期刊文献+
共找到659,606篇文章
< 1 2 250 >
每页显示 20 50 100
COUPLED THERMAL/MECHANICAL ANALYSIS FOR THE FRACTURE OF FUNCTIONALLY GRADED MATERIALS UNDER TRANSIENT THERMAL LOADING 被引量:1
1
作者 Zhang Xinghong Wang Baolin Han Jiecai 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第2期95-101,共7页
A comprehensive treatment of fracture of functionally gradedmaterials (FGMs) is provided. It is assumed that the materialproperties depend only on the coordinate perpendicular to the cracksurface And vary continuously... A comprehensive treatment of fracture of functionally gradedmaterials (FGMs) is provided. It is assumed that the materialproperties depend only on the coordinate perpendicular to the cracksurface And vary continuously along the crack faces. By using alaminated composite plate model to simulate the ma- Terialnon-homogeneity, an algorithm for solving the system based on Laplacetransform and Fourier transform Techniques is presented. Unlikeearlier studies that considered certain assumed propertydistributions and a Single crack problem, the current investigationstudies multiple crack problem in the FGMs with arbitrarily Varyingmaterial properties. Transient thermal stresses are presented. 展开更多
关键词 functionally graded materials fracture mechanics transient thermal stress Laplace trans- form
在线阅读 下载PDF
Densification,microstructure,mechanical properties,and thermal stability of high-strength Ti-modified Al-Si-Mg-Zr aluminum alloy fabricated by laser-powder bed fusion 被引量:1
2
作者 Yaoxiang Geng Zhifa Shan +2 位作者 Jiaming Zhang Tianshuo Wei Zhijie Zhang 《International Journal of Minerals,Metallurgy and Materials》 2025年第10期2547-2559,共13页
Micrometer-sized,irregularly shaped Ti particles(0.5wt%and 1.0wt%)were mixed with an Al-Si-Mg-Zr matrix powder,and a novel Ti-modified Al-Si-Mg-Zr aluminum alloy was subsequently fabricated via laser-powder bed fusion... Micrometer-sized,irregularly shaped Ti particles(0.5wt%and 1.0wt%)were mixed with an Al-Si-Mg-Zr matrix powder,and a novel Ti-modified Al-Si-Mg-Zr aluminum alloy was subsequently fabricated via laser-powder bed fusion(L-PBF).The results demonstrated that the introduction of Ti particles promoted the formation of near-fully equiaxed grains in the alloy owing to the strong grain refinement of the primary(Al,Si)3(Ti,Zr)nanoparticles.Furthermore,the presence of(Al,Si)3(Ti,Zr)nanoparticles inhibited the decomposition of Si-rich cell boundaries and the precipitation of Si nanoparticles in theα-Al cells.The ultimate tensile strength(UTS),yield strength(YS),and elongation of the asbuilt 0.5wt%Ti(0.5Ti)alloy were(468±11),(350±1)MPa,and(10.0±1.4)%,respectively,which are comparable to those of the L-PBF Al-Si-Mg-Zr matrix alloy and significantly higher than those of traditional L-PBF Al-Si-Mg alloys.After direct aging treatment at 150°C,the precipitation of secondary nanoparticles notably enhanced the strength of the 0.5Ti alloy.Specifically,the 0.5Ti alloy achieved a maximum UTS of(479±11)MPa and YS of(376±10)MPa.At 250°C,the YS of the L-PBF Ti/Al-Si-Mg-Zr alloy was higher than that of the L-PBF Al-Si-Mg-Zr matrix alloy due to the retention of Si-rich cell boundaries,indicating a higher thermal stability.As the aging temperature was increased to 300°C,the dissolution of Si-rich cell boundaries,desolvation of solid-solution elements,and coarsening of nanoprecipitates led to a decrease in the UTS and YS of the alloy to below 300 and 200 MPa,respectively.However,the elongation increased significantly. 展开更多
关键词 laser-powder bed fusion Ti-modified Al-Si-Mg-Zr alloy MICROSTRUCTURE mechanical property thermal stability
在线阅读 下载PDF
Collaborative enhancement of thermal diffusivities and mechanical properties of C_(sf)-Cu/Mg composites via introducing Cu coating with different thicknesses 被引量:1
3
作者 Yuan Ma Lingjun Guo +3 位作者 Jiancheng Wang Baolin Chen Lehua Qi Hejun Li 《Journal of Magnesium and Alloys》 2025年第1期229-242,共14页
Mg alloy matrix composites reinforced with short carbon fibers(C_(sf)/Mg)are considered as potential candidates for integrated structural-functional electronic parts that satisfy the requirements of lightweight,excell... Mg alloy matrix composites reinforced with short carbon fibers(C_(sf)/Mg)are considered as potential candidates for integrated structural-functional electronic parts that satisfy the requirements of lightweight,excellent mechanical properties,and heat dissipation.However,the different characteristics of C_(sf)and Mg alloy make the interface a critical issue affecting the synergistic improvement of thermal and mechanical properties of the composites.Here,Cu coating with different thicknesses is introduced to modify the C_(sf)/Mg interface,so as to simultaneously enhance the thermal and mechanical performances,which can combine the advantages of coating modification and matrix alloying.Results reveal that thermal diffusivity(TD)of 3-C_(sf)-Cu/Mg composites is as high as 22.12 mm^(2)/s and an enhancement of 52.97%is achieved compared with C_(sf)/Mg composites,as well as 16.3%enhancement of ultimate compressive strength(UCS)in the longitudinal direction,8.84%improvement of UCS in the transverse direction,and 53.08%increasement of ultimate tensile strength(UTS).Such improvement can be ascribed to the formation of intermetallic compounds.The formation of intermetallic compounds can not only effectively alleviate the lattice distortion of the matrix and decrease interfacial thermal resistance,but also bear the loads.Our work is of great significance for designing C_(sf)/Mg composites with integrated structure and function. 展开更多
