An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanic...An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanical properties were predicted for different process parameters. In the later passes full recrystallization becomes difficult to occur and higher residual strain remains in austenite after rolling. For the reasonable temperature and cooling schedule, yield strength of 30 mm plain carbon steel plate can reach 310 MPa. The first on-line application of prediction and control of microstructure and properties (PCMP) in the medium plate production was achieved. The predictions of the system are in good agreement with measurements.展开更多
Fiber quality measurement in spinning preparation is crucial for optimizing waste and meeting yarn quality specifications.The brand-new Uster AFIS 6–the next-generation laboratory instrument from Uster Technologies–...Fiber quality measurement in spinning preparation is crucial for optimizing waste and meeting yarn quality specifications.The brand-new Uster AFIS 6–the next-generation laboratory instrument from Uster Technologies–uniquely tests man-made fiber properties in addition to cotton.It provides critical data to optimize fiber process control for cotton,man-made fibers,and blended yarns.展开更多
During the sintering process of iron ore,a large amount of nitrogen oxides is generated,for which there is currently no efficient and economical treatment process.Therefore,it is necessary to implement process control...During the sintering process of iron ore,a large amount of nitrogen oxides is generated,for which there is currently no efficient and economical treatment process.Therefore,it is necessary to implement process control in sintering production to keep the mass concentration of NO_(x)in sintering flue gas at a low level.Through industrial trials at sintering sites,methods such as correlation analysis,path analysis,and multiple linear regression were applied to analyze the influence of various factors on NO emissions during the sintering process.The results indicate that negative correlations exist between nitrogen monoxide(NO)emissions and negative pressure,permeability index,O_(2) concentration,CO concentration,and flue gas temperature.Conversely,positive correlations exist between NO emissions and dust concentration,water vapor volume fraction,and sintering bed speed.Among these factors,O_(2) concentration and dust concentration are identified as the most significant influencing factors on NO emissions.By analyzing the masses and modes of influence of different factors,the mechanisms of action of each factor were obtained.Specifically,O_(2) concentration,dust concentration,permeability index,CO concentration,and flue gas temperature play a direct dominant role in NO emissions during the sintering process,while water vapor volume fraction,sintering trolley speed,and negative pressure have an indirect effect.A predictive model for NO mass concentration in flue gas was established with an accuracy rate of 91.6%,showing consistent overall trends with actual values.Finally,denitrification strategies for sintering industrial production were proposed,along with prospects for preliminary denitrification of sintering flue gas using fluidized bed conditions in the duct.展开更多
This study aims to examine the explicit solution for calculating the Average Run Length(ARL)on the triple exponentially weighted moving average(TEWMA)control chart applied to autoregressive model(AR(p)),where AR(p)is ...This study aims to examine the explicit solution for calculating the Average Run Length(ARL)on the triple exponentially weighted moving average(TEWMA)control chart applied to autoregressive model(AR(p)),where AR(p)is an autoregressive model of order p,representing a time series with dependencies on its p previous values.Additionally,the study evaluates the accuracy of both explicit and numerical integral equation(NIE)solutions for AR(p)using the TEWMA control chart,focusing on the absolute percentage relative error.The results indicate that the explicit and approximate solutions are in close agreement.Furthermore,the study investigates the performance of exponentially weighted moving average(EWMA)and TEWMA control charts in detecting changes in the process,using the relative mean index(RMI)as a measure.The findings demonstrate that the TEWMA control chart outperforms the EWMA control chart in detecting process changes,especially when the value ofλis sufficiently large.In addition,an analysis using historical data from the SET index between January 2024 and May 2024 and historical data of global annual plastic production,the results of both data sets also emphasize the superior performance of the TEWMA control chart.展开更多
The effect of martensite–austenite(M–A)constituents formed in thermo-mechanical controlled process on impact toughness of 20CrNi2MoV steel was investigated.The variation in fraction,size and morphology of M–A const...The effect of martensite–austenite(M–A)constituents formed in thermo-mechanical controlled process on impact toughness of 20CrNi2MoV steel was investigated.The variation in fraction,size and morphology of M–A constituent and its effect on toughness under different cooling rates were carried out.The result shows that there was no significant change in the fraction of M–A constituent under different cooling rates,but the distribution and size of M–A constituent were greatly influenced by cooling rate,which consequently influenced toughness.The amount of large blocky M–A constituents decreased from 4.7%to 1.7%,while that of elongated M–A constituents increased from 3.8%to 8.6%with the cooling rate increasing from 7 to 26°C/s,and the corresponding impact energy decreased from 132 to 84 J.The deterioration of impact toughness could be related to the increase in the elongated M–A constituents.The elongated M–A constituents existing along the prior austenite grain boundaries in samples of 26°C/s could easily lead to the formation of cleavage crack,which then results in the lower crack initiation energy than that of low cooling rate samples.展开更多
Experiments were conducted to evaluate the microstructure and tensile properties of a medium carbon Cr-Ni-W-Mo steel processedthermo-mechanical controlled processing(TMCP)with cooling at different conditions in water,...Experiments were conducted to evaluate the microstructure and tensile properties of a medium carbon Cr-Ni-W-Mo steel processedthermo-mechanical controlled processing(TMCP)with cooling at different conditions in water,oil,air or lime followedlow tempering.Compared to normal heat-treatment processing,TMCP with water-cooling after deformation enhances the yield strength and tensile strength of the steelabout 323 MPa and about 251 MPa,respectively,due to higher dislocation strengthening and grain boundary strengthening.Meanwhile,it increases the elongation by ;about 1.76%attributed to the increase in volume percentage of the retained austenite and the refined laths of tempered martensite.Slowing the cooling rate after deformation during TMCP leads to a decrease in the strength.This results the coupling effectsthe reduction in dislocation density and volume fraction of tempered martensite together with the coarseness in martensite sizes.However,cooling rate decreasing has less influences on ductility becathe improved elongation the increase in the volume fractions of both retained austenite and lower bainite together with dislocation density decreasing is compensatedthe reduced elongation coarsened grains.展开更多
