期刊文献+
共找到1,021,934篇文章
< 1 2 250 >
每页显示 20 50 100
COUPLED THERMO-MECHANICAL ANALYSIS OF FUNCTIONALLY GRADIENT WEAK/MICRO-DISCONTINUOUS INTERFACE WITH GRADED FINITE ELEMENT METHOD 被引量:1
1
作者 Zhiwen Gao Kang Yong Lee Youhe Zhou 《Acta Mechanica Solida Sinica》 SCIE EI 2012年第4期331-341,共11页
Coupled thermo-mechanical analysis of two bonded functionally graded materials subjected to thermal loads is conducted in this study with the graded finite element method. The thermal-mechanical properties of the bi-m... Coupled thermo-mechanical analysis of two bonded functionally graded materials subjected to thermal loads is conducted in this study with the graded finite element method. The thermal-mechanical properties of the bi-material interfaces are classified based on discontinuity degrees of their material properties and their derivatives at the interfaces. Numerical results indicate that discontinuity exerts remarkable effect on the temperature profile and stress value at the interface of two bonded functionally-graded materials. Under the thermal flux loading conditions, the stronger the interface discontinuity is, the smaller the heat flux is. 展开更多
关键词 functionally graded material thermo-mechanical analysis weak/micro discontin-uous graded finite element method
原文传递
Thermo-mechanical analysis of an SI engine piston using different boundary condition treatments
2
作者 Amir-Hasan Kakaee Javad Gharloghi +1 位作者 Aliasghar Foroughifar Abdoreza Khanlari 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期3817-3829,共13页
Heat transfer of an SI engine's piston is calculated by employing three different methods based on resistor-capacitor model with the help of MATLAB code, and then the piston is thermo-mechanically analyzed using c... Heat transfer of an SI engine's piston is calculated by employing three different methods based on resistor-capacitor model with the help of MATLAB code, and then the piston is thermo-mechanically analyzed using commercial ANSYS code. The results of three methods are compared to study their effects on the piston thermal behavior. It is shown that resistor-capacitor model with less number of equations and consequently less solution time, is an appropriate method for solving problems of engine piston heat transfer. In the second part, the thermal stresses due to non-uniform temperature distribution, and mechanical stresses due to mechanical loads are calculated. Finally, the temperature distributions as a thermal load along with mechanical loads are applied to the piston to determine the total stress distribution and critical fracture zones. It is found that the amount of thermal stresses is considerable. 展开更多
关键词 PISTON TEMPERATURE boundary condition STRESS thermo-mechanical analysis
在线阅读 下载PDF
Design and Coupled Thermo-Mechanical Analysis of Silicon Carbide Primary Mirror Assembly
3
作者 HAN Yuan-yuan ZHANG Yu-min HAN Jie-cai 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第B12期62-65,共4页
Based on the principle that the thermal expansion coefficient of the support structure should match that of the mirror, three schemes of primary mirror assembly were designed. Of them, the first is fused silica mirror... Based on the principle that the thermal expansion coefficient of the support structure should match that of the mirror, three schemes of primary mirror assembly were designed. Of them, the first is fused silica mirror plus 4J32 flexible support plus ZTC4 support back plate, the second K9 mirror plus 4J45 flexible support plus ZTC4 support back plate, and the third SiC mirror plus SiC rigid support back plate. A coupled thermo-mechanical analysis of the three primary mirror assemblies was made with finite element method. The results show that the SiC assembly is the best of all schemes in terms of their combination properties due to its elimination of the thermal expansion mismatch between the materials. The analytical results on the cryogenic property of the SiC primary mirror assembly show a higher surface finish of the SiC mirror even under the cryogenic condition. 展开更多
关键词 silicon carbide primary mirror assembly DESIGN coupled thermo-mechanical analysis
在线阅读 下载PDF
Transient thermo-mechanical analysis for bimorph soft robot based on thermally responsive liquid crystal elastomers 被引量:1
4
