After the synthesis of two‐dimensional(2D)graphene through mechanical exfoliation in 2004,2D nanomaterials have emerged as efficient catalysts for many types of reactions,including heterogeneous catalysis,due to thei...After the synthesis of two‐dimensional(2D)graphene through mechanical exfoliation in 2004,2D nanomaterials have emerged as efficient catalysts for many types of reactions,including heterogeneous catalysis,due to their distinct physicochemical and electronic properties.This review highlights recent progress in the application of 2D materials for selected heterogeneous thermo‐catalytic reactions,with an emphasis on their role as active catalysts or catalyst supports.The catalytic behavior of 2D materials,either as a catalyst or support,in various heterogeneous catalytic reactions,such as Knoevenagel condensation,Suzuki coupling,oxidative dehydrogenation,hydrogenation of nitroarenes,and oxidative desulfurization,is discussed.Particular attention is given to catalyst design strategies involving 2D materials functionalized with metal‐free active sites,as well as hybrid systems incorporating noble and non‐noble metals,although our primary focus is on metal‐free and structurally tunable 2D catalytic platforms.We conclude our discussion with a perspective on present challenges and future recommendations in this fast‐evolving field based on recent state‐of‐the‐art developments.In addition,we provide a critical perspective on current challenges and suggest future directions for the development of cost‐effective,selective,and durable 2D‐based catalysts.展开更多
Multi⁃field coupling problems involving species transport,heat transfer,substance transformation,and mechanical deformation are prevalent in various scenarios,such as the curing of early⁃age concretes,the response of ...Multi⁃field coupling problems involving species transport,heat transfer,substance transformation,and mechanical deformation are prevalent in various scenarios,such as the curing of early⁃age concretes,the response of soft materials,the oxidation of metals,the lithiation and delithiation of lithium⁃ion batteries,and the self⁃healing of biological tissues.Thermo⁃chemo⁃mechanical coupling dynamics are common characteristics of these problems,making theoretical studies on such processes of significant importance.This study offers a thorough review of advanced theoretical models that address thermo⁃chemo⁃mechanical behavior of solid materials within the theoretical framework of non⁃equilibrium thermodynamics.First,we outline the thermo⁃chemo⁃mechanical coupling phenomena observed in various application scenarios.Then,the theoretical developments of classical continuum mechanics include the phase field method and peridynamics in the contexts of thermo⁃mechanical coupling,chemo⁃mechanical coupling,and thermo⁃chemo⁃mechanical coupling,respectively.Finally,challenges faced by thermo⁃chemo⁃mechanical coupling research are highlighted and prospects and directions for this field are also outlined.This paper helps to understand the history and trends in the development of thermo⁃chemo⁃mechanical coupling theory.展开更多
Xerostomia(dry mouth)is frequently experienced by patients treated with radiotherapy for head and neck cancers or with Sjögren’s syndrome,with no permanent cure existing for this debilitating condition.To this e...Xerostomia(dry mouth)is frequently experienced by patients treated with radiotherapy for head and neck cancers or with Sjögren’s syndrome,with no permanent cure existing for this debilitating condition.To this end,in vitro platforms are needed to test therapies directed at salivary(fluid-secreting)cells.However,since these are highly differentiated secretory cells,the maintenance of their differentiated state while expanding in numbers is challenging.In this study,the efficiency of three reversible thermo-ionically crosslinked gels:(1)alginate–gelatin(AG),(2)collagen-containing AG(AGC),and(3)hyaluronic acid-containing AG(AGHA),to recapitulate a native-like environment for human salivary gland(SG)cell expansion and 3D spheroid formation was compared.Although all gels were of mechanical properties comparable to human SG tissue(~11 kPa)and promoted the formation of 3D spheroids,AGHA gels produced larger(>100 cells/spheroid),viable(>93%),proliferative,and well-organized 3D SG spheroids while spatially and temporally maintaining the high expression of key SG proteins(aquaporin-5,NKCC1,ZO-1,α-amylase)for 14 days in culture.Moreover,the spheroids responded to agonist-induced stimulation by increasingα-amylase secretory granules.Here,we propose alternative lowcost,reproducible,and reversible AG-based 3D hydrogels that allow the facile and rapid retrieval of intact,highly viable 3D-SG spheroids.展开更多
Based on thermo field dynamics (TFD) and using the thermo Wigner operator in the thermo entangled state representation we derive the Wigner function of number states at finite temperature (named thermo number state...Based on thermo field dynamics (TFD) and using the thermo Wigner operator in the thermo entangled state representation we derive the Wigner function of number states at finite temperature (named thermo number states). The figure of Wigner function shows that its shape gets smoothed as the temperature rises, implying that the quantum noise becomes larger.展开更多
基金supported by the Joint Funds of the National Natural Science Foundation of China(U24B20201)the National Natural Science Foundation of China(22372007 and 21972010).
