2)O and Na_(2)SO_(4)-K_(2)SO_(4)-H_(2)O ternary systems.The predicted results of complete structure and polythermal phase diagram of ternary systems and the isothermal phase diagrams of quaternary system excellently match with the experimental data.展开更多
A thermodynamic model Mg x(Xs,Mg)6(Xl,Mg)8(Xs and Xl are elements smaller and larger than Mg)for long-period stacking ordered phases(LPSOs)was proposed based on two key factors:the Xs 6 Xl 8-type L12 clusters and the ...A thermodynamic model Mg x(Xs,Mg)6(Xl,Mg)8(Xs and Xl are elements smaller and larger than Mg)for long-period stacking ordered phases(LPSOs)was proposed based on two key factors:the Xs 6 Xl 8-type L12 clusters and the variation of chemical compositions.In general,all available LPSOs can be described with this model.As a representative system,Mg-Y-Zn with three LPSOs was investigated using the CALPHAD(calculation of phase diagram)approach aided with first-principles calculations.Two new three-phase equilibria were predicted and were validated by key experiments.The model-based descriptions will be the basis for the research and development of magnesium alloys.展开更多
Thermodynamic assessment of Ti-Co-Cu ternary system has been carried out by combining first-principle calculation and CALPHAD method. Firstly, formation enthalpies of stable and hypothesized compounds were calculated ...Thermodynamic assessment of Ti-Co-Cu ternary system has been carried out by combining first-principle calculation and CALPHAD method. Firstly, formation enthalpies of stable and hypothesized compounds were calculated by first-principles method. Then, based on reported experimental information, a thermodynamic description of the Ti-Co-Cu ternary system was performed. Solution phases were treated as substitutional solutions of which excess Gibbs energies were formulated by Redlich-Kister polynomial, and the intermediate phases were described with sublattice models. All measured isothermal sections were reasonably reproduced. In addition, liquidus projection of this ternary system was further calculated, which may be useful for relevant materials processing.展开更多
Most of the crude oils contain waxes which precipitate when temperature drops, resulting in deposition in pipelines and production equipment. It is necessary to set up a model which can predict the wax appearance tem-...Most of the crude oils contain waxes which precipitate when temperature drops, resulting in deposition in pipelines and production equipment. It is necessary to set up a model which can predict the wax appearance tem-perature and the amount of solid precipitated in the different conditions. A modified thermodynamic solid-liquid equilibrium model to calculate wax precipitation in crude oil systems has been developed recently. The assumption that precipitated waxes consist of several solid phases is adopted in this research, and the solid-solid transition is also considered in the modified model. The properties of the pseudo-components are determined by using empirical correlations. New correlations for properties of solid-solid and solid-liquid transitions are also established in this work on the basis of the data from the literature. The results predicted by the proposed model for three crude oil systems are compared with the experimental data and the calculated results from the literature, and good agreement is observed.展开更多
Scholars often see the gas adsorption technique as a straight-to-interpret technique and adopt the pore size distribution(PSD)given by the gas adsorption technique directly to interpret pore-structure-related issues.T...Scholars often see the gas adsorption technique as a straight-to-interpret technique and adopt the pore size distribution(PSD)given by the gas adsorption technique directly to interpret pore-structure-related issues.The oversimplification of interpreting shale PSD based on monogeometric thermodynamic models leads to apparent bias to the realistic pore network.This work aims at establishing a novel thermodynamic model for shale PSD interpretation.We simplified the pore space into two geometric types—cylinder-shaped and slit-shaped.Firstly,Low-temperature Nitrogen Adsorption data were analyzed utilizing two monogeometric models(cylindrical and slit)to generate PSD_(cyl).and PSD_(slit);Secondly,pore geometric segmentation was carried out using Watershed by flooding on typical SEM images to obtain the ratio of slit-shaped(∅_(s))and cylinder-shaped pores(∅_(c)).Combining the results of the two,we proposed a novel hybrid model.We performed pyrolysis,XRD,FE-SEM observation,quantitative comparison with the results obtained by the DFT model,and fractal analysis to discuss the validity of the obtained PSD_(Hybrid).The results showed that:the hybrid model proposed in this work could better reflect the real geometry of pore space and provide a more realistic PSD;compared with thermodynamic monogeometric models,PSD obtained from the hybrid model are closer to that from the DFT model,with an improvement in the deviation from the DFT model from 5.06%to 68.88%.The proposed hybrid model has essential application prospects for better interpretation of shale pore space.It is also worth noting that we suggest applying the proposed hybrid model for PSD analysis in the range of 5-100 nm.展开更多