作者 Yun CUI Yafei YIN +4 位作者 Chengjun WANG K. SIM Yuhang LI Cunjiang YU Jizhou SONG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第7期943-952,共10页
Thermally responsive liquid crystal elastomers (LCEs) hold great promise in applications of soft robots and actuators because of the induced size and shape change with temperature. Experiments have successfully demons... Thermally responsive liquid crystal elastomers (LCEs) hold great promise in applications of soft robots and actuators because of the induced size and shape change with temperature. Experiments have successfully demonstrated that the LCE based bimorphs can be effective soft robots once integrated with soft sensors and thermal actuators. Here, we present an analytical transient thermo-mechanical model for a bimorph structure based soft robot, which consists of a strip of LCE and a thermal inert polymer actuated by an ultra-thin stretchable open-mesh shaped heater to mimic the unique locomotion behaviors of an inchworm. The coupled mechanical and thermal analysis based on the thermo-mechanical theory is carried out to underpin the transient bending behavior, and a systematic understanding is therefore achieved. The key analytical results reveal that the thickness and the modulus ratio of the LCE and the inert polymer layer dominate the transient bending deformation. The analytical results will not only render fundamental understanding of the actuation of bimorph structures, but also facilitate the rational design of soft robotics. 展开更多
关键词 TRANSIENT thermo-mechanical analysis SOFT ROBOT thermal-responsive liq- UID crystal elastomer (LCE)
在线阅读 下载PDF
Thermo-Mechanical Analysis of a Typical Vehicle Engine Using PTC-Creo
5
作者 Jafar Mahmoudi 《Journal of Mechanical Materials and Mechanics Research》 2022年第2期1-15,共15页
In this work,a typical vehicle engine is modeled within PTC-Creo soft­ware,and its thermal,mechanical,and thermo-mechanical performance are evaluated.This is followed by the vibrational,fatigue,and buckling analy... In this work,a typical vehicle engine is modeled within PTC-Creo soft­ware,and its thermal,mechanical,and thermo-mechanical performance are evaluated.This is followed by the vibrational,fatigue,and buckling analy­sis of the assembly of components,which are the predominant failure caus­es.The results show that the least temperature gradient occurs in the center of the pin,which connects the piston to the connecting rod,the maximum displacement is seen just below the piston head,and the thermo-mechanical failure is caused mostly(about 85%)by the mechanical load rather than the thermal one.Also,in fatigue analysis,the minimum and maximum values for the safety factor are 0.63 and 5,respectively.The results can prevent the reoccurrence of similar failures and help the enhancement of the compo­nents’design and manufacturing process. 展开更多
关键词 Stress analysis Engine failure PTC-Creo Thermomechanical analysis
在线阅读 下载PDF
Thermo-Mechanical Analysis of Water-Cooled Gun Barrel During Burst Firing 被引量:1
6
作者 樊黎霞 胡志刚 赵建波 《Defence Technology(防务技术)》 SCIE EI CAS 2006年第1期1-6,共6页
The thermo-mechanical stress and deformation of water-cooled gun barrel during burst firing are studied by finite element analysis (FEA). The problem is modeled in two steps: 1) A transient heat transfer analysis is f... The thermo-mechanical stress and deformation of water-cooled gun barrel during burst firing are studied by finite element analysis (FEA). The problem is modeled in two steps: 1) A transient heat transfer analysis is first carried out in order to determine temperature evolution and to predict the residual temperatures during the burst firing event; 2) The thermo-mecha- nical stresses and deformation caused by both the residual temperature field and the gas pressure are then calculated. The results show that the residual temperature field tends to a steady state with the increasing of rounds. The residual temperature field has much effect on the gun barrel stress and deformation, especially on the assembly area between barrel and water jacket. The gage between the barrel and water jacket is the critical factor to the thermo- mechanical stress and deformation. The results of this analysis will be very useful to develop the new strength design theory of the liquid-cooled gun barrel. 展开更多
关键词 有限元分析 机械分析 武器
在线阅读 下载PDF
