The process of plane strain compression of 06Cr19Ni9NbN steel was carried out in the temperature range of 1000-1200℃ and the reduction ratio range of 10-50%.Combining the finite element numerical simulation,a new con...The process of plane strain compression of 06Cr19Ni9NbN steel was carried out in the temperature range of 1000-1200℃ and the reduction ratio range of 10-50%.Combining the finite element numerical simulation,a new constitutive model of thermal deformation was established, which provides the theoretical basis to optimize the plarie strain compression process of the steel.The temperature and grain size at different regions were achieved by experiment and simulation,respectively.According to the results,the mathematical models of stress and temperature during the plane strain compression were established by mathematical analysis method.The new temperature models were established in three regions,respectively,and the stress models took account of the variation of temperature and'st^rain rate.Finally,by comparing the results of calculation,numerical simulation and experiment,the accuracy and validity of these mathematical models were verified.展开更多
A finite volume method is applied to simulate a closed die hot forging process of a cylinder billet. Since variation and distribution of temperature play very important role in hot forging, the code involves a methodo...A finite volume method is applied to simulate a closed die hot forging process of a cylinder billet. Since variation and distribution of temperature play very important role in hot forging, the code involves a methodology of a coupled system of mechanical and thermal equations. The simulated results are compared with the experimental ones. The distribution of temperature in the billet obtained from the simulation is also discussed.展开更多
In this paper,an atom-continuum coupled model for thermo-mechanical behaviors in micro-nano scales is presented.A representative volume element consisting of atom clusters is used to represent the microstructure of ma...In this paper,an atom-continuum coupled model for thermo-mechanical behaviors in micro-nano scales is presented.A representative volume element consisting of atom clusters is used to represent the microstructure of materials.The atom motions in the RVE are divided into two phases,structural deformations and thermal vibrations.For the structural deformations,nonlinear and nonlocal deformation at atomic scales is considered.The atomistic-continuum equations are constructed based on momentum and energy conservation law.The non-locality and nonlinearity of atomistic interactions are built into the thermo-mechanical constitutive equations.The coupled atomistic-continuum thermal-mechanical simulation process is also suggested in this work.展开更多
The influence of thermo-mechanical processing (TMP) on the microstructure and the electrochemical behavior of new metastableβ alloy Ti?20.6Nb?13.6Zr?0.5V (TNZV) was investigated. The TMP included hot working in below...The influence of thermo-mechanical processing (TMP) on the microstructure and the electrochemical behavior of new metastableβ alloy Ti?20.6Nb?13.6Zr?0.5V (TNZV) was investigated. The TMP included hot working in belowβ transus, solution heat treatments at the same temperature and different cooling rates in addition to aging. Depending upon the TMP conditions, a wide range of microstructures with varying spatial distributions and morphologies of equiaxed/elongatedα andβ phases were attained, allowing for a wide range of electrochemical properties to be achieved. The corrosion behavior of the studied alloy was evaluated in a Ringer’s solution at 37 °C via open circuit potential?time and potentiodynamic polarization measurements.展开更多
The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanica...The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°.展开更多
Thermo-mechanical fatigue (TMF) behavior of FGH96, a nickel-base powder metallurgy superalloy, has been studied under tension-tension loading at the temperature range from 550 to 720 ℃. The results show that TMF fr...Thermo-mechanical fatigue (TMF) behavior of FGH96, a nickel-base powder metallurgy superalloy, has been studied under tension-tension loading at the temperature range from 550 to 720 ℃. The results show that TMF fracture mode is intergranular for the in-phase (IP), but transgranular cleavage-like for the out-of-phase (OP) samples. The total content of Al, Ti and Nb in the γ' phases for the IP or OP samples and the partitioning ratio of γ'/γin these elements for the IP samples are relatively higher at the lower strain amplitude, which is consistent with the case of the γ' size that is larger at the lower strain amplitude, the lattice parameter misfit is negative and the absolute value is lower at the lower strain amplitude that is correlative with the change of the γ' morphology. The deformation at the lower strain amplitude is mainly dominated by the dislocation lines and dislocation pairs in the matrix channels, at the higher strain amplitude dominated by the large numbers of superlattice stacking faults within the γ' phases.展开更多