关键词 Magnesium matrix composites Cu coating thickness Intermetallic compounds thermal performances mechanical properties
在线阅读 下载PDF
Effects of Thermal Aging on Microstructure and Mechanical Properties of Interface of Hot Isostatic Pressing Densified Low Alloy Steel with Inconel 690 Cladding
4
作者 Yu Lei Cao Rui +3 位作者 Ma Jinyuan Yan Yingjie Dong Hao Wang Caiqin 《稀有金属材料与工程》 北大核心 2025年第4期879-885,共7页
The microstructure,micro-hardness,and tensile properties of interface between hot isostatic pressing densified low alloy steel and Inconel 690 cladding were investigated during the aging process at 600℃.The results s... The microstructure,micro-hardness,and tensile properties of interface between hot isostatic pressing densified low alloy steel and Inconel 690 cladding were investigated during the aging process at 600℃.The results show that the interface region can be divided into four zones from base metal to deposited metal:carbon-depleted zone(CDZ),partial melting zone(PMZ),planar growth zone(PGZ),and brownish feature zone(BFZ).Dimensions of these zones do not significantly change during aging.However,type I carbides noticeably increase in size in the PMZ,and precipitates clearly occur in the PGZ.The main reason for their growth and occurrence is continuous carbon migration.The highest micro-hardness appears in the PGZ and BFZ regions,which is related to carbon accumulation and precipitates in these regions.Tensile failure occurs on the base metal side due to the high strength mismatch between these two materials.The CDZ,composed of only ferrite,has lower strength and fractures at the boundary between CDZ and base metal.The ultimate tensile strength decreases by only 50 MPa after aging for 1500 h,and the interface region maintains high strength without significant deformation. 展开更多
关键词 INTERFACE thermal aging microstructure mechanical properties hot isostatic pressing densification
原文传递
Thermal and mechanical properties of MO_(2)(M=Ti,Zr,Hf)co-doped YTaO_(4) medium-entropy ceramics 被引量:1
5
作者 Xunlei Chen Lin Chen +5 位作者 Jiang Tian Cheng Xu Jiaxin Liao Tianyu Li Jiankun Wang Jing Feng 《International Journal of Minerals,Metallurgy and Materials》 2025年第6期1441-1450,共10页
Thermal and mechanical properties of yttrium tantalate(YTaO_(4)),a top coat ceramic of thermal barrier coatings(TBCs)for aeroengines,are enhanced by synthesizing Y_(1-x)Ta_(1-x)M_(2x)O_(4)(M=Ti,Zr,Hf;x=0.06,0.12,0.18,... Thermal and mechanical properties of yttrium tantalate(YTaO_(4)),a top coat ceramic of thermal barrier coatings(TBCs)for aeroengines,are enhanced by synthesizing Y_(1-x)Ta_(1-x)M_(2x)O_(4)(M=Ti,Zr,Hf;x=0.06,0.12,0.18,0.24)medium-entropy ceramics(MECs)using a two-step sintering method.In addition,the thermal conductivity,thermal expansion coefficients(TECs),and fracture toughness of MECs were investigated.An X-ray diffraction study revealed that the Y_(1-x)Ta_(1-x)M_(2x)O_(4) MECs were monoclinic,and the Ti,Zr,and Hf doping elements replaced Y and Ta.The variations in atomic weights and ionic radii led to disturbed atomic arrangements and severe lattice distortions,resulting in improving the phonon scattering and reduced thermal conductivity,with Y_(1-x)Ta_(1-x)M_(2x)O_(4) MECs(x=0.24)exhibiting the lowest thermal conductivity of 1.23 W·m^(-1)·K^(-1)at 900℃.The introduction of MO_(2) increased the configurational entropy and weakened the ionic bonding energy,obtaining high TECs(10.4×10^(-6)K^(-1)at 1400℃).The reduction in the monoclinic angle β lowered the ferroelastic domain inversion energy barrier.Moreover,microcracks and crack extension toughening endowed Y_(1-x)Ta_(1-x)M_(2x)O_(4) MECs(x=0.24)with the highest fracture toughness of(4.1±0.5)MPa·m~(1/2).The simultaneous improvement of the thermal and mechanical properties of the MO_(2)(M=Ti,Zr,Hf)co-doped YTaO_(4) MECs can be extended to other materials. 展开更多
关键词 thermal barrier coatings rare-earth tantalates fracture toughness middle-entropy ceramics
在线阅读 下载PDF
Innovative dispersion techniques of graphene nanoplatelets(GNPs)through mechanical stirring and ultrasonication:Impact on morphological,mechanical,and thermal properties of epoxy nanocomposites
6