Genome-wide analysis of the S-phase kinase-association protein1(ClSKP1) family and the role of S-RNase targeting by an SCF(Cullin1-SKP1-F-box) complex in the self-incompatibility of‘Xiangshui' lemon 被引量:1
7
作者 Yuze Li Wei Lin +9 位作者 Jiawei Zhu Moying Lan Cong Luo Yili Zhang Rongzhen Liang Liming Xia Wangli Hu Xiao Mo Guixiang Huang Xinhua He 《Horticultural Plant Journal》 2025年第2期593-607,共15页
The SKP1 gene is an important component of the SCF(SKP1-Cullin1-F-box)complex and serves as a bridge connecting the F-box and Cullin1genes(F-box-SKP1-Cullin1).The pattern of S-RNase being ubiquitously labelled by the ... The SKP1 gene is an important component of the SCF(SKP1-Cullin1-F-box)complex and serves as a bridge connecting the F-box and Cullin1genes(F-box-SKP1-Cullin1).The pattern of S-RNase being ubiquitously labelled by the SCF complex and degraded by the 26S protease accounts for the bulk of the available self-incompatibility studies.In this study,15 ClSKP1s from the‘Xiangshui'lemon genome and ubiquitome exist in the same SKP1 conserved domain(CD)as SKP1s in other species.The q PCR results showed that SKP1-6 and SKP1-14 have tissue expression patterns specific for expression in pollen.In addition,SKP1-6 and SKP1-14 in the stigma,style and ovary were significantly upregulated after self-pollination compared to those after cross-pollination.A subcellular location showed that SKP1-6 and SKP1-14 were located in the nucleus.In addition,yeast two-hybrid(Y2H)assays,bimolecular fluorescence complementation(BiFC)and luciferase complementation imaging(LCI)assays showed that SKP1-6 interacted with F-box1,F-box33,F-box34,F-box17,F-box19,Cullin1-2 and 26S proteasome subunit 4 homolog A(26S PS4HA).SKP1-14 interacted with F-box17,F-box19,F-box35,Cullin1-2 and 26S PS4HA.The interaction of Cullin1-2 and the F-box with SKP1 as a bridge was verified by a yeast three-hybrid experiment.The ability of S3-RNase to inhibit pollen and pollen tube growth and development was assessed using in vitro pollen co-culture experiments with recombinant S3-RNase proteins.Overall,this study provides important experimental evidence and theoretical basis for understanding the mechanism of self-incompatibility in plants by revealing the key role of the SCF complex in‘Xiangshui'lemon,which is bridged by ClSKP1-6,in self-incompatibility.The results of this study are of great significance for the future indepth exploration of the molecular mechanism of the SCF complex and its wide application in the self-incompatibility of plants. 展开更多
关键词 LEMON SKP1 SCF SELF-INCOMPATIBILITY Expression analysis Functional analysis
在线阅读 下载PDF
Sensitivity analysis of the lithospheric magnetic field at satellite altitude:the effects of the inducing field and the shape of the magnetic lithosphere 被引量:1
8
作者 JinSong Du YuKun Li +5 位作者 HouPu Li ChangQing Yuan KangAn Zhao JiangSong Gui Pan Zhang ShaoFeng Bian 《Earth and Planetary Physics》 2025年第3期642-652,共11页
As a means of quantitative interpretation,forward calculations of the global lithospheric magnetic field in the Spherical Harmonic(SH)domain have been widely used to reveal geophysical,lithological,and geothermal vari... As a means of quantitative interpretation,forward calculations of the global lithospheric magnetic field in the Spherical Harmonic(SH)domain have been widely used to reveal geophysical,lithological,and geothermal variations in the lithosphere.Traditional approaches either do not consider the non-axial dipolar terms of the inducing field and its radial variation or do so by means of complicated formulae.Moreover,existing methods treat the magnetic lithosphere either as an infinitesimally thin layer or as a radially uniform spherical shell of constant thickness.Here,we present alternative forward formulae that account for an arbitrarily high maximum degree of the inducing field and for a magnetic lithosphere of variable thickness.Our simulations based on these formulae suggest that the satellite magnetic anomaly field is sensitive to the non-axial dipolar terms of the inducing field but not to its radial variation.Therefore,in forward and inverse calculations of satellite magnetic anomaly data,the non-axial dipolar terms of the inducing field should not be ignored.Furthermore,our results show that the satellite magnetic anomaly field is sensitive to variability in the lateral thickness of the magnetized shell.In particular,we show that for a given vertically integrated susceptibility distribution,underestimating the thickness of the magnetic layer overestimates the induced magnetic field.This discovery bridges the greatest part of the alleged gap between the susceptibility values measured from rock samples and the susceptibility values required to match the observed magnetic field signal.We expect the formulae and conclusions of this study to be a valuable tool for the quantitative interpretation of the Earth's global lithospheric magnetic field,through an inverse or forward modelling approach. 展开更多