Novel crystallization behaviors of Zr55Cu30Al10Ni5 bulk metallic glass are investigated. On the one hand, mixed oxides, including CuO, CuAlO2, CuA12O4 and ZrO2, show sequential oxidation process determined by coupling...Novel crystallization behaviors of Zr55Cu30Al10Ni5 bulk metallic glass are investigated. On the one hand, mixed oxides, including CuO, CuAlO2, CuA12O4 and ZrO2, show sequential oxidation process determined by coupling effects of specific cyclic load and temperature. On the other hand, at a temperature (100℃) by far lower than Tg of 412 ℃, under cyclic loading condition, non-oxidized binary alloy CuZr2 is precipitated;the thermo-mechanical coupled effects of temperature below Tg, and fatigue accumulation on the non-oxidized crystallization behaviors are revealed. Meanwhile, at a constant temperature of 400 ℃, by comparing among the XRD patterns, respectively, obtained from tensile, creep and fatigue fractures, the dominating effect of cyclic load on the generation of non-oxidized CuZr2 is verified. Furthermore, the crystallization behavior of amorphous phases under cyclic loading condition is observed through TEM micrograph and diffraction pattern at 100℃.展开更多
The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear...The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear-formed fractures are prone to secondary instability,posing a severe threat to deep engineering.Although numerous studies regarding three-dimensional(3D)morphologies of fracture surfaces have been conducted,the understanding of shear-formed fractures under TM coupling conditions is limited.In this study,direct shear tests of intact granite under various TM coupling conditions were conducted,followed by 3D laser scanning tests of shear-formed fractures.Test results demonstrated that the peak shear strength of intact granite is positively correlated with the normal stress,whereas it is negatively correlated with the temperature.The internal friction angle and cohesion of intact granite significantly decrease with an increase in the temperature.The anisotropy,roughness value,and height of the asperities on the fracture surfaces are reduced as the normal stress increases,whereas their variation trends are the opposite as the temperature increases.The macroscopic failure mode of intact granite under TM coupling conditions is dominated by mixed tensileeshear and shear failures.As the normal stress increases,intragranular fractures are developed ranging from a local to a global distribution,and the macroscopic failure mode of intact granite changes from mixed tensileeshear to shear failure.Finally,3D morphological characteristics of the asperities on the shear-formed fracture surfaces were analyzed,and a quadrangular pyramid conceptual model representing these asperities was proposed and sufficiently verified.展开更多
Semiconductor-based electronic devices usually work under multiphysics fields rendering complex electromagnetic-thermo-mechanical coupling.In this work,we develop a penalty function method based on a finite element an...Semiconductor-based electronic devices usually work under multiphysics fields rendering complex electromagnetic-thermo-mechanical coupling.In this work,we develop a penalty function method based on a finite element analysis to tackle this coupling behavior in a metal/semiconductor bilayer plate-the representative unit of semiconductor antenna,which receives strong and pulsed electromagnetic signals.Under these pulses,eddy current is generated,of which the magnitude varies remarkably from one plate to another due to the difference in electrical conductivity.In the concerned system,the metal layer generates much larger current,resulting in the large temperature rise and the nonnegligible Lorentz force,which could lead to delamination and failure of the semiconductor-based electronic device.This study provides theoretical guidance for the design and protection of semiconductor-based electronic devices in complex environments.展开更多
In cold regions,the creep characteristics of warm frozen silty sand have significant effect on the stability of slope and subgrade.To investigate the creep behavior of warm frozen silty sand under thermo-mechanical co...In cold regions,the creep characteristics of warm frozen silty sand have significant effect on the stability of slope and subgrade.To investigate the creep behavior of warm frozen silty sand under thermo-mechanical coupling loads,a series of triaxial creep tests were carried out under different temperatures and stresses.The test results reveal that the creep strains decrease as the consolidation stress increases,and finally tend to be equal under the same loading stress,regardless of whether the stress is isotropic or deviatoric.Additionally,warm frozen silty sand is highly sensitive to temperature,which greatly influences the creep strain both in the consolidation stage and loading stage.Furthermore,based on the creep test phenomena,a new creep model that considers the influence of the stress level,temperature,hardening,and damage effect was established and experimentally validated.Finally,the sensitivity of the model parameters was analyzed,and it was found that the creep curve transitions from the attenuation creep stage to the non-attenuation creep stage as the temperature coefficient and stress coefficient increases.The hardening effect gradually changes to the damage effect as the coupling coefficient of the hardening and damage increases.展开更多