Steam-assisted combustion elevated flares are currently the most widely used type of petrochemical flares.Due to the complex and variable composition of the waste gas they handle,the combustion environment is severely...Steam-assisted combustion elevated flares are currently the most widely used type of petrochemical flares.Due to the complex and variable composition of the waste gas they handle,the combustion environment is severely affected by meteorological conditions.Key process parameters such as intake composition,flow rate,and real-time data of post-combustion residues are difficult to measure or exhibit lag in data availability.As a result,the control methods for these flares are limited,leading to poor control effectiveness.To address this issue,this paper proposes an adaptive sliding mode control method based on the radial basis function(RBF)network.Firstly,the operational characteristics of the petrochemical flare combustion process are analyzed,and a control model for the combustion process is established based on carbon dioxide detection.Secondly,an RBF neural network-based unknown function approximator is designed to identify the nonlinear part of the actual operating system.Finally,by combining the control model of the petrochemical flare combustion and designing the RBF sliding mode controller with its adaptive control law,fast and stable control of the flare combustion state is achieved.Simulation results demonstrate that the designed control strategy can achieve tracking control of the petrochemical flare combustion state,and the adaptive law also accomplishes system identification.展开更多
The aim of this study was to simulate the solidification process of beam blank continuous casting, and then find the reasons for the typical defects of the beam blank. A two-dimensional transient coupled finite elemen...The aim of this study was to simulate the solidification process of beam blank continuous casting, and then find the reasons for the typical defects of the beam blank. A two-dimensional transient coupled finite element model has been developed to compute the temperature and stress profile in beam blank continuous casting. The enthalpy method was used in the heat conduction equation. The thermo-mechanical property in the mushy zone was taken into consideration in this calculation. It is shown that at the mold exit the thickness of the shell had its maximum value at the flange tip and its minimum value at the fillet. The temperature had a great fluctuation on the surface of the beam blank in the secondary cooling zone. At the unbending point, the surface temperature of the web was in the brittleness temperature range under the present condition. To ensure the quality, it is necessary to weaken the intensity of secondary cooling. At the mold exit the equivalent stress and strain have higher values at the flange tip and at the web. From the spray 1 to the unbending point, the maximum values of stress and strain gradually moved to the internal section of the flange tip and the web. However, whenever, there were bigger stress and strain values near the flange tip and the web than in the other parts, it must be very easy to generate cracks at those positions. Now, online verification of this simulation has been developed, which has proved to be very useful and efficient to instruct the practical production of beam blank continuous casting.展开更多
Systematic physical simulation of thermo-mechanical processing routes has been ap-plied on a Gleeble 1500 simulator to four copper alloys (mass %) Cu-0.57Co-0.32Si,Cu-0.55Cr-0.065P, Cu-0.22Zr-0.035Si and Cu-1.01Ni-0.4...Systematic physical simulation of thermo-mechanical processing routes has been ap-plied on a Gleeble 1500 simulator to four copper alloys (mass %) Cu-0.57Co-0.32Si,Cu-0.55Cr-0.065P, Cu-0.22Zr-0.035Si and Cu-1.01Ni-0.43Si aimed at clarifying theinfluences of processing conditions on their final properties, strength and electricalconductivity. Flow curves were determined over wide temperature and strain rateranges. Hardness was used as a measure of the strength level achieved. High hard-ness was obtained as using equal amounts (strains 0.5) of cold deformation beforeand after the precipitation annealing stage. The maximum values achieved for theCu-Co-Si, Cu-Cr-P, Cu-Zr-Si and Cu-Ni-Si alloys were 190, 165, 178 and 193 HV5,respectively. A thermo-mechanical schedule involving the hot deformation-ageing-colddeformation stages showed even better results for the Cu-Zr-Si alloy. Consequently,the processing routes were designed based on simulation test results and wires of 5 and2mm in diameters have been successfully processed in the industrial scale.展开更多
The influence of thermo-mechanical processing (TMP) on the microstructure and the electrochemical behavior of new metastableβ alloy Ti?20.6Nb?13.6Zr?0.5V (TNZV) was investigated. The TMP included hot working in below...The influence of thermo-mechanical processing (TMP) on the microstructure and the electrochemical behavior of new metastableβ alloy Ti?20.6Nb?13.6Zr?0.5V (TNZV) was investigated. The TMP included hot working in belowβ transus, solution heat treatments at the same temperature and different cooling rates in addition to aging. Depending upon the TMP conditions, a wide range of microstructures with varying spatial distributions and morphologies of equiaxed/elongatedα andβ phases were attained, allowing for a wide range of electrochemical properties to be achieved. The corrosion behavior of the studied alloy was evaluated in a Ringer’s solution at 37 °C via open circuit potential?time and potentiodynamic polarization measurements.展开更多
Continuous thermo-mechanical processing (CTMP) of 6201 aluminum alloy was simulated on Gleeble-1500. The deformed specimens were analyzed by the observation of TEM and the measurement of hardness. It was shown that r...Continuous thermo-mechanical processing (CTMP) of 6201 aluminum alloy was simulated on Gleeble-1500. The deformed specimens were analyzed by the observation of TEM and the measurement of hardness. It was shown that rapid solid solution and aging treatment can be effectively combined in one procedure by the strain induced during CTMP. The deformation temperature is ranging from 540* C to 300* C, the hardness increases directly before the 6th pass followed by a slight drop, the amount of precipitates increases with the holding time after deformation. Uniformly distributed and stabilized Mg2Si precipitates, as well as dislocation substructure can be observed on deformed specimens which have been subsequently held at 300℃ for 60 seconds.展开更多
