Considering the significant importance in both ecological and environmental fields, converting nitrogen oxide(NO_(x), especially NO) into value-added NH3or harmless N2lies in the core of research over the past decades...Considering the significant importance in both ecological and environmental fields, converting nitrogen oxide(NO_(x), especially NO) into value-added NH3or harmless N2lies in the core of research over the past decades. Exploring catalyst for related gas molecular activation and highly efficient reaction systems operated under low temperature or even mild conditions are the key issues. Enormous efforts have been devoted to NO removal by utilizing various driving forces, such as thermal, electrical or solar energy,which shine light on the way to achieve satisfying conversion efficiency. Herein, we will review the stateof-the-art catalysts for NO removal driven by the above-mentioned energies, including a comprehensive introduction and discussion on the pathway and mechanism of each reaction, and the recent achievements of catalysts on each aspect. Particularly, the progress of NO removal by environmentally friendly photocatalysis and electrocatalysis methods will be highlighted. The challenges and opportunities in the future research on the current topic will be discussed as well.展开更多
基金financially supported by National Natural Science Foundation of China (Nos. 21703075, 51872107, 52073110,51902121)Natural Science Foundation of Hubei Province (No.2020CFB694)Fundamental Research Funds for the Central Universities (No. 2662020LXPY005)。
文摘Considering the significant importance in both ecological and environmental fields, converting nitrogen oxide(NO_(x), especially NO) into value-added NH3or harmless N2lies in the core of research over the past decades. Exploring catalyst for related gas molecular activation and highly efficient reaction systems operated under low temperature or even mild conditions are the key issues. Enormous efforts have been devoted to NO removal by utilizing various driving forces, such as thermal, electrical or solar energy,which shine light on the way to achieve satisfying conversion efficiency. Herein, we will review the stateof-the-art catalysts for NO removal driven by the above-mentioned energies, including a comprehensive introduction and discussion on the pathway and mechanism of each reaction, and the recent achievements of catalysts on each aspect. Particularly, the progress of NO removal by environmentally friendly photocatalysis and electrocatalysis methods will be highlighted. The challenges and opportunities in the future research on the current topic will be discussed as well.