This paper presents an improved level set method for topology optimization of geometrically nonlinear structures accounting for the effect of thermo-mechanical couplings.It derives a new expression for element couplin...This paper presents an improved level set method for topology optimization of geometrically nonlinear structures accounting for the effect of thermo-mechanical couplings.It derives a new expression for element coupling stress resulting from the combination of mechanical and thermal loading,using geometric nonlinear finite element analysis.A topological model is then developed to minimize compliance while meeting displacement and frequency constraints to fulfill design requirements of structural members.Since the conventional Lagrange multiplier search method is unable to handle convergence instability arising from large deformation,a novel Lagrange multiplier search method is proposed.Additionally,the proposed method can be extended to multi-constrained geometrically nonlinear topology optimization,accommodating multiple physical field couplings.展开更多
The thermal properties of a nanostructured semiconductor are affected by multi-physical fields,such as stress and electromagnetic fields,causing changes in temperature and strain distributions.In this work,the influen...The thermal properties of a nanostructured semiconductor are affected by multi-physical fields,such as stress and electromagnetic fields,causing changes in temperature and strain distributions.In this work,the influence of stress-dependent thermal conductivity on the heat transfer behavior of a GaN-based nanofilm is investigated.The finite element method is adopted to simulate the temperature distribution in a prestressed nanofilm under heat pulses.Numerical results demonstrate the effect of stress field on the thermal conductivity of GaN-based nanofilm,namely,the prestress and the thermal stress lead to a change in the heat transfer behavior in the nanofilm.Under the same heat source,the peak temperature of the film with stress-dependent thermal conductivity is significantly lower than that of the film with a constant thermal conductivity and the maximum temperature difference can reach 8.2 K.These results could be useful for designing GaN-based semiconductor devices with higher reliability under multi-physical fields.展开更多
Thermo-mechanical fatigue tests were carried out on the gamma-TiAl alloy in the temperature range of 500-800℃ under mechanical strain control m order to evaluate its cyclic deformation behaviors at elevated temperatu...Thermo-mechanical fatigue tests were carried out on the gamma-TiAl alloy in the temperature range of 500-800℃ under mechanical strain control m order to evaluate its cyclic deformation behaviors at elevated temperature. Cyclic deformation curves, stress-strain hysteresis loops under different temperature--strain cycles were analyzed and dislocation configurations were also observed by TEM. The mechanisms of cyclic hardening or softening during thermo-mechanical fatigue (TMF) tests were also discussed. Results showed that thermo-mechanical fatigue lives largely depended on the applied mechanical strain amplitudes, applied types of strain and temperature. On the hysteresis loops appeared two apparent asymmetries: one was zero asymmetry and the other was tensile and compressive asymmetry. Dislocations configuration and slip behaviors were contributed to cyclic hardening or cyclic softening.展开更多
We present in this paper a numerical algorithm that couples the atomistic and continuum models for the thermal-mechanical coupled problem of polycrystalline aggregates.The key point is that the conservation laws shoul...We present in this paper a numerical algorithm that couples the atomistic and continuum models for the thermal-mechanical coupled problem of polycrystalline aggregates.The key point is that the conservation laws should be satisfied for both the atomistic and continuum models at the microscale.Compared with the traditional methods which construct the constitutive equations of the grain interiors and grain boundaries by continuum mechanics,our model calculates the continuum fluxes through molecular dynamics simulations,provided that the atomistic simulations are consistent with the local microstate of the system.For the grain interiors without defects,central schemes are available for solving the conservation laws and the constitutive parameters can be obtained via molecular dynamics simulations.For the grain boundary structures,the front tracking method is employed because the solutions of the conservation equations are discontinuous near the defects.Firstly,appropriate control volumes are chosen at both sides of the interface,then the finite volume method is applied to solve the continuum equations in each control volume.Fluxes near both sides of the interface are calculated via atomistic simulations.Therefore,all thermo-mechanical information can be obtained.展开更多