作者 Vasi Uddin Siddiqui S.M.Sapuan Mohd Roshdi Hassan 《Defence Technology(防务技术)》 2025年第1期13-25,共13页
Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological beh... Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological behavior of GNP/epoxy nanocomposites.This study aims to understand how the dispersion of GNPs affects the properties of epoxy nanocomposite and to identify the best dispersion approach for improving mechanical performance.A solvent mixing technique that includes mechanical stirring and ultrasonication was used for producing the nanocomposites.Fourier transform infrared spectroscopy was used to investigate the interaction between GNPs and the epoxy matrix.The measurements of density and moisture content were used to confirm that GNPs were successfully incorporated into the nanocomposite.The findings showed that GNPs are successfully dispersed in the epoxy matrix by combining mechanical stirring and ultrasonication in a single step,producing well-dispersed nanocomposites with improved mechanical properties.Particularly,the nanocomposites at a low GNP loading of 0.1 wt%,demonstrate superior mechanical strength,as shown by increased tensile properties,including improved Young's modulus(1.86 GPa),strength(57.31 MPa),and elongation at break(4.98).The nanocomposite with 0.25 wt%GNP loading performs better,according to the viscoelastic analysis and flexural properties(113.18 MPa).Except for the nanocomposite with a 0.5 wt%GNP loading,which has a higher thermal breakdown temperature,the thermal characteristics do not significantly alter.The effective dispersion of GNPs in the epoxy matrix and low agglomeration is confirmed by the morphological characterization.The findings help with filler selection and identifying the best dispersion approach,which improves mechanical performance.The effective integration of GNPs and their interaction with the epoxy matrix provides the doorway for additional investigation and the development of sophisticated nanocomposites.In fields like aerospace,automotive,and electronics where higher mechanical performance and functionality are required,GNPs'improved mechanical properties and successful dispersion present exciting potential. 展开更多
关键词 Graphene nanoplatelets Epoxy Nanocomposites mechanical properties thermal properties mechanical stirrer Sonication
在线阅读 下载PDF
Magnesium Borate/Boron Nitride Composite Whiskers Strengthen the Mechanical Properties and Thermal Conductivity of Epoxy Resin Composite Materials
7
作者 ZHOU Peilin LIANG Huasong +4 位作者 LI Wenbiao CHEN Wenzhuo JI Yuchun LI Zhengde WANG Jilin 《Journal of Wuhan University of Technology(Materials Science)》 2025年第6期1598-1605,共8页
A highly thermally conductive magnesium borate/boron nitride(A-MBN)composite whisker was developed which was surface functionalized by(3-Aminopropyl)triethoxysilane.Its growth mechanism was proposed.Then,A-MBN/epoxy c... A highly thermally conductive magnesium borate/boron nitride(A-MBN)composite whisker was developed which was surface functionalized by(3-Aminopropyl)triethoxysilane.Its growth mechanism was proposed.Then,A-MBN/epoxy composites were prepared.When the A-MBN content is 8wt%,the thermal conductivity of the A-MBN/EP composite is 0.61 W·m^(-1)·K^(-1),which is 230%higher than that of pure EP.At the same time,the tensile strength of the composite material is 85.4%higher than that of the pure EP,and it also maintains excellent electrical insulation property.Finally,the infrared imaging test verifies the excellent heat dissipation performance of the composite material,indicating that the composite material has broad application prospects in the field of thermal conductive materials. 展开更多
关键词 thermal conductivity whisker mechanical properties thermal properties
原文传递
Thermophysical-mechanical behaviors of hot dry granite subjected to thermal shock cycles and dynamic loadings
8
作者 Ju Wang Feng Dai +2 位作者 Yi Liu Hao Tan Pan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5437-5452,共16页
Exploring dynamic mechanical responses and failure behaviors of hot dry rock(HDR)is significant for geothermal exploitation and stability assessment.In this study,via the split Hopkinson pressure bar(SHPB)system,a ser... Exploring dynamic mechanical responses and failure behaviors of hot dry rock(HDR)is significant for geothermal exploitation and stability assessment.In this study,via the split Hopkinson pressure bar(SHPB)system,a series of dynamic compression tests were conducted on granite treated by cyclic thermal shocks at different temperatures.We analyzed the effects of cyclic thermal shock on the thermal-related physical and dynamic mechanical behaviors of granite.Specifically,the P-wave velocity,dynamic strength,and elastic modulus of the tested granite decrease with increasing temperature and cycle number,while porosity and peak strain increase.The degradation