关键词 lithospheric magnetic field forward calculation spherical harmonic analysis sensitivity analysis satellite magnetism
在线阅读 下载PDF
Multilevel analysis of the central-peripheral-target organ pathway:contributing to recovery after peripheral nerve injury 被引量:1
9
作者 Xizi Song Ruixin Li +6 位作者 Xiaolei Chu Qi Li Ruihua Li Qingwen Li Kai-Yu Tong Xiaosong Gu Dong Ming 《Neural Regeneration Research》 SCIE CAS 2025年第10期2807-2822,共16页
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes... Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery. 展开更多
关键词 central nervous system central peripheral target organ multilevel pathological analysis nerve regeneration peripheral nerve injury peripheral nervous system target organs therapeutic approach
暂未订购
Microstructure Analysis of TC4/Al 6063/Al 7075 Explosive Welded Composite Plate via Multi-scale Simulation and Experiment 被引量:1
10
作者 Zhou Jianan Luo Ning +3 位作者 Liang Hanliang Chen Jinhua Liu Zhibing Zhou Xiaohong 《稀有金属材料与工程》 北大核心 2025年第1期27-38,共12页
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ... Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces. 展开更多
关键词 TC4/Al 6063/Al 7075 composite plate explosive welding microstructure analysis multi-scale simulation
原文传递
Text-Image Feature Fine-Grained Learning for Joint Multimodal Aspect-Based Sentiment Analysis
11
作者 Tianzhi Zhang Gang Zhou +4 位作者 Shuang Zhang Shunhang Li Yepeng Sun Qiankun Pi Shuo Liu 《Computers, Materials & Continua》 SCIE EI 2025年第1期279-305,共27页
Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimo... Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimodal Aspect-oriented Sentiment Classification(MASC).Currently,most existing models for JMASA only perform text and image feature encoding from a basic level,but often neglect the in-depth analysis of unimodal intrinsic features,which may lead to the low accuracy of aspect term extraction and the poor ability of sentiment prediction due to the insufficient learning of intra-modal features.Given this problem,we propose a Text-Image Feature Fine-grained Learning(TIFFL)model for JMASA.First,we construct an enhanced adjacency matrix of word dependencies and adopt graph convolutional network to learn the syntactic structure features for text,which addresses the context interference problem of identifying different aspect terms.Then,the adjective-noun pairs extracted from image are introduced to enable the semantic representation of visual features more intuitive,which addresses the ambiguous semantic extraction problem during image feature learning.Thereby,the model performance of aspect term extraction and sentiment polarity prediction can be further optimized and enhanced.Experiments on two Twitter benchmark datasets demonstrate that TIFFL achieves competitive results for JMASA,MATE and MASC,thus validating the effectiveness of our proposed methods. 展开更多
关键词 Multimodal sentiment analysis aspect-based sentiment analysis feature fine-grained learning graph convolutional network adjective-noun pairs
在线阅读 下载PDF
Isotopic Analysis for Tracing Vertical Growth Trajectories of Hailstones 被引量:1
12
作者 Xiangyu LIN Haifan ZHANG +6 位作者 Xiaofei LI Qinghong ZHANG Andrew HEYMSFIELD Kai BI Chan-Pang NG Chong WU Dianli GONG 《Advances in Atmospheric Sciences》 2025年第6期1195-1211,共17页