Correction to:Nano-Micro Letters(2026)18:10.https://doi.org/10.1007/s40820-025-01852-8 Following publication of the original article[1],the authors reported that the last author’s name was inadvertently misspelled.Th...Correction to:Nano-Micro Letters(2026)18:10.https://doi.org/10.1007/s40820-025-01852-8 Following publication of the original article[1],the authors reported that the last author’s name was inadvertently misspelled.The published version showed“Hongzhen Chen”,whereas the correct spelling should be“Hongzheng Chen”.The correct author name has been provided in this Correction,and the original article[1]has been corrected.展开更多
In the competitive retail industry of the digital era,data-driven insights into gender-specific customer behavior are essential.They support the optimization of store performance,layout design,product placement,and ta...In the competitive retail industry of the digital era,data-driven insights into gender-specific customer behavior are essential.They support the optimization of store performance,layout design,product placement,and targeted marketing.However,existing computer vision solutions often rely on facial recognition to gather such insights,raising significant privacy and ethical concerns.To address these issues,this paper presents a privacypreserving customer analytics system through two key strategies.First,we deploy a deep learning framework using YOLOv9s,trained on the RCA-TVGender dataset.Cameras are positioned perpendicular to observation areas to reduce facial visibility while maintaining accurate gender classification.Second,we apply AES-128 encryption to customer position data,ensuring secure access and regulatory compliance.Our system achieved overall performance,with 81.5%mAP@50,77.7%precision,and 75.7%recall.Moreover,a 90-min observational study confirmed the system’s ability to generate privacy-protected heatmaps revealing distinct behavioral patterns between male and female customers.For instance,women spent more time in certain areas and showed interest in different products.These results confirm the system’s effectiveness in enabling personalized layout and marketing strategies without compromising privacy.展开更多
2A97 Al-Li alloy was processed by thermo-mechanical treatment at different pre-stretch deformations of 0, 3% and 6%. The microstrucatre observation results reveal that some δ' and T1 precipitates are found in a(Al...2A97 Al-Li alloy was processed by thermo-mechanical treatment at different pre-stretch deformations of 0, 3% and 6%. The microstrucatre observation results reveal that some δ' and T1 precipitates are found in a(Al) matrix of 2A97 alloy processed by the heat treatment with no pre-stretch deformation. When the pre-stretch deformation is 3% and 6%, respectively, amounts of tiny T1 and a few of S' precipitates precipitates are observed in the microstructures of 2A97 alloy. The tensile test results show that the tensile properties of 2A97 alloys are improved via thermo-mechanical treatment. When the pre-stretch deformation is from 0, 3% to 6%, the ultimate tensile strength values of the 2A97 alloys increase gradually from 447.7, 516.5 to 534.3 MPa, and the elongations decrease from 17.6%, 12.8% to 10.2%, respectively. Moreover, with increasing pre-stretch deformation amount from 0 to 6%, the in-plane anisotropy value of 2A97 alloys becomes more obvious.展开更多
The effects of T916 thermo-mechanical process on microstructures, mechanical properties and ballistic resistance of 2519A aluminum alloy were investigated by optical microscopy (OM), transmission electron microscopy...The effects of T916 thermo-mechanical process on microstructures, mechanical properties and ballistic resistance of 2519A aluminum alloy were investigated by optical microscopy (OM), transmission electron microscopy (TEM), tensile tests and ballistic resistance test. After T916 treatment, the yield strength, tensile strength and elongation rate of 2519A aluminum alloy reach 501 MPa, 540 MPa and 14%, respectively. And the ballistic limit velocity of 2519A-T916 alloy (30 mm in thickness) is 715 rn/s. The microstructure varies near the sidewalls of crater. The interrupted ageing contributes to these excellent properties of the alloy. During T916 process, the precipitation of Guinier Preston (GP) zone is finer and denser during the interrupted ageing, thus resulting in well precipitated strengthening phase.展开更多
An as-solution treated Mg-6Gd-1Y-0.4Zr alloy was processed by low temperature thermo-mechanical treatments (LT-TMT), including cold tension with various strains followed by aging at 200 °C to peak hardness. The...An as-solution treated Mg-6Gd-1Y-0.4Zr alloy was processed by low temperature thermo-mechanical treatments (LT-TMT), including cold tension with various strains followed by aging at 200 °C to peak hardness. The results show that the precipitation kinetics of the alloy experienced LT-TMT is greatly accelerated and the aging time to peak hardness is greatly decreased with increasing tensile strain. The tensile yield strength, ultimate tensile strength and elongation at room temperature of the alloy after cold tension with strain of 10% and peak aging at 200 °C are 251 MPa, 296 MPa and 8%, respectively, which are superior to the commercial heat-resistant WE54 alloy, although the latter has a higher rare earth element content.展开更多
基金National Natural Science Foundation of China (51275330,51775361)Natural Science Foundation of Shanxi Province (2014011015-5).