We propose a unified thermodynamic model of flow-induced crystallization of polymer(uFIC),which incorporates not only the conformational entropy reduction but also the contributions of flow-induced chain orientation,t...We propose a unified thermodynamic model of flow-induced crystallization of polymer(uFIC),which incorporates not only the conformational entropy reduction but also the contributions of flow-induced chain orientation,the interaction of ordered segments,and the free energy of crystal nucleus and crystal morphology.Specifically,it clarifies the determining parameters of the critical crystal nucleus size,and is able to account for the acceleration of nucleation,the emergence of precursor,different crystal morphologies and structures induced by flow.Based on the nucleation barrier under flow,we analyze at which condition precursor may occur and how flow affects the competition among different crystal forms such as orthorhombic and hexagonal phases of polyethylene.According to the uFIC model,the different crystal morphologies and structures in the flow-temperature space have been clarified,which give a good agreement with experiments of FIC.展开更多
As an example of the La-Mg-Y system, the method how to set up the themaodynamic model of individual phases was introduced in the process of thermodynamic optimization. The solution phases (liquid, body-centered cubic...As an example of the La-Mg-Y system, the method how to set up the themaodynamic model of individual phases was introduced in the process of thermodynamic optimization. The solution phases (liquid, body-centered cubic, face-centered cubic, hexagonal close-packed and double hexagonal close-packed) were modeled with the Redlich-Kister equation. The compound energy model has been used to describe the thermodynamic functions of the intermetallic compounds in the La-Mg-Y systems. The compounds Mg2Y, Mg24Y5, Mg12La, Mg17La2, Mg41Las, Mg3La and Mg2La in the La-Mg-Y system were treated as the formulae (Mg,Y)2(La,Mg,Y), Mg24(La,Mg,Y)4Y, Mg12(La, Y), Mg17(La,Y)2, Mg41(La,Y)5, Mg3(La,Mg,Y) and Mg2(La, Y), respectively. A model (La, Mg,Y)0.5(La,Mg,Y)0.5 was applied to describe the compound MgM formed by MgLa and MgY in order to cope with the order-disorder transition between body-centered cubic solution (A2) and MgM with CsCl-type structure (B2) in the La-Mg-Y system. The Gibbs energies of individual phases were optimized in the La-Mg, La-Y and La-Mg-Y systems by CALPHAD technique. The projection of the liquidus surfaces for the La-Mg-Y system was predicted. The Mg-based alloys database including 36 binary and 15 ternary systems formed by Mg, Al, Cu, Ni, Mn, Zn and rare earth elements was set up in SGTE standard.展开更多
An interfacial equation of state based on perturbation theory for surfactant-oil-water system has been developed. By combining the interfacial equation of state with Boudh-Hir and Mansoori's model, a molecular the...An interfacial equation of state based on perturbation theory for surfactant-oil-water system has been developed. By combining the interfacial equation of state with Boudh-Hir and Mansoori's model, a molecular ther-modynamic model has been proposed. The interfacial tension of surfactant-oil-water systems can be calculated from the surface tensions of pure oil and water by this model. The interfacial tension data for sodium dodecyl sulphate-heptane-water system, polyoxyethylene n-octylphenol-heptane-water system and hexadecyl trimethyl ammonium bromide-heptane-water system have been correlated. By using the adjustable parameters obtained, the interfacial tensions of these systems at other temperatures have been predicted. Both the correlated and the predicted values are satisfactory.展开更多
Based on the free volume theory, lattice model, the Scatchard–Hildebrand theory, novel expressions of configuration partition function and excessive Gibbs free energy and component activity coefficients of solid solu...Based on the free volume theory, lattice model, the Scatchard–Hildebrand theory, novel expressions of configuration partition function and excessive Gibbs free energy and component activity coefficients of solid solutions were developed using configuration partition function and statistical thermodynamics of molecular interaction volume model (MIVM). Herein, the separation of the volume and energy parameters was achieved. The proposed model can reflect the contributions from both the molecular configuration micro-state number (entropy) and molecular interactions (enthalpy) toward excessive Gibbs free energy. The proposed equations are more consistent with the practical solid solutions. This model can use either the relevant binary infinite dilution activity coefficients or binary activity to describe and predict the thermodynamic properties of the multi-component solid solutions. Applications of the proposed model in some typical binary and ternary solid solution alloys revealed that the thermodynamic properties predicted by the proposed model were consistent with the experimental data and the proposed model was found to be superior to MIVM in terms of the prediction performance. Hence, it can be concluded that the proposed model exhibits good physical basis, applicability, stability and reliability.展开更多