The growth trajectory of hailstones within clouds has remained elusive due to the inability to trace them directly,impeding the comprehension of their underlying growth mechanisms.This study investigated hailstone ver... The growth trajectory of hailstones within clouds has remained elusive due to the inability to trace them directly,impeding the comprehension of their underlying growth mechanisms.This study investigated hailstone vertical growth trajectories by detecting the stable isotope signatures(2H and 18O compositions)of different shells in 27 hailstones from 9hailstorms,which allowed us to capture the ambient temperature during hailstone growth.The vertical growth trajectories were obtained by comparing the isotopic compositions of water condensate in clouds,derived from the Adiabatic Model,with those measured in hailstones.Although hailstone growth was primarily observed in the–10°C to–30°C temperature layer,the embryo formation height and subsequent growth trajectories significantly varied among hailstones.Embryos formed over a wide range of temperatures(–8.7°C to–33.4°C);four originated at temperatures above–15°C and 16originated at temperatures below–20°C,suggesting ice nuclei composed of bioproteins and mineral dust,respectively.Among the 27 measured hailstones,3 exhibited minimal vertical movement,16 exhibited a monotonic rise or fall,and the remaining 8 exhibited alternating up-down trajectories;only one experienced“recycling”during up-down drifting.Trajectory analysis revealed that similar-sized hailstones from a single storm tended to form at similar heights,whereas those larger than 25 mm in diameter exhibited at least one period of upward growth.Vertical trajectories derived from isotopic analysis were corroborated by radar hydrometeor observations. 展开更多
关键词 growth trajectory hailstone HAILSTORM isotopic analysis RADAR
在线阅读 下载PDF
Three-dimensional kinematic analysis can improve the efficacy of acupoint selection for post-stroke patients with upper limb spastic paresis:A randomized controlled trial 被引量:1
13
作者 Xin-yun Huang Ou-ping Liao +7 位作者 Shu-yun Jiang Ji-ming Tao Yang Li Xiao-ying Lu Yi-ying Li Ci Wang Jing Li Xiao-peng Ma 《Journal of Integrative Medicine》 2025年第1期15-24,共10页
Background China is seeing a growing demand for rehabilitation treatments for post-stroke upper limb spastic paresis(PSSP-UL).Although acupuncture is known to be effective for PSSP-UL,there is room to enhance its effi... Background China is seeing a growing demand for rehabilitation treatments for post-stroke upper limb spastic paresis(PSSP-UL).Although acupuncture is known to be effective for PSSP-UL,there is room to enhance its efficacy.Objective This study explored a semi-personalized acupuncture approach for PSSP-UL that used three-dimensional kinematic analysis(3DKA)results to select additional acupoints,and investigated the feasibility,efficacy and safety of this approach.Design,setting,participants and interventions This single-blind,single-center,randomized,controlled trial involved 74 participants who experienced a first-ever ischemic or hemorrhagic stroke with spastic upper limb paresis.The participants were then randomly assigned to the intervention group or the control group in a 1:1 ratio.Both groups received conventional treatments and acupuncture treatment 5 days a week for 4 weeks.The main acupoints in both groups were the same,while participants in the intervention group received additional acupoints selected on the basis of 3DKA results.Follow-up assessments were conducted for 8 weeks after the treatment.Main outcome measures The primary outcome was the Fugl-Meyer Assessment for Upper Extremity(FMA-UE)response rate(≥6-point change)at week 4.Secondary outcomes included changes in motor function(FMA-UE),Brunnstrom recovery stage(BRS),manual muscle test(MMT),spasticity(Modified Ashworth Scale,MAS),and activities of daily life(Modified Barthel Index,MBI)at week 4 and week 12.Results Sixty-four participants completed the trial and underwent analyses.Compared with control group,the intervention group exhibited a significantly higher FMA-UE response rate at week 4(χ^(2)=5.479,P=0.019)and greater improvements in FMA-UE at both week 4 and week 12(both P<0.001).The intervention group also showed bigger improvements from baseline in the MMT grades for shoulder adduction and elbow flexion at weeks 4 and 12 as well as thumb adduction at week 4(P=0.007,P=0.049,P=0.019,P=0.008,P=0.029,respectively).The intervention group showed a better change in the MBI at both week 4 and week 12(P=0.004 and P=0.010,respectively).Although the intervention group had a higher BRS for the hand at week 12(P=0.041),no intergroup differences were observed at week 4(all P>0.05).The two groups showed no differences in MAS grades as well as in BRS for the arm at weeks 4 and 12(all P>0.05).Conclusion Semi-personalized acupuncture prescription based on 3DKA results significantly improved motor function,muscle strength,and activities of daily living in patients with PSSP-UL. 展开更多