law of dynamic mechanical properties could be described by a cubic polynomial.Cyclic thermal shock promotes shear cracks propagation,causing dynamic failure mode of granite to transition from splitting to tensile-shear composite failure,accompanied by surface spalling and debris splashing.Moreover,the thermal shock damage evolution and coupled failure mechanism of tested granite are discussed.The evolution of thermal shock damage with thermal shock cycle numbers shows an obvious S-shaped surface,featured by an exponential correlation with dynamic mechanical parameters.In addition,with increasing thermal shock temperature and cycles,granite mineral species barely change,but the length and width of thermal cracks increase significantly.The non-uniform expansion of minerals,thermal shock-induced cracking,and water-rock interaction are primary factors for deteriorating dynamic mechanical properties of granite under cyclic thermal shock. 展开更多
关键词 Geothermal exploitation Cyclic thermal shock GRANITE thermal-related physical properties Dynamic mechanical behavior Failure mechanism
在线阅读 下载PDF
Effect of Si content on microstructure,mechanical,and thermal/electrical conductivities of Al-xSi-0.3Mn-0.3Mg-0.14Fe alloy prepared by super-slow-speed die-casting
9
作者 Lu Zhang Heng-cheng Liao Jiang Li 《China Foundry》 2025年第3期323-332,共10页
In this study,Al-xSi-0.3Mn-0.3Mg-0.14Fe alloys(x=6.5,7.5,8.5,wt.%)were prepared by super-slow-speed die-casting,and the effects of Si content on the microstructure,mechanical,and thermal/electrical conductivities in a... In this study,Al-xSi-0.3Mn-0.3Mg-0.14Fe alloys(x=6.5,7.5,8.5,wt.%)were prepared by super-slow-speed die-casting,and the effects of Si content on the microstructure,mechanical,and thermal/electrical conductivities in as-cast,T5,and T6 states(DIN EN 1706:2020)were investigated.It is found that the increase of Si content in the alloy enhances the formation of eutectic segregation band in the casting surface microstructure.Within the Si content range of 6.5%-8.5%,as a comprehensive evaluation criterion of mechanical properties,the quality index(QI)of 376.1 MPa can be obtained in the as-cast state of the alloy with about 7.5%Si content,373.4 MPa in T5 state of the alloy with 6.5%Si content,and 432.2 MPa in T6 state of the alloy containing 8.5%Si.The heat treatment state significantly affects the thermal conductivity and electrical conductivity of the alloys.The eutectic silicon in the alloy is segemented and further spheroidizaed during the solution process,and the solute atoms of Mg and Si are more adequately precipitated during the aging process.Both of these greatly reduce the probability of electron scattering.Thus,T6 treatment significantly improves the electrical and thermal conductivities.With the increase of Si content,both thermal conductivity and electrical conductivity decrease slightly,demonstrating a strong correlation with the Si content in the alloy. 展开更多
关键词 Al-Si alloy MICROSTRUCTURE mechanical property thermal conductivity electric conductivity
在线阅读 下载PDF
Tunable thermal conductivity and mechanical properties of metastable silicon by phase engineering
10
作者 Guoshuai Du Yubing Du +7 位作者 Jiaxin Ming Zhixi Zhu Jiaohui Yan Jiayin Li Tiansong Zhang Lina Yang Ke Jin Yabin Chen 《Chinese Physics B》 2025年第9期412-418,共7页
The extensive applications of cubic silicon in flexible transistors and infrared detectors are greatly hindered by its intrinsic properties.Metastable silicon phases,such as Si-Ⅲ,Ⅳ,andⅫ,prepared using extreme press... The extensive applications of cubic silicon in flexible transistors and infrared detectors are greatly hindered by its intrinsic properties.Metastable silicon phases,such as Si-Ⅲ,Ⅳ,andⅫ,prepared using extreme pressure methods,provide a unique“genetic bank”with diverse structures and exotic characteristics.However,exploration of their inherent physical properties remains underdeveloped.Herein,we demonstrate the phase engineering strategy to modulate the thermal conductivity and mechanical properties of metastable silicon.The thermal conductivity,obtained via the Raman optothermal approach,exhibits broad tunability across various Si-Ⅰ,Ⅲ,Ⅻ,andⅣphases.The hardness and Young's modulus of Si-Ⅳare significantly greater than those of the Si-Ⅲ/Ⅻmixture,as confirmed by the nanoindentation technique.Moreover,it was found that pressure-induced structural defects can substantially degrade the thermal and mechanical properties of silicon.This systematic investigation offers a feasible route for designing novel semiconductors and further advancing their desirable applications in advanced nanodevices and mechanical transducers. 展开更多
关键词 metastable silicon thermal conductivity mechanical property high pressure
原文传递
Thermal Stability and Mechanical Properties of Nanotwinned Ni-W Alloyed Films
11