In this paper,a new model free adaptive control method based on self-adjusting PID algorithm(MFACSA-PID)is proposed to solve the problem that the pH process with strong nonlinearity is difficult to control near the ne...In this paper,a new model free adaptive control method based on self-adjusting PID algorithm(MFACSA-PID)is proposed to solve the problem that the pH process with strong nonlinearity is difficult to control near the neutralization point.The MFAC-SA-PID method also solves the problem that the parameters of the model free adaptive control(MFAC)method are not easy to be adjusted and the effect is not obvious by introducing a fuzzy self-adjusting algorithm to adjust the controller parameters.Then the convergence and stability of the MFAC-SA-PID method are proved in this paper.In the simulation study,the control performance of the MFAC-SA-PID method proposed in this paper is compared with the traditional MFAC method and the improved model free adaptive control(IMFAC)method,respectively.The results show that the proposed MFAC-SA-PID method has better control effect on the pH neutralization process.The MFAC-SA-PID control performance also outperforms the traditional MFAC method and IMFAC method when step input disturbances are added,which indicates that the MFAC-SA-PID method has better robustness and stability.展开更多
This paper is concerned with the active control of thermomechanical buckling of composite laminated plates using piezoelectric facesheets as actuators.The four-variable trigonometric shear deformation theory and Hamil...This paper is concerned with the active control of thermomechanical buckling of composite laminated plates using piezoelectric facesheets as actuators.The four-variable trigonometric shear deformation theory and Hamilto's principle are applied to formulate the governing equation of structural system.The temperature feedback control strategy is proposed to conduct the active control of thermal-mechanical buckling.The simulation results show that the thermo-mechanical buckling of composite laminated plates can be effectively controlled by the presented control method.With a specific control gain,the critical mechanical buckling load can remain constant at different temperatures.The effects of geometric parameters,fiber angle,stacking sequence,position of piezoelectric layer and boundary conditions on the active control of thermo-mechanical buckling are also investigated.展开更多
Purpose-The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times.These fluctuations arise from random origin and proces...Purpose-The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times.These fluctuations arise from random origin and process factors during interval operations and can accumulate over multiple intervals.The aim is to enhance the robustness of high-speed rail station arrival and departure track utilization schemes.Design/methodologylapproach-To achieve this objective,the paper simulates actual train operations,incorporating the fluctuations in interval operation times into the utilization of arrival and departure tracks at the station.The Monte Carlo simulation method is adopted to solve this problem.This approach transforms a nonlinear model,which includes constraints from probability distribution functions and is difficult to solve directly,into a linear programming model that is easier to handle.The method then linearly weights two objectives to optimize the solution.Findings-Through the application of Monte Carlo simulation,the study successfully converts the complex nonlinear model with probability distribution function constraints into a manageable linear programming model.By continuously adjusting the weighting coefficients of the linear objectives,the method is able to optimize the Pareto solution.Notably,this approach does not require extensive scene data to obtain a satisfactory Pareto solution set.Originality/value-The paper contributes to the field by introducing a novel method for optimizing high-speed rail station arrival and departure track utilization in the presence of fluctuations in interval operation times.The use of Monte Carlo simulation to transform the problem into a tractable linear programming model represents a significant advancement.Furthermore,the method's ability to produce satisfactory Pareto solutions without relying on extensive data sets adds to its practical value and applicability in real-world scenarios.展开更多
This paper studied the microstructure evolution of a deformation-processed Cu-7Cr in situ composite prepared by thermo-mechanical processing. The longitudinal and transverse sectional microstructures were analyzed usi...This paper studied the microstructure evolution of a deformation-processed Cu-7Cr in situ composite prepared by thermo-mechanical processing. The longitudinal and transverse sectional microstructures were analyzed using an optical microscope and a scanning electronic microscope. In the longitudinal section, the initially randomly distributed Cr dendrites in the as-cast Cu-7Cr alloy were transformed into the fibres aligned parallel to the drawing axis;the Cr dendrites experienced breaking, flattening and rotating, lapping and merging, and homogenizing and refinement during thermo-mechanical processing. In the transverse section, the initially randomly distributed Cr dendrites in the as-cast Cu-7Cr alloy were changed into the curvy ribbon like fibres;the Cr dendrites underwent breaking, flattening and rotating, folding and twisting, and irregularizing and refinement during thermo-mechanical processing.展开更多
L2 reading is not only an important channel for people to obtain information and knowledge,but also the main way for people to learn a foreign language.Reading information processing can be divided into controlled pro...L2 reading is not only an important channel for people to obtain information and knowledge,but also the main way for people to learn a foreign language.Reading information processing can be divided into controlled processing and automatic processing.Controlled information processing is a conscious and resource-intensive processing model,while automatic information processing is an unconscious and automatic processing model.This study investigates the characteristics and interactivity of controlled and automatic information processing in L2 reading,and explores the roles of controlled and automatic information processing strategies in improving L2 reading ability.The findings are as follows:(a)controlled and automatic information processing is interactive in L2 reading;and(b)the uses of controlled and automatic information processing strategies are beneficial to the improvement of the reading ability of L2 learners.This study has important theoretical and practical value in improving the efficiency of L2 reading teaching and learning.展开更多
