期刊文献+
共找到143,265篇文章
< 1 2 250 >
每页显示 20 50 100
Mathematical model of coupled thermo-mechanical behavior during plane strain compression of 06Cr19Ni9NbN steel 被引量:1
1
作者 Yong-xing Jiao Yue Xu +2 位作者 Jian-sheng Liu Jing-dan Li Xiu-zhi Zhang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第11期1179-1188,共10页
The process of plane strain compression of 06Cr19Ni9NbN steel was carried out in the temperature range of 1000-1200℃ and the reduction ratio range of 10-50%.Combining the finite element numerical simulation,a new con... The process of plane strain compression of 06Cr19Ni9NbN steel was carried out in the temperature range of 1000-1200℃ and the reduction ratio range of 10-50%.Combining the finite element numerical simulation,a new constitutive model of thermal deformation was established, which provides the theoretical basis to optimize the plarie strain compression process of the steel.The temperature and grain size at different regions were achieved by experiment and simulation,respectively.According to the results,the mathematical models of stress and temperature during the plane strain compression were established by mathematical analysis method.The new temperature models were established in three regions,respectively,and the stress models took account of the variation of temperature and'st^rain rate.Finally,by comparing the results of calculation,numerical simulation and experiment,the accuracy and validity of these mathematical models were verified. 展开更多
关键词 PLANE STRAIN compression Coupled thermo-mechanical behavior 06Cr19Ni9NbN STEEL Numerical simulation MATHEMATICAL model
原文传递
Numerical Simulation of Coupled Thermo-mechanical Behavior of a Cylinder Billet during Hot-forging Process
2
作者 Peiran Ding, Don g-Ying Ju, Shoji Imatani, Tatsuo Inoue 1.Engineering Services Department, MSC Japan Ltd., Osaka, Japan 2.Department of Mechanical Engineering, Saitama Institute of Technology, Saitama, Japan 3.Department of Energy Conversion Science, K 《Journal of Shanghai Jiaotong university(Science)》 EI 2000年第1期263-269,共7页
A finite volume method is applied to simulate a closed die hot forging process of a cylinder billet. Since variation and distribution of temperature play very important role in hot forging, the code involves a methodo... A finite volume method is applied to simulate a closed die hot forging process of a cylinder billet. Since variation and distribution of temperature play very important role in hot forging, the code involves a methodology of a coupled system of mechanical and thermal equations. The simulated results are compared with the experimental ones. The distribution of temperature in the billet obtained from the simulation is also discussed. 展开更多
关键词 Hot-forging numerical simulation FINITE volume method EULERIAN FORMULATION thermo-mechanical coupling
在线阅读 下载PDF
Complex FEM Based System of Computer Codes to Model Nuclear Fuel Rod Thermo-Mechanical Behavior
3
作者 Martin Dostal Mojmir Valach Jiri Zymak 《材料科学与工程(中英文B版)》 2011年第3期323-331,共9页
关键词 热机械行为 计算机代码 核燃料棒 有限元法 代码系统 子模型 基础 行为建模
在线阅读 下载PDF
Atom-continuum coupled model for thermo-mechanical behavior of materials in micro-nano scales 被引量:5
4
作者 XIANG MeiZhen CUI JunZhi +1 位作者 LI BoWen TIAN Xia 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第6期1125-1137,共13页
In this paper,an atom-continuum coupled model for thermo-mechanical behaviors in micro-nano scales is presented.A representative volume element consisting of atom clusters is used to represent the microstructure of ma... In this paper,an atom-continuum coupled model for thermo-mechanical behaviors in micro-nano scales is presented.A representative volume element consisting of atom clusters is used to represent the microstructure of materials.The atom motions in the RVE are divided into two phases,structural deformations and thermal vibrations.For the structural deformations,nonlinear and nonlocal deformation at atomic scales is considered.The atomistic-continuum equations are constructed based on momentum and energy conservation law.The non-locality and nonlinearity of atomistic interactions are built into the thermo-mechanical constitutive equations.The coupled atomistic-continuum thermal-mechanical simulation process is also suggested in this work. 展开更多
关键词 atom-continuum coupled (ACC) model atomistic model thermo-mechanical behaviors NONLOCALITY multiscale model
原文传递
Effect of thermo-mechanical processing on microstructure and electrochemical behavior of Ti-Nb-Zr-V new metastable β titanium biomedical alloy 被引量:3
5
作者 Mohsin Talib MOHAMMED Zahid A.KHAN M.GEETHA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期759-769,共11页