A thermodynamic model of calculating mass action concentrations for structural units or ion couples in NaClO4-H2O and NaF-H2O binary solutions and NaClO4-NaF-H2O ternary strong electrolyte aqueous solutions was develo...A thermodynamic model of calculating mass action concentrations for structural units or ion couples in NaClO4-H2O and NaF-H2O binary solutions and NaClO4-NaF-H2O ternary strong electrolyte aqueous solutions was developed based on the ion and molecule coexistence theory (IMCT). A transformation coefficient was needed to compare the calculated mass action concentration and the reported activity, because they were usually obtained at different standard states and concentration units. The results show that transformation coefficients between the calculated mass action concentrations and the reported activities of the same components change in a very narrow range. The transformed mass action concentrations of structural units or ion couples in NaClO4-H2O and NaF-H2O binary solutions agree well with the reported activities. The transformed mass action concentrations of structural units or ion couples in NaClO4-NaF-H2O ternary solution are also in good agreement with the reported activities in a total ionic strength range from 0.1 to 0.9 mol/kg H2O by the 0.1 mol/kg step with different ionic strength fractions of 0, 0.2, 0.4, 0.5, 0.6, 0.8, and 1, respectively. The results indicate that the developed thermodynamic model can reveal the structural characteristics of binary and ternary strong electrolyte aqueous solutions, and the calculated mass action concentrations of structural units or ion couples also strictly follow the mass action law.展开更多
The investigated mantle bodies from the External Ligurians(Groppo di Gorro and Mt.Rocchetta)show evidences of a complex evolution determined by an early high temperature metasomatism,due to percolating melts of asthen...The investigated mantle bodies from the External Ligurians(Groppo di Gorro and Mt.Rocchetta)show evidences of a complex evolution determined by an early high temperature metasomatism,due to percolating melts of asthenospheric origin,and a later metasomatism at relatively high temperature by hydrothermal fluids,with formation of rodingites.At Groppo di Gorro,the serpentinization and chloritization processes obliterated totally the pyroxenite protolith,whereas at Mt.Rocchetta relics of peridotite and pyroxenite protoliths were preserved from serpentinization.The rodingite parageneses consist of diopside+vesuvianite+garnet+calcite+chlorite at Groppo di Gorro and garnet+diopside+serpentine±vesuvianite±prehnite±chlorite±pumpellyite at Mt.Rocchetta.Fluid inclusion measurements show that rodingitization occurred at relatively high temperatures(264-334℃ at 500 bar and 300-380℃ at 1 kbar).Garnet,the first phase of rodingite to form,consists of abundant hydrogarnet component at Groppo di Gorro,whereas it is mainly composed of grossular and andradite at Mt.Rocchetta.The last stage of rodingitization is characterized by the vesuvianite formation.Hydrogarnet nucleation requires high Ca and low silica fluids,whereas the formation of vesuvianite does not need CO2-poor fluids.The formation of calcite at Groppo di Gorro points to mildly oxidizing conditions compatible with hydrothermal fluids;the presence of andradite associated with serpentine and magnetite at Mt.Rocchetta suggests Fe^3+-bearing fluids with fO2 slightly higher than iron-magnetite buffer.We propose that the formation of the studied rodingite could be related to different pulses of hydrothermal fluids mainly occurring in an oceancontinent transitional setting and,locally,in an accretionary prism associated with intra-oceanic subduction.展开更多
文摘Using a dynamic laser monitoring technique,the solubility of 3-nitro-1,2,4-triazole-5-one(NTO)was investigated in two different binary systems,namely hydroxylamine nitrate(HAN)-water and boric acid(HB)-water ranging from 278.15 K to 318.15 K.The solubility in each system was found to be positively correlated with temperature.Furthermore,solubility data were analyzed using four equations:the modified Apelblat equation,Van’t Hoff equation,λh equation and CNIBS/R-K equations,and they provided satisfactory results for both two systems.The average root-mean-square deviation(105RMSD)values for these models were less than 13.93.Calculations utilizing the Van’t Hoff equation and Gibbs equations facilitated the derivation of apparent thermodynamic properties of NTO dissolution in the two systems,including values for Gibbs free energy,enthalpy and entropy.The%ζ_(H)is larger than%ζ_(TS),and all the%ζ_(H)data are≥58.63%,indicating that the enthalpy make a greater contribution than entropy to theΔG_(soln)^(Θ).
基金supported by the National Natural Science Foundation of China (Nos.42022050 and 42277088)the Guangdong Basic and Applied Basic Research Fund Committee (Nos.2021A1515011248 and 2023A1515012010)the Guangdong Foundation for the Program of Science and Technology Research (No.2020B1212060053).