In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data be...In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data benchmark(HIS)has garnered the most attention due to its practicality and effectiveness.However,existing CPM reviews usually focus on the theoretical benchmark,and there is a lack of an in-depth review that thoroughly explores HIS-based methods.In this article,a comprehensive overview of HIS-based CPM is provided.First,we provide a novel static-dynamic perspective on data-level manifestations of control performance underlying typical controller capacities including regulation and servo:static and dynamic properties.The static property portrays time-independent variability in system output,and the dynamic property describes temporal behavior driven by closed-loop feedback.Accordingly,existing HIS-based CPM approaches and their intrinsic motivations are classified and analyzed from these two perspectives.Specifically,two mainstream solutions for CPM methods are summarized,including static analysis and dynamic analysis,which match data-driven techniques with actual controlling behavior.Furthermore,this paper also points out various opportunities and challenges faced in CPM for modern industry and provides promising directions in the context of artificial intelligence for inspiring future research.展开更多
Based on the theory of elastic-plastic finite element method, the high-speed hot continuous rolling process of a billet is simulated and analyzed in vertical and horizontal passes. The billet is dragged into the passe...Based on the theory of elastic-plastic finite element method, the high-speed hot continuous rolling process of a billet is simulated and analyzed in vertical and horizontal passes. The billet is dragged into the passes by contact friction force between the billet and rollers. The rollers and billet are represented by respectively rigid and deformable bodies, and three-dimensional models are developed for the billet and rollers. The distribution of deformation field, effective strain, rolling force and temperature field are accurately calculated for the whole rolling process (including unstable and stable stages). In addition, the rolling pressure on the width symmetry center is compared with that in the in-situ experimental measurements. It is revealed that various heat exchange phenomena among the billet, rollers and surroundings can result in unbalanced temperature distribution on the cross section. Rolling force and strain can change significantly when the billet is moved towards or away from the roller gap, and keep almost invariable in the stable stage. It is expected that the simulation results would be useful for practical manufacture and provide the theoretical foundation for improvement of process planning and optimization of process parameters.展开更多
Over 1.3 million people die annually in traffic accidents,and this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems.In modern industrial and technological applic...Over 1.3 million people die annually in traffic accidents,and this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems.In modern industrial and technological applications and collaborative edge intelligence,control systems are crucial for ensuring efficiency and safety.However,deficiencies in these systems can lead to significant operational risks.This paper uses edge intelligence to address the challenges of achieving target speeds and improving efficiency in vehicle control,particularly the limitations of traditional Proportional-Integral-Derivative(PID)controllers inmanaging nonlinear and time-varying dynamics,such as varying road conditions and vehicle behavior,which often result in substantial discrepancies between desired and actual speeds,as well as inefficiencies due to manual parameter adjustments.The paper uses edge intelligence to propose a novel PID control algorithm that integrates Backpropagation(BP)neural networks to enhance robustness and adaptability.The BP neural network is first trained to capture the nonlinear dynamic characteristics of the vehicle.Thetrained network is then combined with the PID controller to forma hybrid control strategy.The output layer of the neural network directly adjusts the PIDparameters(k_(p),k_(i),k_(d)),optimizing performance for specific driving scenarios through self-learning and weight adjustments.Simulation experiments demonstrate that our BP neural network-based PID design significantly outperforms traditional methods,with the response time for acceleration from 0 to 1 m/s improved from 0.25 s to just 0.065 s.Furthermore,real-world tests on an intelligent vehicle show its ability to make timely adjustments in response to complex road conditions,ensuring consistent speed maintenance and enhancing overall system performance.展开更多
The integration of artificial intelligence into the development and production of mechatronic products offers a substantial opportunity to enhance efficiency, adaptability, and system performance. This paper examines ...The integration of artificial intelligence into the development and production of mechatronic products offers a substantial opportunity to enhance efficiency, adaptability, and system performance. This paper examines the utilization of reinforcement learning as a control strategy, with a particular focus on its deployment in pivotal stages of the product development lifecycle, specifically between system architecture and system integration and verification. A controller based on reinforcement learning was developed and evaluated in comparison to traditional proportional-integral controllers in dynamic and fault-prone environments. The results illustrate the superior adaptability, stability, and optimization potential of the reinforcement learning approach, particularly in addressing dynamic disturbances and ensuring robust performance. The study illustrates how reinforcement learning can facilitate the transition from conceptual design to implementation by automating optimization processes, enabling interface automation, and enhancing system-level testing. Based on the aforementioned findings, this paper presents future directions for research, which include the integration of domain-specific knowledge into the reinforcement learning process and the validation of this process in real-world environments. The results underscore the potential of artificial intelligence-driven methodologies to revolutionize the design and deployment of intelligent mechatronic systems.展开更多
基金This work was financially supported by the High Technology Development Program(No.2001AA339030)the National Natural Science Foundation of China(No.50334010).