关键词 STROKE Spastic paresis Upper limb ACUPUNCTURE Kinematic analysis REHABILITATION
原文传递
Analysis of CFRP milling damage patterns under different laying angles with force-thermal coupling effects
14
作者 WANG Yiqi MAO Yaning +3 位作者 FENG Zhenyang JING Xiao CHEN Liangzi HE Daliang 《纤维复合材料》 2025年第3期3-7,共5页
The wide application of carbon fiber reinforced plastic(CFRP)components in modern aerospace manufacturing field puts high demands on the manufacturing process.Especially,the temperature increase during continuous mill... The wide application of carbon fiber reinforced plastic(CFRP)components in modern aerospace manufacturing field puts high demands on the manufacturing process.Especially,the temperature increase during continuous milling process becomes a key factor affecting the performance of composites,and the high milling temperature induces a variety of processing defects.This paper obtained the temperature variation data during the end milling process of CFRP laminates through experiments.After data fitting,the data were transformed into a function of heat flux density varying with time.In the finite element analysis,a double-ellipsoid moving heat source model was introduced,and a moving heat source subrou-tine was written based on the time-varying function of heat flux density to more accurately describe the thermal effects dur-ing the milling process and simulate the changes in the temperature field during milling.The Hashin failure criterion is a-dopted as the basis of fiber and matrix failure,and the simulation results of the temperature field are input into the thermal-force coupling simulation model as the predefined field conditions for solving and analyzing by means of sequential thermal-force coupling,so as to establish a thermal-force coupling simulation and analysis model for milling processing of CFRP end faces.The model simulation results can provide a basis for exploring the damage evolution law of CFRP material under the influence of temperature. 展开更多
关键词 CFRP MILLING finite element analysis moving heat source thermo-mechanical coupling
在线阅读 下载PDF
Parameter optimization of the observation system for the South Yellow Sea strong shielding layer based on seismic illumination analysis 被引量:1
15
作者 Yang Jia-Jia Chen Jian-Wen +5 位作者 Huang Fu-Qiang Yan Zhong-Hui Lei Bao-Hua Wang Xiao-Jie Xu Hua-Ning Liu Hong 《Applied Geophysics》 2025年第1期84-98,233,共16页
The seismic data of the Laoshan Uplift in the South Yellow Sea Basin reveal a low signal-tonoise ratio and low refl ection signal energy in the deep Mesozoic–Paleozoic strata.The main reason is that the Mesozoic-Pale... The seismic data of the Laoshan Uplift in the South Yellow Sea Basin reveal a low signal-tonoise ratio and low refl ection signal energy in the deep Mesozoic–Paleozoic strata.The main reason is that the Mesozoic-Paleozoic marine carbonate rock strata are directly covered by the Cenozoic terrestrial clastic rock strata,which form a strong shielding layer.To obtain the reflection signals of the strata below the strong shielding layer,a one-way wave equation bidirectional illumination analysis of the main observation system parameters was conducted by analyzing the mechanism of the strong shielding layer.Low-frequency seismic sources are assumed to have a high illumination intensity on the reflection layer below the strong shielding layer.Accordingly,optimized acquisition parameter suggestions were proposed,and reacquisition was performed at the existing survey line locations in the Laoshan Uplift area.The imaging of the newly acquired data in the middle and deep layers was drastically improved.It revealed the unconformity between the Sinian and Cambrian under the strong shielding layer.The study yielded new insights into the tectonic and sedimentary evolution of the Lower Paleozoic in the South Yellow Sea. 展开更多
关键词 illumination analysis acquisition parameters Laoshan Uplift strong shielding layer
在线阅读 下载PDF
In-situ observation and analysis of high temperature behavior of carbides in GCr15 bearing steel by confocal laser scanning microscopy 被引量:2
16
作者 Jun Ren Yue Teng +4 位作者 Xiang Liu Xi Xu Hui-gai Li Ke Han Qi-jie Zhai 《Journal of Iron and Steel Research International》 2025年第2期409-417,共9页