作者 Shuyi Ren Jiao Li +5 位作者 Kai Wu Xiaoge Li Yaqiang Wang Jinyu Zhang Gang Liu Jun Sun 《Acta Metallurgica Sinica(English Letters)》 2025年第9期1570-1582,共13页
Nanocrystalline alloys often exhibit unusual thermal stability as a consequence of kinetic and thermodynamic barriers to grain growth.However,the physical mechanisms governing alloy stability need to be identified.In ... Nanocrystalline alloys often exhibit unusual thermal stability as a consequence of kinetic and thermodynamic barriers to grain growth.However,the physical mechanisms governing alloy stability need to be identified.In this work,we found that grain boundary(GB)relaxation renders Ni-W alloyed films relatively stable at low annealing temperature,while twinning-mediated grain growth occurs via dislocation-GB/twin boundary(TB)interactions as the annealing temperature increases.At a relatively low temperature,TB strengthening plays a dominant role in plastic deformation,whereas precipitation strengthening gradually controls the deformation mechanism with the increase of annealing temperature.Our findings provide evidence for improving mechanical property through alloying and microstructure design,and have a crucial guiding significance in material selection and miniaturized applications such as Micro Electro Mechanical Systems. 展开更多
关键词 Nanotwinned Ni-W alloyed film thermal stability mechanical property MICROSTRUCTURE
原文传递
Effects of Al-5Sr-5Sb modifiers prepared by various processes on microstructure,thermal conductivity,and mechanical properties of AlSi10MnMg alloy
12
作者 Wen-jing LIU Yuan-dong LI +3 位作者 Zi-chen WANG Xiao-mei LUO Hong-wei ZHOU Guang-li BI 《Transactions of Nonferrous Metals Society of China》 2025年第7期2164-2182,共19页
Three kinds of Al−5Sr−5Sb modifiers were prepared by permanent mold casting(PMC),controlled diffusion solidification(CDS),and rolling.The influence of the preparation method on Al−5Sr−5Sb was examined by assessing the... Three kinds of Al−5Sr−5Sb modifiers were prepared by permanent mold casting(PMC),controlled diffusion solidification(CDS),and rolling.The influence of the preparation method on Al−5Sr−5Sb was examined by assessing the melting enthalpy from DSC curves and conducting first-principles calculations.Al−5Sr−5Sb was incorporated into AlSi10MnMg alloy to examine the modification effect and mechanism.It is found that the AlSi10MnMg alloy modified with CDS-prepared Al−5Sr−5Sb shows significant improvement in its microstructure,changing the eutectic Si phase from lamellar to coral-like or fiber-like structures.This modification leads to enhanced macroscopic properties:the thermal conductivity is increased by 24.14%to 189.63 W/(m·K),elongation is increased by 59.15%to 10.87%,and tensile strength is increased by 66.9%to 254.98 MPa compared to the unmodified alloy. 展开更多
关键词 controlled diffusion solidification MODIFICATION AlSi10MnMg FIRST-PRINCIPLES thermal conductivity mechanical properties
在线阅读 下载PDF
PFC-FDEM multi-scale cross-platform numerical simulation of thermal crack network evolution and SHTB dynamic mechanical response of rocks
13
作者 Yue Zhai Shaoxu Hao +1 位作者 Shi Liu Yu Jia 《International Journal of Mining Science and Technology》 2025年第9期1555-1589,共35页
Underground engineering in extreme environments necessitates understanding rock mechanical behavior under coupled high-temperature and dynamic loading conditions.This study presents an innovative multi-scale cross-pla... Underground engineering in extreme environments necessitates understanding rock mechanical behavior under coupled high-temperature and dynamic loading conditions.This study presents an innovative multi-scale cross-platform PFC-FDEM coupling methodology that bridges microscopic thermal damage mechanisms with macroscopic dynamic fracture responses.The breakthrough coupling framework introduces:(1)bidirectional information transfer protocols enabling seamless integration between PFC’s particle-scale thermal damage characterization and FDEM’s continuum-scale fracture propagation,(2)multi-physics mapping algorithms that preserve crack network geometric invariants during scale transitions,and(3)cross-platform cohesive zone implementations for accurate SHTB dynamic loading simulation.The coupled approach reveals distinct three-stage crack evolution characteristics with temperature-dependent density following an exponential model.High-temperature exposure significantly reduces dynamic strength ratio(60%at 800℃)and diminishes strain-rate sensitivity,with dynamic increase factor decreasing from 1.0 to 2.2(25℃)to 1.0-1.3(800℃).Critically,the coupling methodology captures fundamental energy redistribution mechanisms:thermal crack networks alter elastic energy proportion from 75%to 35%while increasing fracture energy from 5%to 30%.Numerical predictions demonstrate excellent experimental agreement(±8%peak stress-strain errors),validating the PFC-FDEM coupling accuracy.This integrated framework provides essential computational tools for predicting complex thermal-mechanical rock behavior in underground engineering applications. 展开更多