文摘Thermodynamic modeling is still themostwidely usedmethod to characterize aerosol acidity,a critical physicochemical property of atmospheric aerosols.However,it remains unclear whether gas-aerosol partitioning should be incorporated when thermodynamicmodels are employed to estimate the acidity of coarse particles.In this work,field measurements were conducted at a coastal city in northern China across three seasons,and covered wide ranges of temperature,relative humidity and NH_(3) concentrations.We examined the performance of different modes of ISORROPIA-II(a widely used aerosol thermodynamic model)in estimating aerosol acidity of coarse and fine particles.The M0 mode,which incorporates gas-phase data and runs the model in the forward mode,provided reasonable estimation of aerosol acidity for coarse and fine particles.Compared to M0,the M1 mode,which runs the model in the forward mode but does not include gas-phase data,may capture the general trend of aerosol acidity but underestimates pH for both coarse and fine particles;M2,which runs the model in the reverse mode,results in large errors in estimated aerosol pH for both coarse and fine particles and should not be used for aerosol acidity calculations.However,M1 significantly underestimates liquid water contents for both fine and coarse particles,while M2 provides reliable estimation of liquid water contents.In summary,our work highlights the importance of incorporating gas-aerosol partitioning when estimating coarse particle acidity,and thus may help improve our understanding of acidity of coarse particles.
基金supported by the Natural Science Foundation of Shanghai(No.24ZR1425100)Young Elite Scientists Sponsorship Program by China Association for Science and Technology(No.YESS20210357)+1 种基金the financial supports from the open foundation of Guangxi Key Laboratory of Information Materials,Guilin University of Electronic Technology(No.211009-K)State Key Laboratory of Advanced Special Steel,Shanghai Key Laboratory of Advanced Ferrometallurgy and the Science and Technology Commission of Shanghai Municipality(No.19DZ2270200).
文摘Ti-V-Fe-Mn body-centered cubic(BCC)solid solution alloys arouse extensive interests due to the superb hydrogen storage capacity.Understanding phase equilibrium that involves BCC phase is important when designing hydrogen storage materials.However,a reliable thermodynamic description of Ti-V-Fe-Mn system is lacking.To support thermodynamic modeling,ab initio calculations were conducted to determine formation enthalpies of theσand C14 Laves phases.The phase equilibria of Ti-V-Fe alloys at 1273 K and Ti-V-Mn alloys at 1273,1323 and 1373 K were investigated to elucidate the relationship between the BCC and C14 Laves phases.The thermodynamic parameters for the Ti-V-Fe system were revised.The thermodynamic description of the Ti-V-Mn system was established for the first time.Additionally,the V-Mn and V-Fe-Mn systems were thermodynamically reassessed for ensuring consistency in theσphase model.The computed results were comprehensively compared with experimental data,validating that model parameters were reliable.Furthermore,the thermodynamic database for the Ti-V-Fe-Mn system was adopted for predicting phase constitutions of as-cast hydrogen storage alloys,further demonstrating the practical applicability and reliability of the model parameters.
基金Project(2012CB722805)supported by the National Basic Research Program of ChinaProjects(50504010,50974083,51174131,51374141)supported by the National Natural Science Foundation of China+1 种基金Project(50774112)supported by the Joint Fund of NSFC and Baosteel,ChinaProject(07QA4021)supported by the Shanghai"Phosphor"Science Foundation,China
文摘The distributions of local structural units of calcium silicate melts were quantified by means of classical molecular dynamics simulation and a newly constructed structural thermodynamic model. The distribution of five kinds of Si-O tetrahedra Qi from these two methods was compared with each other and also with the experimental Raman spectra, an excellent agreement was achieved. These not only displayed the panorama distribution of microstructural units in the whole composition range, but also proved that the thermodynamic model is suitable for the utilization as the subsequent application model of spectral experiments for the thermodynamic calculation. Meanwhile, the five refined regions mastered by different disproportionating reactions were obtained. Finally, the distributions of two kinds of connections between Qi were obtained, denoted as Qi-Ca-Qj and Qi-[Ob]-Qj, from the thermodynamic model, and a theoretical verification was given that the dominant connections for any composition are equivalent connections.
基金Project supported by Publication Foundation of National Science and Technology Academic Books of China
文摘A universal thermodynamic model of calculating mass action concentrations for structural units or ion couples in ternary and binary strong electrolyte aqueous solution was developed based on the ion and molecule coexistence theory and verified in four kinds of binary aqueous solutions and two kinds of ternary aqueous solutions. The calculated mass action concentrations of structural units or ion couples in four binary aqueous solutions and two ternary solutions at 298.15 K have good agreement with the reported activity data from literatures after shifting the standard state and concentration unit. Therefore, the calculated mass action concentrations of structural units or ion couples from the developed universal thermodynamic model for ternary and binary aqueous solutions can be applied to predict reaction ability of components in ternary and binary strong electrolyte aqueous solutions. It is also proved that the assumptions applied in the developed thermodynamic model are correct and reasonable, i.e., strong electrolyte aqueous solution is composed of cations and anions as simple ions, H2O as simple molecule and other hydrous salt compounds as complex molecules. The calculated mass action concentrations of structural units or ion couples in ternary and binary strong electrolyte aqueous solutions strictly follow the mass action law.