The influence of thermo-mechanical processing (TMP) on the microstructure and the electrochemical behavior of new metastableβ alloy Ti?20.6Nb?13.6Zr?0.5V (TNZV) was investigated. The TMP included hot working in below... The influence of thermo-mechanical processing (TMP) on the microstructure and the electrochemical behavior of new metastableβ alloy Ti?20.6Nb?13.6Zr?0.5V (TNZV) was investigated. The TMP included hot working in belowβ transus, solution heat treatments at the same temperature and different cooling rates in addition to aging. Depending upon the TMP conditions, a wide range of microstructures with varying spatial distributions and morphologies of equiaxed/elongatedα andβ phases were attained, allowing for a wide range of electrochemical properties to be achieved. The corrosion behavior of the studied alloy was evaluated in a Ringer’s solution at 37 °C via open circuit potential?time and potentiodynamic polarization measurements. 展开更多
关键词 titanium alloy thermo-mechanical processing biomedical application MICROSTRUCTURE electrochemical behavior corrosion
在线阅读 下载PDF
Study on inhomogeneous cooling behavior of extruded profile with unequal and large thicknesses during quenching using thermo-mechanical coupling model 被引量:7
6
作者 Zhi-wen LIU Jie YI +3 位作者 Shi-kang LI Wen-jie NIE Luo-xing LI Guan WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第5期1211-1226,共16页
The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanica... The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°. 展开更多
关键词 aluminum profile unequal and large thicknesses water quenching heat transfer coefficient thermo-mechanical coupling model
在线阅读 下载PDF
Thermo-mechanical fatigue behavior of nickel-base powder metallurgy superalloy FGH96 under tension-tension loading 被引量:2
7
作者 Yuli GU Yuhuai HE Shiyu QU Guodong ZHANG Fei ZHENG Chunhu TAO 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2010年第2期147-153,共7页
Thermo-mechanical fatigue (TMF) behavior of FGH96, a nickel-base powder metallurgy superalloy, has been studied under tension-tension loading at the temperature range from 550 to 720 ℃. The results show that TMF fr... Thermo-mechanical fatigue (TMF) behavior of FGH96, a nickel-base powder metallurgy superalloy, has been studied under tension-tension loading at the temperature range from 550 to 720 ℃. The results show that TMF fracture mode is intergranular for the in-phase (IP), but transgranular cleavage-like for the out-of-phase (OP) samples. The total content of Al, Ti and Nb in the γ' phases for the IP or OP samples and the partitioning ratio of γ'/γin these elements for the IP samples are relatively higher at the lower strain amplitude, which is consistent with the case of the γ' size that is larger at the lower strain amplitude, the lattice parameter misfit is negative and the absolute value is lower at the lower strain amplitude that is correlative with the change of the γ' morphology. The deformation at the lower strain amplitude is mainly dominated by the dislocation lines and dislocation pairs in the matrix channels, at the higher strain amplitude dominated by the large numbers of superlattice stacking faults within the γ' phases. 展开更多
关键词 Nickel-base superalloy thermo-mechanical fatigue Elemental partitioning γ' size DISLOCATION
原文传递
Novel Crystallization Behaviors of Zr-Based Metallic Glass Under Thermo-Mechanical Coupled Fatigue Loading Condition 被引量:1
8
作者 Zhi-Chao Ma Xiao-Xi Ma +3 位作者 Hong-Wei Zhao Fu Zhang Li-Ming Zhou Lu-Quan Ren 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第7期797-802,共6页
Novel crystallization behaviors of Zr55Cu30Al10Ni5 bulk metallic glass are investigated. On the one hand, mixed oxides, including CuO, CuAlO2, CuA12O4 and ZrO2, show sequential oxidation process determined by coupling... Novel crystallization behaviors of Zr55Cu30Al10Ni5 bulk metallic glass are investigated. On the one hand, mixed oxides, including CuO, CuAlO2, CuA12O4 and ZrO2, show sequential oxidation process determined by coupling effects of specific cyclic load and temperature. On the other hand, at a temperature (100℃) by far lower than Tg of 412 ℃, under cyclic loading condition, non-oxidized binary alloy CuZr2 is precipitated;the thermo-mechanical coupled effects of temperature below Tg, and fatigue accumulation on the non-oxidized crystallization behaviors are revealed. Meanwhile, at a constant temperature of 400 ℃, by comparing among the XRD patterns, respectively, obtained from tensile, creep and fatigue fractures, the dominating effect of cyclic load on the generation of non-oxidized CuZr2 is verified. Furthermore, the crystallization behavior of amorphous phases under cyclic loading condition is observed through TEM micrograph and diffraction pattern at 100℃. 展开更多
关键词 BULK METALLIC glass FATIGUE thermo-mechanical coupling CRYSTALLIZATION
原文传递