关键词 thermal geomechanics Thermo-mechanical coupling phenomena Fracture network propagation PFC-FDEM Dynamic mechanical response
在线阅读 下载PDF
Effects of aging on mechanical sensitivity threshold and thermal decomposition characteristic of RDX/HMX
14
作者 Shian Zhang Yanru Wang +7 位作者 Zeshan Wang Deyun Liu Mingkun Fang Zhiyong Ma Xingliang Wu Xibo Jiang Sen Xu Dabin Liu 《Defence Technology(防务技术)》 2025年第3期62-72,共11页
In order to analyze the influences of storage aging on the safety of typical elemental explosives,the aged cyclotrimethylene trinitramine(RDX)and cyclotetramethylene tetranitramine(HMX)were prepared by isothermal agin... In order to analyze the influences of storage aging on the safety of typical elemental explosives,the aged cyclotrimethylene trinitramine(RDX)and cyclotetramethylene tetranitramine(HMX)were prepared by isothermal aging tests.The reaction thresholds of aged RDX and HMX under any ignition probability were studied by Langlie-Optimal D method.The thermal decomposition characteristics of RDX and HMX after aging were analyzed by DSC and ARC.Experimental results showed that compared with unaged RDX and HMX,on the one hand,the critical impact energy and critical friction of RDX and HMX aged for 14,28,and 56 days are significantly reduced at an explosion probability of 50%,0.01%,and 0.0001%,respectively.With the increase of aging time,the mechanical sensitivity of RDX and HMX increases obviously.On the other hand,the initial decomposition temperature of RDX and HMX after 56 days of aging decreases,the decomposition heat decreases,the activation energy increases,and the reaction difficulty increases. 展开更多
关键词 RDX HMX 71℃isothermal aging Langlie-optimal D method mechanical sensitivity thermal decomposition characteristic
在线阅读 下载PDF
Nonlocal Thermal–Mechanical Vibration of Spinning Functionally Graded Nanotubes Conveying Fluid Based on the Timoshenko Model
15
作者 Yao Chen Xiao-Dong Yang Feng Liang 《Acta Mechanica Solida Sinica》 2025年第5期776-788,共13页
Based on the Timoshenko beam theory,this paper proposes a nonlocal bi-gyroscopic model for spinning functionally graded(FG)nanotubes conveying fluid,and the thermal–mechanical vibration and stability of such composit... Based on the Timoshenko beam theory,this paper proposes a nonlocal bi-gyroscopic model for spinning functionally graded(FG)nanotubes conveying fluid,and the thermal–mechanical vibration and stability of such composite nanostructures under small scale,rotor,and temperature coupling effects are investigated.The nanotube is composed of functionally graded materials(FGMs),and different volume fraction functions are utilized to control the distribution of material properties.Eringen’s nonlocal elasticity theory and Hamilton’s principle are applied for dynamical modeling,and the forward and backward precession frequencies as well as 3D mode configurations of the nanotube are obtained.By conducting dimensionless analysis,it is found that compared to the Timoshenko nano-beam model,the conventional Euler–Bernoulli(E-B)model holds the same flutter frequency in the supercritical region,while it usually overestimates the higher-order precession frequencies.The nonlocal,thermal,and flowing effects all can lead to buckling or different kinds of coupled flutter in the system.The material distribution of the P-type FGM nanotube can also induce coupled flutter,while that of the S-type FGM nanotube has no impact on the stability of the system.This paper is expected to provide a theoretical foundation for the design of motional composite nanodevices. 展开更多
关键词 Bi-gyroscopic nanotube thermalmechanical vibration Functionally graded material Timoshenko model Spinning motion Nonlocal effect
原文传递
Effects of high-entropy alloy binders on the microstructure and mechanical/thermal properties of cemented carbides
16
作者 Jialin Sun Xiao Li +1 位作者 Le Zhao Jun Zhao 《International Journal of Minerals,Metallurgy and Materials》 2025年第5期1190-1197,共8页
The binder phase performs critically on the comprehensive properties of cemented carbides,especially the hardness(HV)and fracture toughness(K_(IC))relationship.There are strong motivations in both research community a... The binder phase performs critically on the comprehensive properties of cemented carbides,especially the hardness(HV)and fracture toughness(K_(IC))relationship.There are strong motivations in both research community and industry for developing alternative binders to Co in cemented carbide system,due to the reasons such as price instability,property degeneration,and toxicity.Herein,six kinds of high entropy alloys(HEA)including CoCrFeNiMn,CoCrFeMnAl,CoCrFeNiAl,CoCrNiMnAl,CoFeNiMnAl,and CrFeNiMnAl were