文摘An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanical properties were predicted for different process parameters. In the later passes full recrystallization becomes difficult to occur and higher residual strain remains in austenite after rolling. For the reasonable temperature and cooling schedule, yield strength of 30 mm plain carbon steel plate can reach 310 MPa. The first on-line application of prediction and control of microstructure and properties (PCMP) in the medium plate production was achieved. The predictions of the system are in good agreement with measurements.
文摘Fiber quality measurement in spinning preparation is crucial for optimizing waste and meeting yarn quality specifications.The brand-new Uster AFIS 6–the next-generation laboratory instrument from Uster Technologies–uniquely tests man-made fiber properties in addition to cotton.It provides critical data to optimize fiber process control for cotton,man-made fibers,and blended yarns.
基金supported by the National Natural Science Foundation of China(No.51974131)Hebei Outstanding Youth Fund Project(No.E2020209082),Tangshan Key R&D Program project(No.22150232J)Sixth Division Wujiaqu City Science and Technology Plan Project(2410).
文摘During the sintering process of iron ore,a large amount of nitrogen oxides is generated,for which there is currently no efficient and economical treatment process.Therefore,it is necessary to implement process control in sintering production to keep the mass concentration of NO_(x)in sintering flue gas at a low level.Through industrial trials at sintering sites,methods such as correlation analysis,path analysis,and multiple linear regression were applied to analyze the influence of various factors on NO emissions during the sintering process.The results indicate that negative correlations exist between nitrogen monoxide(NO)emissions and negative pressure,permeability index,O_(2) concentration,CO concentration,and flue gas temperature.Conversely,positive correlations exist between NO emissions and dust concentration,water vapor volume fraction,and sintering bed speed.Among these factors,O_(2) concentration and dust concentration are identified as the most significant influencing factors on NO emissions.By analyzing the masses and modes of influence of different factors,the mechanisms of action of each factor were obtained.Specifically,O_(2) concentration,dust concentration,permeability index,CO concentration,and flue gas temperature play a direct dominant role in NO emissions during the sintering process,while water vapor volume fraction,sintering trolley speed,and negative pressure have an indirect effect.A predictive model for NO mass concentration in flue gas was established with an accuracy rate of 91.6%,showing consistent overall trends with actual values.Finally,denitrification strategies for sintering industrial production were proposed,along with prospects for preliminary denitrification of sintering flue gas using fluidized bed conditions in the duct.
基金the National Science,Research and Innovation Fund(NSRF)King Mongkuts University of Technology North Bangkok under contract no.KMUTNB-FF-68-B-08.
文摘This study aims to examine the explicit solution for calculating the Average Run Length(ARL)on the triple exponentially weighted moving average(TEWMA)control chart applied to autoregressive model(AR(p)),where AR(p)is an autoregressive model of order p,representing a time series with dependencies on its p previous values.Additionally,the study evaluates the accuracy of both explicit and numerical integral equation(NIE)solutions for AR(p)using the TEWMA control chart,focusing on the absolute percentage relative error.The results indicate that the explicit and approximate solutions are in close agreement.Furthermore,the study investigates the performance of exponentially weighted moving average(EWMA)and TEWMA control charts in detecting changes in the process,using the relative mean index(RMI)as a measure.The findings demonstrate that the TEWMA control chart outperforms the EWMA control chart in detecting process changes,especially when the value ofλis sufficiently large.In addition,an analysis using historical data from the SET index between January 2024 and May 2024 and historical data of global annual plastic production,the results of both data sets also emphasize the superior performance of the TEWMA control chart.
文摘The effect of martensite–austenite(M–A)constituents formed in thermo-mechanical controlled process on impact toughness of 20CrNi2MoV steel was investigated.The variation in fraction,size and morphology of M–A constituent and its effect on toughness under different cooling rates were carried out.The result shows that there was no significant change in the fraction of M–A constituent under different cooling rates,but the distribution and size of M–A constituent were greatly influenced by cooling rate,which consequently influenced toughness.The amount of large blocky M–A constituents decreased from 4.7%to 1.7%,while that of elongated M–A constituents increased from 3.8%to 8.6%with the cooling rate increasing from 7 to 26°C/s,and the corresponding impact energy decreased from 132 to 84 J.The deterioration of impact toughness could be related to the increase in the elongated M–A constituents.The elongated M–A constituents existing along the prior austenite grain boundaries in samples of 26°C/s could easily lead to the formation of cleavage crack,which then results in the lower crack initiation energy than that of low cooling rate samples.
基金supported by the National Natural Science Foundation of China under Grant No.51671030.