Shear behavior of intact granite under thermo-mechanical coupling and three-dimensional morphology of shear-formed fractures 被引量:4
9
作者 Bing Chen Baotang Shen Haiyang Jiang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期523-537,共15页
The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear... The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear-formed fractures are prone to secondary instability,posing a severe threat to deep engineering.Although numerous studies regarding three-dimensional(3D)morphologies of fracture surfaces have been conducted,the understanding of shear-formed fractures under TM coupling conditions is limited.In this study,direct shear tests of intact granite under various TM coupling conditions were conducted,followed by 3D laser scanning tests of shear-formed fractures.Test results demonstrated that the peak shear strength of intact granite is positively correlated with the normal stress,whereas it is negatively correlated with the temperature.The internal friction angle and cohesion of intact granite significantly decrease with an increase in the temperature.The anisotropy,roughness value,and height of the asperities on the fracture surfaces are reduced as the normal stress increases,whereas their variation trends are the opposite as the temperature increases.The macroscopic failure mode of intact granite under TM coupling conditions is dominated by mixed tensileeshear and shear failures.As the normal stress increases,intragranular fractures are developed ranging from a local to a global distribution,and the macroscopic failure mode of intact granite changes from mixed tensileeshear to shear failure.Finally,3D morphological characteristics of the asperities on the shear-formed fracture surfaces were analyzed,and a quadrangular pyramid conceptual model representing these asperities was proposed and sufficiently verified. 展开更多
关键词 thermo-mechanical(TM)coupling Peak shear strength Three-dimensional(3D)morphological characterization Failure mode Quadrangular pyramid model
在线阅读 下载PDF
Electromagnetic-Thermo-Mechanical Coupling Behavior of Cu/Si Layered Thin Plate Under Pulsed Magnetic Field 被引量:2
10
作者 Qicong Li Linli Zhu Haihui Ruan 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2022年第1期90-100,共11页
Semiconductor-based electronic devices usually work under multiphysics fields rendering complex electromagnetic-thermo-mechanical coupling.In this work,we develop a penalty function method based on a finite element an... Semiconductor-based electronic devices usually work under multiphysics fields rendering complex electromagnetic-thermo-mechanical coupling.In this work,we develop a penalty function method based on a finite element analysis to tackle this coupling behavior in a metal/semiconductor bilayer plate-the representative unit of semiconductor antenna,which receives strong and pulsed electromagnetic signals.Under these pulses,eddy current is generated,of which the magnitude varies remarkably from one plate to another due to the difference in electrical conductivity.In the concerned system,the metal layer generates much larger current,resulting in the large temperature rise and the nonnegligible Lorentz force,which could lead to delamination and failure of the semiconductor-based electronic device.This study provides theoretical guidance for the design and protection of semiconductor-based electronic devices in complex environments. 展开更多
关键词 Electromagnetic-thermo-mechanical coupling behavior Finite element method Pulse magnetic field Eddy current DELAMINATION
原文传递
Investigation on creep behavior of warm frozen silty sand under thermo-mechanical coupling loads 被引量:1
11
作者 ZHANG Feng SHI Sheng +1 位作者 FENG De-cheng CAI Lei-zhou 《Journal of Mountain Science》 SCIE CSCD 2021年第7期1951-1965,共15页
In cold regions,the creep characteristics of warm frozen silty sand have significant effect on the stability of slope and subgrade.To investigate the creep behavior of warm frozen silty sand under thermo-mechanical co... In cold regions,the creep characteristics of warm frozen silty sand have significant effect on the stability of slope and subgrade.To investigate the creep behavior of warm frozen silty sand under thermo-mechanical coupling loads,a series of triaxial creep tests were carried out under different temperatures and stresses.The test results reveal that the creep strains decrease as the consolidation stress increases,and finally tend to be equal under the same loading stress,regardless of whether the stress is isotropic or deviatoric.Additionally,warm frozen silty sand is highly sensitive to temperature,which greatly influences the creep strain both in the consolidation stage and loading stage.Furthermore,based on the creep test phenomena,a new creep model that considers the influence of the stress level,temperature,hardening,and damage effect was established and experimentally validated.Finally,the sensitivity of the model parameters was analyzed,and it was found that the creep curve transitions from the attenuation creep stage to the non-attenuation creep stage as the temperature coefficient and stress coefficient increases.The hardening effect gradually changes to the damage effect as the coupling coefficient of the hardening and damage increases. 展开更多