文摘The process of plane strain compression of 06Cr19Ni9NbN steel was carried out in the temperature range of 1000-1200℃ and the reduction ratio range of 10-50%.Combining the finite element numerical simulation,a new constitutive model of thermal deformation was established, which provides the theoretical basis to optimize the plarie strain compression process of the steel.The temperature and grain size at different regions were achieved by experiment and simulation,respectively.According to the results,the mathematical models of stress and temperature during the plane strain compression were established by mathematical analysis method.The new temperature models were established in three regions,respectively,and the stress models took account of the variation of temperature and'st^rain rate.Finally,by comparing the results of calculation,numerical simulation and experiment,the accuracy and validity of these mathematical models were verified.
文摘A finite volume method is applied to simulate a closed die hot forging process of a cylinder billet. Since variation and distribution of temperature play very important role in hot forging, the code involves a methodology of a coupled system of mechanical and thermal equations. The simulated results are compared with the experimental ones. The distribution of temperature in the billet obtained from the simulation is also discussed.
基金supported by the Special Funds for the National Basic Research Program of China (973 Project) (Grant No. 2010CB832702)the National Natural Science Foundation of China (Grant No. 90916027)also supported by NSAF (Grant No.10976004)
文摘In this paper,an atom-continuum coupled model for thermo-mechanical behaviors in micro-nano scales is presented.A representative volume element consisting of atom clusters is used to represent the microstructure of materials.The atom motions in the RVE are divided into two phases,structural deformations and thermal vibrations.For the structural deformations,nonlinear and nonlocal deformation at atomic scales is considered.The atomistic-continuum equations are constructed based on momentum and energy conservation law.The non-locality and nonlinearity of atomistic interactions are built into the thermo-mechanical constitutive equations.The coupled atomistic-continuum thermal-mechanical simulation process is also suggested in this work.
基金the financial assistance provided by Ministry of High Education and Scientific Research, the Government of Iraq
文摘The influence of thermo-mechanical processing (TMP) on the microstructure and the electrochemical behavior of new metastableβ alloy Ti?20.6Nb?13.6Zr?0.5V (TNZV) was investigated. The TMP included hot working in belowβ transus, solution heat treatments at the same temperature and different cooling rates in addition to aging. Depending upon the TMP conditions, a wide range of microstructures with varying spatial distributions and morphologies of equiaxed/elongatedα andβ phases were attained, allowing for a wide range of electrochemical properties to be achieved. The corrosion behavior of the studied alloy was evaluated in a Ringer’s solution at 37 °C via open circuit potential?time and potentiodynamic polarization measurements.
基金Project(51605234)supported by the National Natural Science Foundation of ChinaProjects(2019JJ50510,2019JJ70077)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(18B285,18B552)supported by Scientific Research Fund of Hunan Provincial Education Department,China。
文摘The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°.
基金supported by National Science and Technology Pillar Program in the 11th Five Year Plan of China
文摘Thermo-mechanical fatigue (TMF) behavior of FGH96, a nickel-base powder metallurgy superalloy, has been studied under tension-tension loading at the temperature range from 550 to 720 ℃. The results show that TMF fracture mode is intergranular for the in-phase (IP), but transgranular cleavage-like for the out-of-phase (OP) samples. The total content of Al, Ti and Nb in the γ' phases for the IP or OP samples and the partitioning ratio of γ'/γin these elements for the IP samples are relatively higher at the lower strain amplitude, which is consistent with the case of the γ' size that is larger at the lower strain amplitude, the lattice parameter misfit is negative and the absolute value is lower at the lower strain amplitude that is correlative with the change of the γ' morphology. The deformation at the lower strain amplitude is mainly dominated by the dislocation lines and dislocation pairs in the matrix channels, at the higher strain amplitude dominated by the large numbers of superlattice stacking faults within the γ' phases.