文摘Experiments were conducted to evaluate the microstructure and tensile properties of a medium carbon Cr-Ni-W-Mo steel processedthermo-mechanical controlled processing(TMCP)with cooling at different conditions in water,oil,air or lime followedlow tempering.Compared to normal heat-treatment processing,TMCP with water-cooling after deformation enhances the yield strength and tensile strength of the steelabout 323 MPa and about 251 MPa,respectively,due to higher dislocation strengthening and grain boundary strengthening.Meanwhile,it increases the elongation by ;about 1.76%attributed to the increase in volume percentage of the retained austenite and the refined laths of tempered martensite.Slowing the cooling rate after deformation during TMCP leads to a decrease in the strength.This results the coupling effectsthe reduction in dislocation density and volume fraction of tempered martensite together with the coarseness in martensite sizes.However,cooling rate decreasing has less influences on ductility becathe improved elongation the increase in the volume fractions of both retained austenite and lower bainite together with dislocation density decreasing is compensatedthe reduced elongation coarsened grains.
基金gratefully acknowledge the financial support from the Scientific and Technological Innovation 2030-“New Generation Artificial Intelligence”Major Project(2021ZD0112301)National Natural Science Foundation of China(62273011,62076013,62303027).
文摘Steam-assisted combustion elevated flares are currently the most widely used type of petrochemical flares.Due to the complex and variable composition of the waste gas they handle,the combustion environment is severely affected by meteorological conditions.Key process parameters such as intake composition,flow rate,and real-time data of post-combustion residues are difficult to measure or exhibit lag in data availability.As a result,the control methods for these flares are limited,leading to poor control effectiveness.To address this issue,this paper proposes an adaptive sliding mode control method based on the radial basis function(RBF)network.Firstly,the operational characteristics of the petrochemical flare combustion process are analyzed,and a control model for the combustion process is established based on carbon dioxide detection.Secondly,an RBF neural network-based unknown function approximator is designed to identify the nonlinear part of the actual operating system.Finally,by combining the control model of the petrochemical flare combustion and designing the RBF sliding mode controller with its adaptive control law,fast and stable control of the flare combustion state is achieved.Simulation results demonstrate that the designed control strategy can achieve tracking control of the petrochemical flare combustion state,and the adaptive law also accomplishes system identification.
基金supported by the Hebei Provincial Natural Science Foundation of China(No.E2007000591).
文摘The aim of this study was to simulate the solidification process of beam blank continuous casting, and then find the reasons for the typical defects of the beam blank. A two-dimensional transient coupled finite element model has been developed to compute the temperature and stress profile in beam blank continuous casting. The enthalpy method was used in the heat conduction equation. The thermo-mechanical property in the mushy zone was taken into consideration in this calculation. It is shown that at the mold exit the thickness of the shell had its maximum value at the flange tip and its minimum value at the fillet. The temperature had a great fluctuation on the surface of the beam blank in the secondary cooling zone. At the unbending point, the surface temperature of the web was in the brittleness temperature range under the present condition. To ensure the quality, it is necessary to weaken the intensity of secondary cooling. At the mold exit the equivalent stress and strain have higher values at the flange tip and at the web. From the spray 1 to the unbending point, the maximum values of stress and strain gradually moved to the internal section of the flange tip and the web. However, whenever, there were bigger stress and strain values near the flange tip and the web than in the other parts, it must be very easy to generate cracks at those positions. Now, online verification of this simulation has been developed, which has proved to be very useful and efficient to instruct the practical production of beam blank continuous casting.
文摘Systematic physical simulation of thermo-mechanical processing routes has been ap-plied on a Gleeble 1500 simulator to four copper alloys (mass %) Cu-0.57Co-0.32Si,Cu-0.55Cr-0.065P, Cu-0.22Zr-0.035Si and Cu-1.01Ni-0.43Si aimed at clarifying theinfluences of processing conditions on their final properties, strength and electricalconductivity. Flow curves were determined over wide temperature and strain rateranges. Hardness was used as a measure of the strength level achieved. High hard-ness was obtained as using equal amounts (strains 0.5) of cold deformation beforeand after the precipitation annealing stage. The maximum values achieved for theCu-Co-Si, Cu-Cr-P, Cu-Zr-Si and Cu-Ni-Si alloys were 190, 165, 178 and 193 HV5,respectively. A thermo-mechanical schedule involving the hot deformation-ageing-colddeformation stages showed even better results for the Cu-Zr-Si alloy. Consequently,the processing routes were designed based on simulation test results and wires of 5 and2mm in diameters have been successfully processed in the industrial scale.
基金the financial assistance provided by Ministry of High Education and Scientific Research, the Government of Iraq
文摘The influence of thermo-mechanical processing (TMP) on the microstructure and the electrochemical behavior of new metastableβ alloy Ti?20.6Nb?13.6Zr?0.5V (TNZV) was investigated. The TMP included hot working in belowβ transus, solution heat treatments at the same temperature and different cooling rates in addition to aging. Depending upon the TMP conditions, a wide range of microstructures with varying spatial distributions and morphologies of equiaxed/elongatedα andβ phases were attained, allowing for a wide range of electrochemical properties to be achieved. The corrosion behavior of the studied alloy was evaluated in a Ringer’s solution at 37 °C via open circuit potential?time and potentiodynamic polarization measurements.