基金Project(2013BAB03B05)supported by the National Key Technology R&D Program of China during the 12th Five-Year Plan Period,ChinaProject(20133BCB23018)supported by the Foundation for Young Scientist(Jinggang Star)of Jiangxi Province,ChinaProject(2012ZBAB206002)supported by the Natural Science Foundation of Jiangxi Province,China
文摘According to the ion and molecule coexistence theory, a thermodynamic model of lead oxide activity in PbO-CaO-SiO2-FeO-Fe2O3 slag system was established at the temperature of 1273-1733 K. The activities of Pb O in slag were calculated, and their equal activity curves were plotted. The influences of slag basicity Q, iron oxide rate R and temperature T on activity NPb O and activity coefficient γPbO were also investigated. Results show that the calculated values of γPb O are in good agreement with the reported experimental data, showing that the model can wholly embody the slag structural characteristics. NPbO departures positively from Raoult values, and increases with increasing Pb O content in slag but changes little with T. γPbO increases with increasing Q, and goes through the maximum with increasing R for basic slag(Q0.3). Results can be applied to the thermodynamic research and operational optimization of modern lead smelting technologies.
基金Sponsored by National Key Basic Research Program of China(2012CB626812)National Natural Science Foundation of China(51104039)Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-11-0077)
文摘A coupled thermodynamic model of inclusions precipitation both in liquid and solid phase and microseg- regation of solute elements during solidification of heat-resistant steel containing cerium was established. Then the model was validated by the SEM analysis of the industrial products. The type and amount of inclusions in solidifica- tion structure of 253MA heat-resistant steel were predicted by the model, and the valuable results for the inclusions controlling in 253MA steel were obtained. When the cerium addition increases, the types of inclusions transform from SiO2 and MnS to Ce2 O3 and Ce2O2 S in 253MA steel and the precipitation temperature of SiO2 and MnS decrea- ses. The inclusions CeS and CeN convert to Ce2 O3 and Ce2 O2 S as the oxygen content increases and Ce2 O3 and CeN convert to Ce2 O2 S, Ce3 S4, and MnS as the sulfur content increases. The formation temperature of SiO2 increases when the oxygen content increases and the MnS precipitation temperature increases when the sulfur content increa ses. There is only a small quantity of inclusions containing cerium in 253MA steel with high cleanliness, i. e. , low oxygen and sulfur contents. By contrast, a mass of SiO2 , MnS and Ce2 O2 S are formed in steel when the oxygen and sulfur contents are high enough. The condition that MnS precipitates in 253MA steel is 1.2wEo[O] +W[s]〉0. 01% and SiO2 precipitates when 2w[O] +wrs[S]〉0. 017% (W[S]0. 005%) and w[O]〉0. 006% (w[S]〉0. 005%).
基金financial support of the National Natural Science Foundation of China(U1407204,U1707602)the Yangtze Scholars and Innovative Research Team in University of Education of China+1 种基金the Innovative Research Team of Tianjin Municipal Education Commission(TD12-5004)Foundation of Tianjin Key Laboratory of Marine Resources and Chemistry(201602)。
文摘Salt lake brine is a complex salt-water system under natural environment.Although many models can express the thermodynamic properties and phase equilibrium of electrolyte aqueous solution,the multi-temperature characteristics and predictability are still the goals of model development.In this study,a comprehensive thermodynamic model system is re-established based on the eNRTL model and some improvements:(1) new expression of long-range electrostatic term with symmetrical reference state is proposed to handle the electrolyte solution covering entire concentration range;(2) the temperature dependence of the binary interaction parameters is formulated with a Gibbs Helmholtz expression containing three temperature coefficients,the liquid parameters,which associated with Gibbs energy,enthalpy,and heat capacity contribution;and(3) liquid parameters and solid species data are regressed from properties and solubility data at full temperature range.Together the activity coefficient model,property models and parameters of liquid and solid offer a comprehensive thermodynamic model system for the typical bittern of MgCl2-CaCl2-H2 O binary and ternary systems,and it shows excellent agreement with the literature data for the ternary and binary systems.The successful prediction of complete phase diagram of ternary system shows that the model has the ability to deal with high concentration and high non-idealitv system,and the ability to extrapolate the temperature.