The high-temperature dissolution behavior of primary carbides in samples taken from GCr15 continuous-casting bloom was observed in-situ by confocal laser scanning microscopy.Equations were fitted to the dissolution ki... The high-temperature dissolution behavior of primary carbides in samples taken from GCr15 continuous-casting bloom was observed in-situ by confocal laser scanning microscopy.Equations were fitted to the dissolution kinetics of primary carbides during either heating or soaking.Dissolution of carbides proceeded in three stages(fast→slow→faster)as either temperature or holding time was increased.During the heating process and during the first and third stages of the soaking process,the original size of the carbides determined the steepness of the slope,but during the middle(“slow”)stage of the soaking process,the slope remained zero.The initial size of the carbides varied greatly,but their final dissolution temperature fell within the narrow range of 1210-1235℃,and the holding time remained within 50 min.Fractal analysis was used to study the morphological characteristics of small and medium-sized carbides during the dissolution process.According to changes in the fractal dimension before and after soaking,the carbides tended to evolve towards a more regular morphology. 展开更多
关键词 Bearing steel High-temperature confocal laser scanning microscope In-situ observation Primary carbide Fractal analysis
原文传递
Dynamic Interaction Analysis of Coupled Axial-Torsional-Lateral Mechanical Vibrations in Rotary Drilling Systems
17
作者 Sabrina Meddah Sid Ahmed Tadjer +3 位作者 Abdelhakim Idir Kong Fah Tee Mohamed Zinelabidine Doghmane Madjid Kidouche 《Structural Durability & Health Monitoring》 EI 2025年第1期77-103,共27页
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp... Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry. 展开更多
关键词 Rotary drilling systems mechanical vibrations structural durability dynamic interaction analysis field data analysis
在线阅读 下载PDF
Enrichment Analysis and Deep Learning in Biomedical Ontology:Applications and Advancements 被引量:1
18
作者 Hong-Yu Fu Yang-Yang Liu +1 位作者 Mei-Yi Zhang Hai-Xiu Yang 《Chinese Medical Sciences Journal》 2025年第1期45-56,I0006,共13页
Biomedical big data,characterized by its massive scale,multi-dimensionality,and heterogeneity,offers novel perspectives for disease research,elucidates biological principles,and simultaneously prompts changes in relat... Biomedical big data,characterized by its massive scale,multi-dimensionality,and heterogeneity,offers novel perspectives for disease research,elucidates biological principles,and simultaneously prompts changes in related research methodologies.Biomedical ontology,as a shared formal conceptual system,not only offers standardized terms for multi-source biomedical data but also provides a solid data foundation and framework for biomedical research.In this review,we summarize enrichment analysis and deep learning for biomedical ontology based on its structure and semantic annotation properties,highlighting how technological advancements are enabling the more comprehensive use of ontology information.Enrichment analysis represents an important application of ontology to elucidate the potential biological significance for a particular molecular list.Deep learning,on the other hand,represents an increasingly powerful analytical tool that can be more widely combined with ontology for analysis and prediction.With the continuous evolution of big data technologies,the integration of these technologies with biomedical ontologies is opening up exciting new possibilities for advancing biomedical research. 展开更多
关键词 biomedical ontology enrichment analysis deep learning ontology hierarchy ontology annotation
在线阅读 下载PDF
Ocean singularity analysis and global heat flow prediction reveal anomalous bathymetry and heat flow 被引量:1
19
作者 Yang Zhang Qiuming Cheng +1 位作者 Tao Hong Junjie Ji 《Geoscience Frontiers》 2025年第3期193-204,共12页