文摘Continuous thermo-mechanical processing (CTMP) of 6201 aluminum alloy was simulated on Gleeble-1500. The deformed specimens were analyzed by the observation of TEM and the measurement of hardness. It was shown that rapid solid solution and aging treatment can be effectively combined in one procedure by the strain induced during CTMP. The deformation temperature is ranging from 540* C to 300* C, the hardness increases directly before the 6th pass followed by a slight drop, the amount of precipitates increases with the holding time after deformation. Uniformly distributed and stabilized Mg2Si precipitates, as well as dislocation substructure can be observed on deformed specimens which have been subsequently held at 300℃ for 60 seconds.
基金supported by the National Natural Science Foundation of China(61771034).
文摘In this paper,a new model free adaptive control method based on self-adjusting PID algorithm(MFACSA-PID)is proposed to solve the problem that the pH process with strong nonlinearity is difficult to control near the neutralization point.The MFAC-SA-PID method also solves the problem that the parameters of the model free adaptive control(MFAC)method are not easy to be adjusted and the effect is not obvious by introducing a fuzzy self-adjusting algorithm to adjust the controller parameters.Then the convergence and stability of the MFAC-SA-PID method are proved in this paper.In the simulation study,the control performance of the MFAC-SA-PID method proposed in this paper is compared with the traditional MFAC method and the improved model free adaptive control(IMFAC)method,respectively.The results show that the proposed MFAC-SA-PID method has better control effect on the pH neutralization process.The MFAC-SA-PID control performance also outperforms the traditional MFAC method and IMFAC method when step input disturbances are added,which indicates that the MFAC-SA-PID method has better robustness and stability.
基金This work was supported by the National Natural Science Foundation of China(Nos.12072084 and 11761131006)the Fundamental Research Funds for the Central Universities,the Ph.D.Student ResearchInnovation Fund of the Fundamental Research Funds for the Central Universities(No.3072020GIP0206).
文摘This paper is concerned with the active control of thermomechanical buckling of composite laminated plates using piezoelectric facesheets as actuators.The four-variable trigonometric shear deformation theory and Hamilto's principle are applied to formulate the governing equation of structural system.The temperature feedback control strategy is proposed to conduct the active control of thermal-mechanical buckling.The simulation results show that the thermo-mechanical buckling of composite laminated plates can be effectively controlled by the presented control method.With a specific control gain,the critical mechanical buckling load can remain constant at different temperatures.The effects of geometric parameters,fiber angle,stacking sequence,position of piezoelectric layer and boundary conditions on the active control of thermo-mechanical buckling are also investigated.
文摘Purpose-The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times.These fluctuations arise from random origin and process factors during interval operations and can accumulate over multiple intervals.The aim is to enhance the robustness of high-speed rail station arrival and departure track utilization schemes.Design/methodologylapproach-To achieve this objective,the paper simulates actual train operations,incorporating the fluctuations in interval operation times into the utilization of arrival and departure tracks at the station.The Monte Carlo simulation method is adopted to solve this problem.This approach transforms a nonlinear model,which includes constraints from probability distribution functions and is difficult to solve directly,into a linear programming model that is easier to handle.The method then linearly weights two objectives to optimize the solution.Findings-Through the application of Monte Carlo simulation,the study successfully converts the complex nonlinear model with probability distribution function constraints into a manageable linear programming model.By continuously adjusting the weighting coefficients of the linear objectives,the method is able to optimize the Pareto solution.Notably,this approach does not require extensive scene data to obtain a satisfactory Pareto solution set.Originality/value-The paper contributes to the field by introducing a novel method for optimizing high-speed rail station arrival and departure track utilization in the presence of fluctuations in interval operation times.The use of Monte Carlo simulation to transform the problem into a tractable linear programming model represents a significant advancement.Furthermore,the method's ability to produce satisfactory Pareto solutions without relying on extensive data sets adds to its practical value and applicability in real-world scenarios.
文摘This paper studied the microstructure evolution of a deformation-processed Cu-7Cr in situ composite prepared by thermo-mechanical processing. The longitudinal and transverse sectional microstructures were analyzed using an optical microscope and a scanning electronic microscope. In the longitudinal section, the initially randomly distributed Cr dendrites in the as-cast Cu-7Cr alloy were transformed into the fibres aligned parallel to the drawing axis;the Cr dendrites experienced breaking, flattening and rotating, lapping and merging, and homogenizing and refinement during thermo-mechanical processing. In the transverse section, the initially randomly distributed Cr dendrites in the as-cast Cu-7Cr alloy were changed into the curvy ribbon like fibres;the Cr dendrites underwent breaking, flattening and rotating, folding and twisting, and irregularizing and refinement during thermo-mechanical processing.
文摘L2 reading is not only an important channel for people to obtain information and knowledge,but also the main way for people to learn a foreign language.Reading information processing can be divided into controlled processing and automatic processing.Controlled information processing is a conscious and resource-intensive processing model,while automatic information processing is an unconscious and automatic processing model.This study investigates the characteristics and interactivity of controlled and automatic information processing in L2 reading,and explores the roles of controlled and automatic information processing strategies in improving L2 reading ability.The findings are as follows:(a)controlled and automatic information processing is interactive in L2 reading;and(b)the uses of controlled and automatic information processing strategies are beneficial to the improvement of the reading ability of L2 learners.This study has important theoretical and practical value in improving the efficiency of L2 reading teaching and learning.