基金financially supported by the Science and Technology Support Project of Jiangxi Province(No. 20112BBE50006)Young Scientists of Jiangxi Province Training Objects(No.20133BCB23032)
文摘Based on mass balance and solubility product equations, a thermodynamic model enabling the calcula- tion of equilibrium carbonitride composition and relative amounts as a function of steel composition and tem- perature was developed, which provides a method to es- timate the carbonitride complete dissolution temperature for different steel compositions. Actual carbonitride pre- cipitation behavior was further verified in Ti-V-C-N microalloyed steel system. The model suggests that for higher IV] and [Ti] dissolved in steels, it is available to decrease the addition of C and N during alloy composi- tion design. The resultant longer fatigue life of the modified steel could be attributed to the more [V] and [Ti] dissolved in the matrix, inducing finer dispersion of carbonitrides. Therefore, this model is proved to be effective in determining better chemical composition for high-performance steels, leading to possible reductions in the cost of production and improvements in the combined mechanical properties of the steels.
基金financial support of the National Natural Science Foundation of China(U1707602,U1407204)Yangtze Scholars and Innovative Research Team in University of Education of China,the Innovative Research Team of Tianjin Municipal Education Commission(TD125004)。
文摘It is still a challenging task to accurately and temperature-continuously express the thermodynamic properties and phase equilibrium behaviors of the salt-lake brine with multi-component,multitemperature and high concentration.The essential subsystem of sulfate type brine,aqueous Li^(+)-Na^(+)-K^(+)-SO_(4)^(2-) and its subsystems across a temperature range from 250 K to 643 K are investigated with the improved comprehensive thermodynamic model.Liquid parameters(Δg_(IJ),Δh_(IJ),and ΔC_(p,IJ))associated with the contributions of Gibbs energy,enthalpy,and heat capacity to the binary interaction parameters,i.e.the temperature coefficients of eNRTL parameters formulated with a Gibbs Helmholtz expression,are determined via multi-objective optimization method.The solid constantsΔ_(f)G_(k)°^((298.15))andΔ_(f)H_(k)°^((298.15))of11 solid species occurred in the quaternary system are rebuilt from multi-temperature solubilities.The modeling results show the accurate representation of(1)solution properties and binary phase diagram at temperature ranges from eutectic points to 643 K;(2)isothermal phase diagrams for Li_(2)SO_(4)-Na_(2)SO_(4)-H_(2)O,Li_(2)SO_(4)-K_(2)SO_(4)-H_(2)O and Na_(2)SO_(4)-K_(2)SO_(4)-H_(2)O ternary systems.The predicted results of complete structure and polythermal phase diagram of ternary systems and the isothermal phase diagrams of quaternary system excellently match with the experimental data.
基金This work was supported by the National Key Research and Development Plan(No.2016YFB0701202).K.Chang ac-knowledges the CAS Pioneer Hundred Talents Program.Pro-fessor Zi-Kui Liu is greatly acknowledged for the discussion about the general thermodynamic model for LPSOs.
文摘A thermodynamic model Mg x(Xs,Mg)6(Xl,Mg)8(Xs and Xl are elements smaller and larger than Mg)for long-period stacking ordered phases(LPSOs)was proposed based on two key factors:the Xs 6 Xl 8-type L12 clusters and the variation of chemical compositions.In general,all available LPSOs can be described with this model.As a representative system,Mg-Y-Zn with three LPSOs was investigated using the CALPHAD(calculation of phase diagram)approach aided with first-principles calculations.Two new three-phase equilibria were predicted and were validated by key experiments.The model-based descriptions will be the basis for the research and development of magnesium alloys.
基金financially supported by the National Natural Science Foundation of China (Grant No. 50671122)
文摘Thermodynamic assessment of Ti-Co-Cu ternary system has been carried out by combining first-principle calculation and CALPHAD method. Firstly, formation enthalpies of stable and hypothesized compounds were calculated by first-principles method. Then, based on reported experimental information, a thermodynamic description of the Ti-Co-Cu ternary system was performed. Solution phases were treated as substitutional solutions of which excess Gibbs energies were formulated by Redlich-Kister polynomial, and the intermediate phases were described with sublattice models. All measured isothermal sections were reasonably reproduced. In addition, liquidus projection of this ternary system was further calculated, which may be useful for relevant materials processing.
基金Supported by the National Natural Science Foundation of China (No.10272029).
文摘Most of the crude oils contain waxes which precipitate when temperature drops, resulting in deposition in pipelines and production equipment. It is necessary to set up a model which can predict the wax appearance tem-perature and the amount of solid precipitated in the different conditions. A modified thermodynamic solid-liquid equilibrium model to calculate wax precipitation in crude oil systems has been developed recently. The assumption that precipitated waxes consist of several solid phases is adopted in this research, and the solid-solid transition is also considered in the modified model. The properties of the pseudo-components are determined by using empirical correlations. New correlations for properties of solid-solid and solid-liquid transitions are also established in this work on the basis of the data from the literature. The results predicted by the proposed model for three crude oil systems are compared with the experimental data and the calculated results from the literature, and good agreement is observed.