基金funded by the National Natural Science Foundation of China (51875241,51505180, U1601203)the Jilin Province Science and Technology Development Plan(20180201126GX, 20170101134JC)the China Postdoctoral Science Foundation Funded Project (2017T100205)
文摘Novel crystallization behaviors of Zr55Cu30Al10Ni5 bulk metallic glass are investigated. On the one hand, mixed oxides, including CuO, CuAlO2, CuA12O4 and ZrO2, show sequential oxidation process determined by coupling effects of specific cyclic load and temperature. On the other hand, at a temperature (100℃) by far lower than Tg of 412 ℃, under cyclic loading condition, non-oxidized binary alloy CuZr2 is precipitated;the thermo-mechanical coupled effects of temperature below Tg, and fatigue accumulation on the non-oxidized crystallization behaviors are revealed. Meanwhile, at a constant temperature of 400 ℃, by comparing among the XRD patterns, respectively, obtained from tensile, creep and fatigue fractures, the dominating effect of cyclic load on the generation of non-oxidized CuZr2 is verified. Furthermore, the crystallization behavior of amorphous phases under cyclic loading condition is observed through TEM micrograph and diffraction pattern at 100℃.
基金supported by the National Natural Science Foundation of China(Grant No.51974173)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2020QD122).
文摘The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear-formed fractures are prone to secondary instability,posing a severe threat to deep engineering.Although numerous studies regarding three-dimensional(3D)morphologies of fracture surfaces have been conducted,the understanding of shear-formed fractures under TM coupling conditions is limited.In this study,direct shear tests of intact granite under various TM coupling conditions were conducted,followed by 3D laser scanning tests of shear-formed fractures.Test results demonstrated that the peak shear strength of intact granite is positively correlated with the normal stress,whereas it is negatively correlated with the temperature.The internal friction angle and cohesion of intact granite significantly decrease with an increase in the temperature.The anisotropy,roughness value,and height of the asperities on the fracture surfaces are reduced as the normal stress increases,whereas their variation trends are the opposite as the temperature increases.The macroscopic failure mode of intact granite under TM coupling conditions is dominated by mixed tensileeshear and shear failures.As the normal stress increases,intragranular fractures are developed ranging from a local to a global distribution,and the macroscopic failure mode of intact granite changes from mixed tensileeshear to shear failure.Finally,3D morphological characteristics of the asperities on the shear-formed fracture surfaces were analyzed,and a quadrangular pyramid conceptual model representing these asperities was proposed and sufficiently verified.
基金the National Natural Science Foundation of China(Grant nos.11772294,11621062)the Fundamental Research Funds for the Central Universities(Grant no.2017QNA4031).
文摘Semiconductor-based electronic devices usually work under multiphysics fields rendering complex electromagnetic-thermo-mechanical coupling.In this work,we develop a penalty function method based on a finite element analysis to tackle this coupling behavior in a metal/semiconductor bilayer plate-the representative unit of semiconductor antenna,which receives strong and pulsed electromagnetic signals.Under these pulses,eddy current is generated,of which the magnitude varies remarkably from one plate to another due to the difference in electrical conductivity.In the concerned system,the metal layer generates much larger current,resulting in the large temperature rise and the nonnegligible Lorentz force,which could lead to delamination and failure of the semiconductor-based electronic device.This study provides theoretical guidance for the design and protection of semiconductor-based electronic devices in complex environments.
基金supported the National Natural Science Foundation of China (No.41971076)the National Key Research and Development Program of China (No.2016YFE0202400)the State Key Laboratory of Road Engineering Safety and Health in Cold and High-altitude Regions (No.YGY2017KYPT-04)。
文摘In cold regions,the creep characteristics of warm frozen silty sand have significant effect on the stability of slope and subgrade.To investigate the creep behavior of warm frozen silty sand under thermo-mechanical coupling loads,a series of triaxial creep tests were carried out under different temperatures and stresses.The test results reveal that the creep strains decrease as the consolidation stress increases,and finally tend to be equal under the same loading stress,regardless of whether the stress is isotropic or deviatoric.Additionally,warm frozen silty sand is highly sensitive to temperature,which greatly influences the creep strain both in the consolidation stage and loading stage.Furthermore,based on the creep test phenomena,a new creep model that considers the influence of the stress level,temperature,hardening,and damage effect was established and experimentally validated.Finally,the sensitivity of the model parameters was analyzed,and it was found that the creep curve transitions from the attenuation creep stage to the non-attenuation creep stage as the temperature coefficient and stress coefficient increases.The hardening effect gradually changes to the damage effect as the coupling coefficient of the hardening and damage increases.