关键词 Creep behavior Warm frozen silty sand Constitutive model Hardening and damage
原文传递
Level-Set-Based Topology Optimization of a Geometrically Nonlinear Structure Considering Thermo-mechanical Coupling Effect
12
作者 Sujun Wang An Xu Ruohong Zhao 《Acta Mechanica Solida Sinica》 2025年第1期100-114,共15页
This paper presents an improved level set method for topology optimization of geometrically nonlinear structures accounting for the effect of thermo-mechanical couplings.It derives a new expression for element couplin... This paper presents an improved level set method for topology optimization of geometrically nonlinear structures accounting for the effect of thermo-mechanical couplings.It derives a new expression for element coupling stress resulting from the combination of mechanical and thermal loading,using geometric nonlinear finite element analysis.A topological model is then developed to minimize compliance while meeting displacement and frequency constraints to fulfill design requirements of structural members.Since the conventional Lagrange multiplier search method is unable to handle convergence instability arising from large deformation,a novel Lagrange multiplier search method is proposed.Additionally,the proposed method can be extended to multi-constrained geometrically nonlinear topology optimization,accommodating multiple physical field couplings. 展开更多
关键词 Topology optimization Geometric nonlinearity thermo-mechanical coupling effect Level set method Multiple constraints
原文传递
Effect of Stress-Dependent Thermal Conductivity on Thermo-Mechanical Coupling Behavior in GaN-Based Nanofilm Under Pulse Heat Source 被引量:1
13
作者 Qicong Li Xiaoya Tang +1 位作者 Linli Zhu Haihui Ruan 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2021年第1期27-39,共13页
The thermal properties of a nanostructured semiconductor are affected by multi-physical fields,such as stress and electromagnetic fields,causing changes in temperature and strain distributions.In this work,the influen... The thermal properties of a nanostructured semiconductor are affected by multi-physical fields,such as stress and electromagnetic fields,causing changes in temperature and strain distributions.In this work,the influence of stress-dependent thermal conductivity on the heat transfer behavior of a GaN-based nanofilm is investigated.The finite element method is adopted to simulate the temperature distribution in a prestressed nanofilm under heat pulses.Numerical results demonstrate the effect of stress field on the thermal conductivity of GaN-based nanofilm,namely,the prestress and the thermal stress lead to a change in the heat transfer behavior in the nanofilm.Under the same heat source,the peak temperature of the film with stress-dependent thermal conductivity is significantly lower than that of the film with a constant thermal conductivity and the maximum temperature difference can reach 8.2 K.These results could be useful for designing GaN-based semiconductor devices with higher reliability under multi-physical fields. 展开更多
关键词 Multi-physical effect Stress-dependent thermal conductivity Prestress fields Heat transfer behavior GaN-based nanofilm Finite element method
原文传递
Cyclic deformation behaviors of Ti-46Al-2Cr-2Nb-0.15B alloy during thermo-mechanical fatigue tests
14
作者 项宏福 戴安伦 +2 位作者 王冀恒 李惠 杨锐 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第11期2174-2180,共7页
Thermo-mechanical fatigue tests were carried out on the gamma-TiAl alloy in the temperature range of 500-800℃ under mechanical strain control m order to evaluate its cyclic deformation behaviors at elevated temperatu... Thermo-mechanical fatigue tests were carried out on the gamma-TiAl alloy in the temperature range of 500-800℃ under mechanical strain control m order to evaluate its cyclic deformation behaviors at elevated temperature. Cyclic deformation curves, stress-strain hysteresis loops under different temperature--strain cycles were analyzed and dislocation configurations were also observed by TEM. The mechanisms of cyclic hardening or softening during thermo-mechanical fatigue (TMF) tests were also discussed. Results showed that thermo-mechanical fatigue lives largely depended on the applied mechanical strain amplitudes, applied types of strain and temperature. On the hysteresis loops appeared two apparent asymmetries: one was zero asymmetry and the other was tensile and compressive asymmetry. Dislocations configuration and slip behaviors were contributed to cyclic hardening or cyclic softening. 展开更多