基金financially supported by the National Key R&D Program of China(Grant No.2017YFC0603106)the Youth Program of National Natural Science Foundation of China(Grant No.41802148)the State Key Laboratory of Petroleum Resources and Prospecting(Grant No.2462017YJRC025,Grant No.PRP/indep04-1611)
文摘Scholars often see the gas adsorption technique as a straight-to-interpret technique and adopt the pore size distribution(PSD)given by the gas adsorption technique directly to interpret pore-structure-related issues.The oversimplification of interpreting shale PSD based on monogeometric thermodynamic models leads to apparent bias to the realistic pore network.This work aims at establishing a novel thermodynamic model for shale PSD interpretation.We simplified the pore space into two geometric types—cylinder-shaped and slit-shaped.Firstly,Low-temperature Nitrogen Adsorption data were analyzed utilizing two monogeometric models(cylindrical and slit)to generate PSD_(cyl).and PSD_(slit);Secondly,pore geometric segmentation was carried out using Watershed by flooding on typical SEM images to obtain the ratio of slit-shaped(∅_(s))and cylinder-shaped pores(∅_(c)).Combining the results of the two,we proposed a novel hybrid model.We performed pyrolysis,XRD,FE-SEM observation,quantitative comparison with the results obtained by the DFT model,and fractal analysis to discuss the validity of the obtained PSD_(Hybrid).The results showed that:the hybrid model proposed in this work could better reflect the real geometry of pore space and provide a more realistic PSD;compared with thermodynamic monogeometric models,PSD obtained from the hybrid model are closer to that from the DFT model,with an improvement in the deviation from the DFT model from 5.06%to 68.88%.The proposed hybrid model has essential application prospects for better interpretation of shale pore space.It is also worth noting that we suggest applying the proposed hybrid model for PSD analysis in the range of 5-100 nm.
基金financially supported by the National Natural Science Foundation of China(Nos.51890872 and 51633009)the National Key R&D Program of China(2018YFB0704200)。
文摘We propose a unified thermodynamic model of flow-induced crystallization of polymer(uFIC),which incorporates not only the conformational entropy reduction but also the contributions of flow-induced chain orientation,the interaction of ordered segments,and the free energy of crystal nucleus and crystal morphology.Specifically,it clarifies the determining parameters of the critical crystal nucleus size,and is able to account for the acceleration of nucleation,the emergence of precursor,different crystal morphologies and structures induced by flow.Based on the nucleation barrier under flow,we analyze at which condition precursor may occur and how flow affects the competition among different crystal forms such as orthorhombic and hexagonal phases of polyethylene.According to the uFIC model,the different crystal morphologies and structures in the flow-temperature space have been clarified,which give a good agreement with experiments of FIC.
基金This work was financially supported by the National Natural Science Foundation of China (Nos. 50471095 and 50271008).
文摘As an example of the La-Mg-Y system, the method how to set up the themaodynamic model of individual phases was introduced in the process of thermodynamic optimization. The solution phases (liquid, body-centered cubic, face-centered cubic, hexagonal close-packed and double hexagonal close-packed) were modeled with the Redlich-Kister equation. The compound energy model has been used to describe the thermodynamic functions of the intermetallic compounds in the La-Mg-Y systems. The compounds Mg2Y, Mg24Y5, Mg12La, Mg17La2, Mg41Las, Mg3La and Mg2La in the La-Mg-Y system were treated as the formulae (Mg,Y)2(La,Mg,Y), Mg24(La,Mg,Y)4Y, Mg12(La, Y), Mg17(La,Y)2, Mg41(La,Y)5, Mg3(La,Mg,Y) and Mg2(La, Y), respectively. A model (La, Mg,Y)0.5(La,Mg,Y)0.5 was applied to describe the compound MgM formed by MgLa and MgY in order to cope with the order-disorder transition between body-centered cubic solution (A2) and MgM with CsCl-type structure (B2) in the La-Mg-Y system. The Gibbs energies of individual phases were optimized in the La-Mg, La-Y and La-Mg-Y systems by CALPHAD technique. The projection of the liquidus surfaces for the La-Mg-Y system was predicted. The Mg-based alloys database including 36 binary and 15 ternary systems formed by Mg, Al, Cu, Ni, Mn, Zn and rare earth elements was set up in SGTE standard.
基金Supported by the National Nature Science Foundation of China(No.29736170)
文摘An interfacial equation of state based on perturbation theory for surfactant-oil-water system has been developed. By combining the interfacial equation of state with Boudh-Hir and Mansoori's model, a molecular ther-modynamic model has been proposed. The interfacial tension of surfactant-oil-water systems can be calculated from the surface tensions of pure oil and water by this model. The interfacial tension data for sodium dodecyl sulphate-heptane-water system, polyoxyethylene n-octylphenol-heptane-water system and hexadecyl trimethyl ammonium bromide-heptane-water system have been correlated. By using the adjustable parameters obtained, the interfacial tensions of these systems at other temperatures have been predicted. Both the correlated and the predicted values are satisfactory.