基金supported in part by the National Natural Science Foundation of China(62125306)Zhejiang Key Research and Development Project(2024C01163)the State Key Laboratory of Industrial Control Technology,China(ICT2024A06)
文摘In recent decades,control performance monitoring(CPM)has experienced remarkable progress in research and industrial applications.While CPM research has been investigated using various benchmarks,the historical data benchmark(HIS)has garnered the most attention due to its practicality and effectiveness.However,existing CPM reviews usually focus on the theoretical benchmark,and there is a lack of an in-depth review that thoroughly explores HIS-based methods.In this article,a comprehensive overview of HIS-based CPM is provided.First,we provide a novel static-dynamic perspective on data-level manifestations of control performance underlying typical controller capacities including regulation and servo:static and dynamic properties.The static property portrays time-independent variability in system output,and the dynamic property describes temporal behavior driven by closed-loop feedback.Accordingly,existing HIS-based CPM approaches and their intrinsic motivations are classified and analyzed from these two perspectives.Specifically,two mainstream solutions for CPM methods are summarized,including static analysis and dynamic analysis,which match data-driven techniques with actual controlling behavior.Furthermore,this paper also points out various opportunities and challenges faced in CPM for modern industry and provides promising directions in the context of artificial intelligence for inspiring future research.
基金Funded by National Natural Science Foundation of China (No. 51004047)Scientific Research Fund of Hunan Provincial Education Department (No. 10B020)Provincial Natural Science Foundation of Hunan (No. 09jj4024)
文摘Based on the theory of elastic-plastic finite element method, the high-speed hot continuous rolling process of a billet is simulated and analyzed in vertical and horizontal passes. The billet is dragged into the passes by contact friction force between the billet and rollers. The rollers and billet are represented by respectively rigid and deformable bodies, and three-dimensional models are developed for the billet and rollers. The distribution of deformation field, effective strain, rolling force and temperature field are accurately calculated for the whole rolling process (including unstable and stable stages). In addition, the rolling pressure on the width symmetry center is compared with that in the in-situ experimental measurements. It is revealed that various heat exchange phenomena among the billet, rollers and surroundings can result in unbalanced temperature distribution on the cross section. Rolling force and strain can change significantly when the billet is moved towards or away from the roller gap, and keep almost invariable in the stable stage. It is expected that the simulation results would be useful for practical manufacture and provide the theoretical foundation for improvement of process planning and optimization of process parameters.
基金supported by the National Key Research and Development Program of China(No.2023YFF0715103)-financial supportNational Natural Science Foundation of China(Grant Nos.62306237 and 62006191)-financial support+1 种基金Key Research and Development Program of Shaanxi(Nos.2024GX-YBXM-149 and 2021ZDLGY15-04)-financial support,NorthwestUniversity Graduate Innovation Project(No.CX2023194)-financial supportNatural Science Foundation of Shaanxi(No.2023-JC-QN-0750)-financial support.
文摘Over 1.3 million people die annually in traffic accidents,and this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems.In modern industrial and technological applications and collaborative edge intelligence,control systems are crucial for ensuring efficiency and safety.However,deficiencies in these systems can lead to significant operational risks.This paper uses edge intelligence to address the challenges of achieving target speeds and improving efficiency in vehicle control,particularly the limitations of traditional Proportional-Integral-Derivative(PID)controllers inmanaging nonlinear and time-varying dynamics,such as varying road conditions and vehicle behavior,which often result in substantial discrepancies between desired and actual speeds,as well as inefficiencies due to manual parameter adjustments.The paper uses edge intelligence to propose a novel PID control algorithm that integrates Backpropagation(BP)neural networks to enhance robustness and adaptability.The BP neural network is first trained to capture the nonlinear dynamic characteristics of the vehicle.Thetrained network is then combined with the PID controller to forma hybrid control strategy.The output layer of the neural network directly adjusts the PIDparameters(k_(p),k_(i),k_(d)),optimizing performance for specific driving scenarios through self-learning and weight adjustments.Simulation experiments demonstrate that our BP neural network-based PID design significantly outperforms traditional methods,with the response time for acceleration from 0 to 1 m/s improved from 0.25 s to just 0.065 s.Furthermore,real-world tests on an intelligent vehicle show its ability to make timely adjustments in response to complex road conditions,ensuring consistent speed maintenance and enhancing overall system performance.
文摘The integration of artificial intelligence into the development and production of mechatronic products offers a substantial opportunity to enhance efficiency, adaptability, and system performance. This paper examines the utilization of reinforcement learning as a control strategy, with a particular focus on its deployment in pivotal stages of the product development lifecycle, specifically between system architecture and system integration and verification. A controller based on reinforcement learning was developed and evaluated in comparison to traditional proportional-integral controllers in dynamic and fault-prone environments. The results illustrate the superior adaptability, stability, and optimization potential of the reinforcement learning approach, particularly in addressing dynamic disturbances and ensuring robust performance. The study illustrates how reinforcement learning can facilitate the transition from conceptual design to implementation by automating optimization processes, enabling interface automation, and enhancing system-level testing. Based on the aforementioned findings, this paper presents future directions for research, which include the integration of domain-specific knowledge into the reinforcement learning process and the validation of this process in real-world environments. The results underscore the potential of artificial intelligence-driven methodologies to revolutionize the design and deployment of intelligent mechatronic systems.