关键词 titanium-aluminium alloy thermo-mechanical fatigue cyclic stress response hysteresis loop DISLOCATION
在线阅读 下载PDF
A new method for modeling thermo-mechanical behaviors of polycrystalline aggregates
15
作者 TIAN Xia CUI JunZhi LI BoWen 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第11期2143-2151,共9页
We present in this paper a numerical algorithm that couples the atomistic and continuum models for the thermal-mechanical coupled problem of polycrystalline aggregates.The key point is that the conservation laws shoul... We present in this paper a numerical algorithm that couples the atomistic and continuum models for the thermal-mechanical coupled problem of polycrystalline aggregates.The key point is that the conservation laws should be satisfied for both the atomistic and continuum models at the microscale.Compared with the traditional methods which construct the constitutive equations of the grain interiors and grain boundaries by continuum mechanics,our model calculates the continuum fluxes through molecular dynamics simulations,provided that the atomistic simulations are consistent with the local microstate of the system.For the grain interiors without defects,central schemes are available for solving the conservation laws and the constitutive parameters can be obtained via molecular dynamics simulations.For the grain boundary structures,the front tracking method is employed because the solutions of the conservation equations are discontinuous near the defects.Firstly,appropriate control volumes are chosen at both sides of the interface,then the finite volume method is applied to solve the continuum equations in each control volume.Fluxes near both sides of the interface are calculated via atomistic simulations.Therefore,all thermo-mechanical information can be obtained. 展开更多
关键词 polycrystalline aggregates molecular dynamics simulation continuum model thermo-mechanical coupled
原文传递
Correction: Optimizing Exciton and Charge-Carrier Behavior in Thick-Film Organic Photovoltaics: A Comprehensive Review
16
作者 Lu Wei Yaxin Yang +2 位作者 Lingling Zhan Shouchun Yin Hongzheng Chen 《Nano-Micro Letters》 2026年第1期608-608,共1页
Correction to:Nano-Micro Letters(2026)18:10.https://doi.org/10.1007/s40820-025-01852-8 Following publication of the original article[1],the authors reported that the last author’s name was inadvertently misspelled.Th... Correction to:Nano-Micro Letters(2026)18:10.https://doi.org/10.1007/s40820-025-01852-8 Following publication of the original article[1],the authors reported that the last author’s name was inadvertently misspelled.The published version showed“Hongzhen Chen”,whereas the correct spelling should be“Hongzheng Chen”.The correct author name has been provided in this Correction,and the original article[1]has been corrected. 展开更多
关键词 charge carrier behavior exciton behavior comprehensive review thick film organic photovoltaics nano micro letters
在线阅读 下载PDF
Privacy-Preserving Gender-Based Customer Behavior Analytics in Retail Spaces Using Computer Vision
17
作者 Ginanjar Suwasono Adi Samsul Huda +4 位作者 Griffani Megiyanto Rahmatullah Dodit Suprianto Dinda Qurrota Aini Al-Sefy Ivon Sandya Sari Putri Lalu Tri Wijaya Nata Kusuma 《Computers, Materials & Continua》 2026年第1期1839-1861,共23页
In the competitive retail industry of the digital era,data-driven insights into gender-specific customer behavior are essential.They support the optimization of store performance,layout design,product placement,and ta... In the competitive retail industry of the digital era,data-driven insights into gender-specific customer behavior are essential.They support the optimization of store performance,layout design,product placement,and targeted marketing.However,existing computer vision solutions often rely on facial recognition to gather such insights,raising significant privacy and ethical concerns.To address these issues,this paper presents a privacypreserving customer analytics system through two key strategies.First,we deploy a deep learning framework using YOLOv9s,trained on the RCA-TVGender dataset.Cameras are positioned perpendicular to observation areas to reduce facial visibility while maintaining accurate gender classification.Second,we apply AES-128 encryption to customer position data,ensuring secure access and regulatory compliance.Our system achieved overall performance,with 81.5%mAP@50,77.7%precision,and 75.7%recall.Moreover,a 90-min observational study confirmed the system’s ability to generate privacy-protected heatmaps revealing distinct behavioral patterns between male and female customers.For instance,women spent more time in certain areas and showed interest in different products.These results confirm the system’s effectiveness in enabling personalized layout and marketing strategies without compromising privacy. 展开更多