基金This work was financially supported by Yunnan Provincial Department of Education Science Research Fund Project(Grant Nos.2018JS551,2019J0025 and 2019J0891)Scientific Research Foundation of Kunming Metallurgy College(Grant No.Xxrcxm201802).
文摘Based on the free volume theory, lattice model, the Scatchard–Hildebrand theory, novel expressions of configuration partition function and excessive Gibbs free energy and component activity coefficients of solid solutions were developed using configuration partition function and statistical thermodynamics of molecular interaction volume model (MIVM). Herein, the separation of the volume and energy parameters was achieved. The proposed model can reflect the contributions from both the molecular configuration micro-state number (entropy) and molecular interactions (enthalpy) toward excessive Gibbs free energy. The proposed equations are more consistent with the practical solid solutions. This model can use either the relevant binary infinite dilution activity coefficients or binary activity to describe and predict the thermodynamic properties of the multi-component solid solutions. Applications of the proposed model in some typical binary and ternary solid solution alloys revealed that the thermodynamic properties predicted by the proposed model were consistent with the experimental data and the proposed model was found to be superior to MIVM in terms of the prediction performance. Hence, it can be concluded that the proposed model exhibits good physical basis, applicability, stability and reliability.
基金supported by the Publication Foundation of China National Science and Technology Academic Books
文摘A thermodynamic model of calculating mass action concentrations for structural units or ion couples in NaClO4-H2O and NaF-H2O binary solutions and NaClO4-NaF-H2O ternary strong electrolyte aqueous solutions was developed based on the ion and molecule coexistence theory (IMCT). A transformation coefficient was needed to compare the calculated mass action concentration and the reported activity, because they were usually obtained at different standard states and concentration units. The results show that transformation coefficients between the calculated mass action concentrations and the reported activities of the same components change in a very narrow range. The transformed mass action concentrations of structural units or ion couples in NaClO4-H2O and NaF-H2O binary solutions agree well with the reported activities. The transformed mass action concentrations of structural units or ion couples in NaClO4-NaF-H2O ternary solution are also in good agreement with the reported activities in a total ionic strength range from 0.1 to 0.9 mol/kg H2O by the 0.1 mol/kg step with different ionic strength fractions of 0, 0.2, 0.4, 0.5, 0.6, 0.8, and 1, respectively. The results indicate that the developed thermodynamic model can reveal the structural characteristics of binary and ternary strong electrolyte aqueous solutions, and the calculated mass action concentrations of structural units or ion couples also strictly follow the mass action law.
基金supported by the University of Parma,Fondi Ricerca Scientifica Locale di Ateneo(Universitádi Parma)and by MIUR-PRIN prot.2015C5LN35funded by the‘Departments of Excellence’program of the Italian Ministry for Education,University and Research(Ministero Istruzione UniversitáRicerca,Italy,2018-8562022)。
文摘The investigated mantle bodies from the External Ligurians(Groppo di Gorro and Mt.Rocchetta)show evidences of a complex evolution determined by an early high temperature metasomatism,due to percolating melts of asthenospheric origin,and a later metasomatism at relatively high temperature by hydrothermal fluids,with formation of rodingites.At Groppo di Gorro,the serpentinization and chloritization processes obliterated totally the pyroxenite protolith,whereas at Mt.Rocchetta relics of peridotite and pyroxenite protoliths were preserved from serpentinization.The rodingite parageneses consist of diopside+vesuvianite+garnet+calcite+chlorite at Groppo di Gorro and garnet+diopside+serpentine±vesuvianite±prehnite±chlorite±pumpellyite at Mt.Rocchetta.Fluid inclusion measurements show that rodingitization occurred at relatively high temperatures(264-334℃ at 500 bar and 300-380℃ at 1 kbar).Garnet,the first phase of rodingite to form,consists of abundant hydrogarnet component at Groppo di Gorro,whereas it is mainly composed of grossular and andradite at Mt.Rocchetta.The last stage of rodingitization is characterized by the vesuvianite formation.Hydrogarnet nucleation requires high Ca and low silica fluids,whereas the formation of vesuvianite does not need CO2-poor fluids.The formation of calcite at Groppo di Gorro points to mildly oxidizing conditions compatible with hydrothermal fluids;the presence of andradite associated with serpentine and magnetite at Mt.Rocchetta suggests Fe^3+-bearing fluids with fO2 slightly higher than iron-magnetite buffer.We propose that the formation of the studied rodingite could be related to different pulses of hydrothermal fluids mainly occurring in an oceancontinent transitional setting and,locally,in an accretionary prism associated with intra-oceanic subduction.