基金supported by grants from the National Natural Science Foundation of China (51478130)the Guangzhou Municipal Education Bureau’s Scientific Research Project, China (2024312217)+1 种基金the China Scholarship Council (201808440070)the 111 Project of China (D21021).
文摘This paper presents an improved level set method for topology optimization of geometrically nonlinear structures accounting for the effect of thermo-mechanical couplings.It derives a new expression for element coupling stress resulting from the combination of mechanical and thermal loading,using geometric nonlinear finite element analysis.A topological model is then developed to minimize compliance while meeting displacement and frequency constraints to fulfill design requirements of structural members.Since the conventional Lagrange multiplier search method is unable to handle convergence instability arising from large deformation,a novel Lagrange multiplier search method is proposed.Additionally,the proposed method can be extended to multi-constrained geometrically nonlinear topology optimization,accommodating multiple physical field couplings.
基金This research is supported by the National Natural Science Foundation of China(Grant Nos.11772294,11621062)the Fundamental Research Funds for the Central Universities(Grant No.2017QNA4031).
文摘The thermal properties of a nanostructured semiconductor are affected by multi-physical fields,such as stress and electromagnetic fields,causing changes in temperature and strain distributions.In this work,the influence of stress-dependent thermal conductivity on the heat transfer behavior of a GaN-based nanofilm is investigated.The finite element method is adopted to simulate the temperature distribution in a prestressed nanofilm under heat pulses.Numerical results demonstrate the effect of stress field on the thermal conductivity of GaN-based nanofilm,namely,the prestress and the thermal stress lead to a change in the heat transfer behavior in the nanofilm.Under the same heat source,the peak temperature of the film with stress-dependent thermal conductivity is significantly lower than that of the film with a constant thermal conductivity and the maximum temperature difference can reach 8.2 K.These results could be useful for designing GaN-based semiconductor devices with higher reliability under multi-physical fields.
基金Project(SBK200930307) supported by Natural Science Foundation of Jiangsu Province,China
文摘Thermo-mechanical fatigue tests were carried out on the gamma-TiAl alloy in the temperature range of 500-800℃ under mechanical strain control m order to evaluate its cyclic deformation behaviors at elevated temperature. Cyclic deformation curves, stress-strain hysteresis loops under different temperature--strain cycles were analyzed and dislocation configurations were also observed by TEM. The mechanisms of cyclic hardening or softening during thermo-mechanical fatigue (TMF) tests were also discussed. Results showed that thermo-mechanical fatigue lives largely depended on the applied mechanical strain amplitudes, applied types of strain and temperature. On the hysteresis loops appeared two apparent asymmetries: one was zero asymmetry and the other was tensile and compressive asymmetry. Dislocations configuration and slip behaviors were contributed to cyclic hardening or cyclic softening.
基金supported by the National Basic Research Program of China (Grant No. 2010CB832702)the National Natural Science Foundation of China (Grant Nos. 90916027 and 11202065)
文摘We present in this paper a numerical algorithm that couples the atomistic and continuum models for the thermal-mechanical coupled problem of polycrystalline aggregates.The key point is that the conservation laws should be satisfied for both the atomistic and continuum models at the microscale.Compared with the traditional methods which construct the constitutive equations of the grain interiors and grain boundaries by continuum mechanics,our model calculates the continuum fluxes through molecular dynamics simulations,provided that the atomistic simulations are consistent with the local microstate of the system.For the grain interiors without defects,central schemes are available for solving the conservation laws and the constitutive parameters can be obtained via molecular dynamics simulations.For the grain boundary structures,the front tracking method is employed because the solutions of the conservation equations are discontinuous near the defects.Firstly,appropriate control volumes are chosen at both sides of the interface,then the finite volume method is applied to solve the continuum equations in each control volume.Fluxes near both sides of the interface are calculated via atomistic simulations.Therefore,all thermo-mechanical information can be obtained.