关键词 Business intelligence customer behavior privacy-preserving analytics computer vision deep learning smart retail gender recognition heatmap privacy RCA-TVGender dataset
在线阅读 下载PDF
Effect of thermo-mechanical treatment process on microstructure and mechanical properties of 2A97 Al-Li alloy 被引量:11
18
作者 高崇 栾阳 +1 位作者 于俊川 马岳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2196-2202,共7页
2A97 Al-Li alloy was processed by thermo-mechanical treatment at different pre-stretch deformations of 0, 3% and 6%. The microstrucatre observation results reveal that some δ' and T1 precipitates are found in a(Al... 2A97 Al-Li alloy was processed by thermo-mechanical treatment at different pre-stretch deformations of 0, 3% and 6%. The microstrucatre observation results reveal that some δ' and T1 precipitates are found in a(Al) matrix of 2A97 alloy processed by the heat treatment with no pre-stretch deformation. When the pre-stretch deformation is 3% and 6%, respectively, amounts of tiny T1 and a few of S' precipitates precipitates are observed in the microstructures of 2A97 alloy. The tensile test results show that the tensile properties of 2A97 alloys are improved via thermo-mechanical treatment. When the pre-stretch deformation is from 0, 3% to 6%, the ultimate tensile strength values of the 2A97 alloys increase gradually from 447.7, 516.5 to 534.3 MPa, and the elongations decrease from 17.6%, 12.8% to 10.2%, respectively. Moreover, with increasing pre-stretch deformation amount from 0 to 6%, the in-plane anisotropy value of 2A97 alloys becomes more obvious. 展开更多
关键词 2A97 Al-Li alloy thermo-mechanical treatment pre-stretch deformation microstructure mechanical properties
在线阅读 下载PDF
Effects of T9I6 thermo-mechanical process on microstructure, mechanical properties and ballistic resistance of 2519A aluminum alloy 被引量:7
19
作者 顾刚 叶凌英 +3 位作者 蒋海春 孙大翔 张盼 张新明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2295-2300,共6页
The effects of T916 thermo-mechanical process on microstructures, mechanical properties and ballistic resistance of 2519A aluminum alloy were investigated by optical microscopy (OM), transmission electron microscopy... The effects of T916 thermo-mechanical process on microstructures, mechanical properties and ballistic resistance of 2519A aluminum alloy were investigated by optical microscopy (OM), transmission electron microscopy (TEM), tensile tests and ballistic resistance test. After T916 treatment, the yield strength, tensile strength and elongation rate of 2519A aluminum alloy reach 501 MPa, 540 MPa and 14%, respectively. And the ballistic limit velocity of 2519A-T916 alloy (30 mm in thickness) is 715 rn/s. The microstructure varies near the sidewalls of crater. The interrupted ageing contributes to these excellent properties of the alloy. During T916 process, the precipitation of Guinier Preston (GP) zone is finer and denser during the interrupted ageing, thus resulting in well precipitated strengthening phase. 展开更多
关键词 2519A aluminum alloy T916 thermo-mechanical treatment mechanical properties MICROSTRUCTURE ballistic resistance
在线阅读 下载PDF
Mechanical properties of Mg-6Gd-1Y-0.5Zr alloy processed by low temperature thermo-mechanical treatment 被引量:1
20
作者 李德江 曾小勤 +3 位作者 谢艳才 吴玉娟 丁文江 陈彬 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2351-2356,共6页
An as-solution treated Mg-6Gd-1Y-0.4Zr alloy was processed by low temperature thermo-mechanical treatments (LT-TMT), including cold tension with various strains followed by aging at 200 °C to peak hardness. The... An as-solution treated Mg-6Gd-1Y-0.4Zr alloy was processed by low temperature thermo-mechanical treatments (LT-TMT), including cold tension with various strains followed by aging at 200 °C to peak hardness. The results show that the precipitation kinetics of the alloy experienced LT-TMT is greatly accelerated and the aging time to peak hardness is greatly decreased with increasing tensile strain. The tensile yield strength, ultimate tensile strength and elongation at room temperature of the alloy after cold tension with strain of 10% and peak aging at 200 °C are 251 MPa, 296 MPa and 8%, respectively, which are superior to the commercial heat-resistant WE54 alloy, although the latter has a higher rare earth element content. 展开更多
关键词 Mg-Gd-Y-Zr alloy low temperature thermo-mechanical treatment precipitation hardening mechanical properties
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部