employed as the alternative binder for the preparation of WC-HEA cemented carbides through mechanical alloying and two-step spark plasma sintering.The impacts of HEA on the microstructures,mechanical properties,and thermal conductivity of WC-HEA hardmetals were determined and discussed.WC-HEA hardmetals exhibited both superior HV and K_(IC)to WC-metal or WC-intermetallic cemented carbides,indicating that HEA alloys were not only harder but also tougher in comparison with traditional metal or intermetallic binders.The HEA bonded hardmetals yielded thermal conductivities much lower than that of traditional WC-Co cemented carbide.The excellent HV-K_(IC)relationship of WC-HEA facilitated the potential engineering structural application of cemented carbides. 展开更多
关键词 cemented carbide high entropy alloy binder two-step spark plasma sintering mechanical properties thermal conductivity
在线阅读 下载PDF
Physical, Thermal and Mechanical Characterization of Epoxy/Rafia Vinifera Woven Composite Materials: Application to the Comfort of Boats in Tropical Areas
17
作者 Alfred Kendem Djoumessi Nicodème Rodrigue Sikame Tagne +3 位作者 Elvis Mbou Tiaya Augustine Demze Nitidem François Ngapgue Ebenezer Njeugna 《Journal of Materials Science and Chemical Engineering》 2025年第2期1-22,共22页
The mechanical, physical and thermal characterization of a composite made from woven raffia fiber vinifiera molded in epoxy resin intended for shipbuilding shows that the density (0.5 g/cm3 with a relative error of 0.... The mechanical, physical and thermal characterization of a composite made from woven raffia fiber vinifiera molded in epoxy resin intended for shipbuilding shows that the density (0.5 g/cm3 with a relative error of 0.05 g/cm3) of the composite produced is lower than that of wood used in this field. The material has low porosity (9.8%) and is less absorbent (12.61%) than wood. The result of the thermal conductivity test by the hot plane method shows that this composite can contribute to the internal thermal insulation (an example of thermal conductivity is 0.32W/m.K) of floating boats. The mechanical tests of compression (young modulus is 22.86 GPa), resilience (1.238 J/Cm2) and hardness (233.04 BH30-2.5/187.5-15s) show that this composite is much harder and more absorbent than many wood and bio-composite materials used in the construction of pleasure boats. The abrasion test (0.005349) shows that this composite could well resist friction with the beach. 展开更多
关键词 Density thermal RESILIENCE Hardness ABRASION Raffia/Epoxy Composite
在线阅读 下载PDF
Fault zone mechanical response under co-exploitation of mine and geothermal energy: The combined effect of pore pressure and mining-induced stress 被引量:1
18
作者 Jinghong Yan Dan Ma +2 位作者 Xuefeng Gao Qiang Li Wentao Hou 《International Journal of Coal Science & Technology》 2025年第3期43-66,共24页
As the mine depth around the world increases,the temperature of the surrounding rock of the mining workface increases significantly.To control the heat hazards,the hot water in the mining floor is developed during min... As the mine depth around the world increases,the temperature of the surrounding rock of the mining workface increases significantly.To control the heat hazards,the hot water in the mining floor is developed during mining to decrease the min-ing workface temperature while also developing geothermal energy.This method is called the co-exploitation of mine and geothermal energy(CMGE).The geothermal development may precipitate the large-scale failure of the nearby fault zone during the mining process.However,the evolution of shear slide and shear failure of fault under geothermal production/rein-jection during mining is missing.Therefore,a fully-coupled hydraulic mechanism(HM)double-medium model for CMGE was developed based on the measured data of the Chensilou mine.A comparative analysis of the mechanical response of fault between CMGE and single mining was conducted.The disturbance of geothermal production pressure and reinjection pressure under mining on fault stability were respectively expounded.The results indicate that:(1)The disturbance of geo-thermal reinjection amplifies the disturbance of mining on fault stability.The amplified effect resulted in a normal stress drop of the fault,further leading to a substantial increase in shear slide distance,failure area,and cumulative seismic moment of fault compared with the single mining process.(2)As the distance of reinjection well to the fault decreases,the fault failure intensity increases.Setting the production well within the fault is advantageous for controlling fault stability under CMGE.(3)The essence of the combined disturbance of CMGE on the nearby fault is the overlay of tensile stress disturbance on the fault rock mass of the mining and geothermal reinjection.Though the geothermal reinjection causes a minor normal stress drop of fault,it can result in a more serious fault failure under CMGE.This paper supplies a significant gap in understanding thenearby faults failure under CMGE. 展开更多