The investigations of physical attributes of oceans,including parameters such as heat flow and bathymetry,have garnered substantial attention and are particularly valuable for examining Earth’s thermal structures and... The investigations of physical attributes of oceans,including parameters such as heat flow and bathymetry,have garnered substantial attention and are particularly valuable for examining Earth’s thermal structures and dynamic processes.Nevertheless,classical plate cooling models exhibit disparities when predicting observed heat flow and seafloor depth for extremely young and old lithospheres.Furthermore,a comprehensive analysis of global heat flow predictions and regional ocean heat flow or bathymetry data with physical models has been lacking.In this study,we employed power-law models derived from the singularity theory of fractal density to meticulously fit the latest ocean heat flow and bathymetry.Notably,power-law models offer distinct advantages over traditional plate cooling models,showcasing robust self-similarity,scale invariance,or scaling properties,and providing a better fit to observed data.The outcomes of our singularity analysis concerning heat flow and bathymetry across diverse oceanic regions exhibit a degree of consistency with the global ocean spreading rate model.In addition,we applied the similarity method to predict a higher resolution(0.1°×0.1°)global heat flow map based on the most recent heat flow data and geological/geophysical observables refined through linear correlation analysis.Regions displaying significant disparities between predicted and observed heat flow are closely linked to hydrothermal vent fields and active structures.Finally,combining the actual bathymetry and predicted heat flow with the power-law models allows for the quantitative and comprehensive detection of anomalous regions of ocean subsidence and heat flow,which deviate from traditional plate cooling models.The anomalous regions of subsidence and heat flow show different degrees of anisotropy,providing new ideas and clues for further analysis of ocean topography or hydrothermal circulation of mid-ocean ridges. 展开更多
关键词 Heat flow BATHYMETRY Fractal density Power-law model Singularity analysis Similarity method
在线阅读 下载PDF
Finite element analysis and experimental study on the sealing performance of low-phenyl silicone rubber sealing rings 被引量:1
20
作者 Ming Gao Dongkai Li +6 位作者 Kun Liu Shuliang Xu Feng Zhao Ben Guo Anhui Pan Xiao Xie Huanre Han 《Railway Sciences》 2025年第1期123-137,共15页
Purpose–The brake pipe system was an essential braking component of the railway freight trains,but the existing E-type sealing rings had problems such as insufficient low-temperature resistance,poor heat stability an... Purpose–The brake pipe system was an essential braking component of the railway freight trains,but the existing E-type sealing rings had problems such as insufficient low-temperature resistance,poor heat stability and short service life.To address these issues,low-phenyl silicone rubber was prepared and tested,and the finite element analysis and experimental studies on the sealing performance of its sealing rings were carried out.Design/methodology/approach–The low-temperature resistance and thermal stability of the prepared lowphenyl silicone rubber were studied using low-temperature tensile testing,differential scanning calorimetry,dynamic thermomechanical analysis and thermogravimetric analysis.The sealing performance of the lowphenyl silicone rubber sealing ring was studied by using finite element analysis software abaqus and experiments.Findings–The prepared low-phenyl silicone rubber sealing ring possessed excellent low-temperature resistance and thermal stability.According to the finite element analysis results,the finish of the flange sealing surface and groove outer edge should be ensured,and extrusion damage should be avoided.The sealing rings were more susceptible to damage in high compression ratio and/or low-temperature environments.When the sealing effect was ensured,a small compression ratio should be selected,and rubbers with hardness and elasticity less affected by temperature should be selected.The prepared low-phenyl silicone rubber sealing ring had zero leakage at both room temperature(RT)and�508C.Originality/value–The innovation of this study is that it provides valuable data and experience for the future development of the sealing rings used in the brake pipe flange joints of the railway freight cars in China. 展开更多
关键词 Low-phenyl silicone rubber Sealing ring Sealing performance Finite element analysis LEAKAGE
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部