文摘After the synthesis of two‐dimensional(2D)graphene through mechanical exfoliation in 2004,2D nanomaterials have emerged as efficient catalysts for many types of reactions,including heterogeneous catalysis,due to their distinct physicochemical and electronic properties.This review highlights recent progress in the application of 2D materials for selected heterogeneous thermo‐catalytic reactions,with an emphasis on their role as active catalysts or catalyst supports.The catalytic behavior of 2D materials,either as a catalyst or support,in various heterogeneous catalytic reactions,such as Knoevenagel condensation,Suzuki coupling,oxidative dehydrogenation,hydrogenation of nitroarenes,and oxidative desulfurization,is discussed.Particular attention is given to catalyst design strategies involving 2D materials functionalized with metal‐free active sites,as well as hybrid systems incorporating noble and non‐noble metals,although our primary focus is on metal‐free and structurally tunable 2D catalytic platforms.We conclude our discussion with a perspective on present challenges and future recommendations in this fast‐evolving field based on recent state‐of‐the‐art developments.In addition,we provide a critical perspective on current challenges and suggest future directions for the development of cost‐effective,selective,and durable 2D‐based catalysts.
基金Sponsored by Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515111166)Development and Reform Commission of Shenzhen(Grant No.XMHT20220103004)+1 种基金Shenzhen Natural Science Fund(Grant No.GXWD20231130100351002)National Natural Science Foundation of China(Grant No.11932005).
文摘Multi⁃field coupling problems involving species transport,heat transfer,substance transformation,and mechanical deformation are prevalent in various scenarios,such as the curing of early⁃age concretes,the response of soft materials,the oxidation of metals,the lithiation and delithiation of lithium⁃ion batteries,and the self⁃healing of biological tissues.Thermo⁃chemo⁃mechanical coupling dynamics are common characteristics of these problems,making theoretical studies on such processes of significant importance.This study offers a thorough review of advanced theoretical models that address thermo⁃chemo⁃mechanical behavior of solid materials within the theoretical framework of non⁃equilibrium thermodynamics.First,we outline the thermo⁃chemo⁃mechanical coupling phenomena observed in various application scenarios.Then,the theoretical developments of classical continuum mechanics include the phase field method and peridynamics in the contexts of thermo⁃mechanical coupling,chemo⁃mechanical coupling,and thermo⁃chemo⁃mechanical coupling,respectively.Finally,challenges faced by thermo⁃chemo⁃mechanical coupling research are highlighted and prospects and directions for this field are also outlined.This paper helps to understand the history and trends in the development of thermo⁃chemo⁃mechanical coupling theory.
基金support from Fonds de Recherche du Québec Santé(FRQS,grant no.281271)support from FRQS doctoral award #304367funding from CFI,Rheolution Inc.,and Investissement Québec.
文摘Xerostomia(dry mouth)is frequently experienced by patients treated with radiotherapy for head and neck cancers or with Sjögren’s syndrome,with no permanent cure existing for this debilitating condition.To this end,in vitro platforms are needed to test therapies directed at salivary(fluid-secreting)cells.However,since these are highly differentiated secretory cells,the maintenance of their differentiated state while expanding in numbers is challenging.In this study,the efficiency of three reversible thermo-ionically crosslinked gels:(1)alginate–gelatin(AG),(2)collagen-containing AG(AGC),and(3)hyaluronic acid-containing AG(AGHA),to recapitulate a native-like environment for human salivary gland(SG)cell expansion and 3D spheroid formation was compared.Although all gels were of mechanical properties comparable to human SG tissue(~11 kPa)and promoted the formation of 3D spheroids,AGHA gels produced larger(>100 cells/spheroid),viable(>93%),proliferative,and well-organized 3D SG spheroids while spatially and temporally maintaining the high expression of key SG proteins(aquaporin-5,NKCC1,ZO-1,α-amylase)for 14 days in culture.Moreover,the spheroids responded to agonist-induced stimulation by increasingα-amylase secretory granules.Here,we propose alternative lowcost,reproducible,and reversible AG-based 3D hydrogels that allow the facile and rapid retrieval of intact,highly viable 3D-SG spheroids.
基金supported by the National Natural Science Foundation of China (Grant Nos 10775097 and 10874174)
文摘Based on thermo field dynamics (TFD) and using the thermo Wigner operator in the thermo entangled state representation we derive the Wigner function of number states at finite temperature (named thermo number states). The figure of Wigner function shows that its shape gets smoothed as the temperature rises, implying that the quantum noise becomes larger.