关键词 Fault zone mechanical response Co-exploitation of coal and geothermal energy HM fully-coupled model Mining-induced stress
在线阅读 下载PDF
Defect Dipole Thermal-stability to the Electro-mechanical Properties of Fe Doped PZT Ceramics
19
作者 SUN Yuxuan WANG Zheng +5 位作者 SHI Xue SHI Ying DU Wentong MAN Zhenyong ZHENG Liaoying LI Guorong 《无机材料学报》 北大核心 2025年第5期545-551,I0009-I0010,共9页
The accepted doping ion in Ti^(4+)-site of PbZr_(y)Ti_(1–y)O_(3)(PZT)-based piezoelectric ceramics is a well-known method to increase mechanical quality factor(Q_(m)),since the acceptor coupled by oxygen vacancy beco... The accepted doping ion in Ti^(4+)-site of PbZr_(y)Ti_(1–y)O_(3)(PZT)-based piezoelectric ceramics is a well-known method to increase mechanical quality factor(Q_(m)),since the acceptor coupled by oxygen vacancy becomes defect dipole,which prevents the domain rotation.In this field,a serious problem is that generally,Qm decreases as the temperature(T)increases,since the oxygen vacancies are decoupled from the defect dipoles.In this work,Q_(m) of Pb_(0.95)Sr_(0.05)(Zr_(0.53)Ti_(0.47))O_(3)(PSZT)ceramics doped by 0.40%Fe_(2)O_(3)(in mole)abnormally increases as T increases,of which the Qm and piezoelectric coefficient(d_(33))at room temperature and Curie temperature(TC)are 507,292 pC/N,and 345℃,respectively.The maximum Qm of 824 was achieved in the range of 120–160℃,which is 62.52%higher than that at room temperature,while the dynamic piezoelectric constant(d_(31))was just slightly decreased by 3.85%.X-ray diffraction(XRD)and piezoresponse force microscopy results show that the interplanar spacing and the fine domains form as temperature increases,and the thermally stimulated depolarization current shows that the defect dipoles are stable even the temperature up to 240℃.It can be deduced that the aggregation of oxygen vacancies near the fine domains and defect dipole can be stable up to 240℃,which pins domain rotation,resulting in the enhanced Q_(m) with the increasing temperature.These results give a potential path to design high Q_(m) at high temperature. 展开更多
关键词 defect dipole temperature characteristic oxygen vacancy electro-mechanical property mechanical quality factor hardening doping
在线阅读 下载PDF
Development of Loose-Fill Thermal Insulation Materials from Annual Plant Residues Using Low-Concentration Chemimechanical Pulping
20
作者 Andris Berzins Ramunas Tupciauskas +1 位作者 Gunars Pavlovics Martins Andzs 《Journal of Renewable Materials》 2025年第6期1189-1207,共19页
This study examines the development of loose-fill thermal insulation materials derived from annual plant residues,such as wheat straw,water reeds,and corn stalks,processed using the chemimechanical pulping(CMP)techniq... This study examines the development of loose-fill thermal insulation materials derived from annual plant residues,such as wheat straw,water reeds,and corn stalks,processed using the chemimechanical pulping(CMP)technique.The chopped plants were soda-cooked for 30 min,varying NaOH concentration(2%–8%on a dry basis of biomass),and mechanically refined using different disc types.The CMPprocess enhances the homogeneity and stability of defibratedmaterial,yielding improved insulation properties compared to untreated chopped rawmaterials.Chemical analysis revealed that CMP increases cellulose content and reduces lignin levels,enhancing water retention and vapor diffusion properties.Settlement tests confirmed that CMP materials are more resistant to compaction under vibration,maintaining long-term performance.Additionally,the CMP enables the production of lightweight materials that require less resource consumption while achieving comparable thermal insulation performance.The investigated biobased materials offer a sustainable alternative to conventional insulation,with competing thermal conductivity values(0.041-0.046 W/mK)at the settlement-resistant bulk density level of 60 kg/m^(3).The thermal conductivity of CMP materials remains minimally affected.However,the resulting fibers demonstrate significant advantages in stability and material efficiency.This highlights its suitability for loose-fill applications to improve the sustainability of the construction.Using renewable plant residues,CMP-based insulation materials align with circular economy principles and contribute to environmental sustainability.This research underscores the potential of CMP materials to reduce greenhouse gas emissions,optimize resource use,and promote eco-friendly building practices. 展开更多
关键词 Wheat straw water reed corn stalk chemimechanical pulping lignocellulosic biomass-based thermal insulation materials thermal conductivity
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部