文摘Correction to:Nano-Micro Letters(2026)18:10.https://doi.org/10.1007/s40820-025-01852-8 Following publication of the original article[1],the authors reported that the last author’s name was inadvertently misspelled.The published version showed“Hongzhen Chen”,whereas the correct spelling should be“Hongzheng Chen”.The correct author name has been provided in this Correction,and the original article[1]has been corrected.
文摘In the competitive retail industry of the digital era,data-driven insights into gender-specific customer behavior are essential.They support the optimization of store performance,layout design,product placement,and targeted marketing.However,existing computer vision solutions often rely on facial recognition to gather such insights,raising significant privacy and ethical concerns.To address these issues,this paper presents a privacypreserving customer analytics system through two key strategies.First,we deploy a deep learning framework using YOLOv9s,trained on the RCA-TVGender dataset.Cameras are positioned perpendicular to observation areas to reduce facial visibility while maintaining accurate gender classification.Second,we apply AES-128 encryption to customer position data,ensuring secure access and regulatory compliance.Our system achieved overall performance,with 81.5%mAP@50,77.7%precision,and 75.7%recall.Moreover,a 90-min observational study confirmed the system’s ability to generate privacy-protected heatmaps revealing distinct behavioral patterns between male and female customers.For instance,women spent more time in certain areas and showed interest in different products.These results confirm the system’s effectiveness in enabling personalized layout and marketing strategies without compromising privacy.
文摘2A97 Al-Li alloy was processed by thermo-mechanical treatment at different pre-stretch deformations of 0, 3% and 6%. The microstrucatre observation results reveal that some δ' and T1 precipitates are found in a(Al) matrix of 2A97 alloy processed by the heat treatment with no pre-stretch deformation. When the pre-stretch deformation is 3% and 6%, respectively, amounts of tiny T1 and a few of S' precipitates precipitates are observed in the microstructures of 2A97 alloy. The tensile test results show that the tensile properties of 2A97 alloys are improved via thermo-mechanical treatment. When the pre-stretch deformation is from 0, 3% to 6%, the ultimate tensile strength values of the 2A97 alloys increase gradually from 447.7, 516.5 to 534.3 MPa, and the elongations decrease from 17.6%, 12.8% to 10.2%, respectively. Moreover, with increasing pre-stretch deformation amount from 0 to 6%, the in-plane anisotropy value of 2A97 alloys becomes more obvious.
基金Project(2012CB619501)supported by the National Basic Research Program of China
文摘The effects of T916 thermo-mechanical process on microstructures, mechanical properties and ballistic resistance of 2519A aluminum alloy were investigated by optical microscopy (OM), transmission electron microscopy (TEM), tensile tests and ballistic resistance test. After T916 treatment, the yield strength, tensile strength and elongation rate of 2519A aluminum alloy reach 501 MPa, 540 MPa and 14%, respectively. And the ballistic limit velocity of 2519A-T916 alloy (30 mm in thickness) is 715 rn/s. The microstructure varies near the sidewalls of crater. The interrupted ageing contributes to these excellent properties of the alloy. During T916 process, the precipitation of Guinier Preston (GP) zone is finer and denser during the interrupted ageing, thus resulting in well precipitated strengthening phase.
基金Projects(50971089,51171113,51001072)supported by the National Natural Science Foundation of ChinaProjects(2012M511089,20090460615,201003267)supported by the Postdoctoral Science Foundation of China
文摘An as-solution treated Mg-6Gd-1Y-0.4Zr alloy was processed by low temperature thermo-mechanical treatments (LT-TMT), including cold tension with various strains followed by aging at 200 °C to peak hardness. The results show that the precipitation kinetics of the alloy experienced LT-TMT is greatly accelerated and the aging time to peak hardness is greatly decreased with increasing tensile strain. The tensile yield strength, ultimate tensile strength and elongation at room temperature of the alloy after cold tension with strain of 10% and peak aging at 200 °C are 251 MPa, 296 MPa and 8%, respectively, which are superior to the commercial heat-resistant WE54 alloy, although the latter has a higher rare earth element content.