期刊文献+
共找到84篇文章
< 1 2 5 >
每页显示 20 50 100
Prolonging carrier lifetime in P-type 4H-SiC epilayer by thermal oxidation and hydrogen annealing
1
作者 Ruijun Zhang Mingkun Zhang +13 位作者 Guoliang Zhang Yujian Chen Jia Liu Ziqian Tian Ye Yu Peng Zhao Jiafa Cai Xiaping Chen Dingqu Lin Shaoxiong Wu Yuning Zhang Xingliang Xu Rongdun Hong Feng Zhang 《Chinese Physics B》 2025年第6期479-484,共6页
A minority carrier lifetime of 25.46 μs in a P-type 4H-SiC epilayer has been attained through sequential thermal oxidation and hydrogen annealing. Thermal oxidation can enhance the minority carrier lifetime in the 4H... A minority carrier lifetime of 25.46 μs in a P-type 4H-SiC epilayer has been attained through sequential thermal oxidation and hydrogen annealing. Thermal oxidation can enhance the minority carrier lifetime in the 4H-SiC epilayer by reducing carbon vacancies. However, this process also generates carbon clusters with limited diffusivity and contributes to the enlargement of surface pits on the 4H-SiC. High-temperature hydrogen annealing effectively reduces stacking fault and dislocation density. Moreover, electron spin resonance analysis indicates a significant reduction in carbon vacancy defects after hydrogen annealing. The mechanisms of the elimination of carbon vacancies by hydrogen annealing include the decomposition of carbon clusters formed during thermal oxidation and the low-pressure selective etching by hydrogen,which increases the carbon content on the 4H-SiC surface and facilitates carbon diffusion. Consequently, the combination of thermal oxidation and hydrogen annealing eliminates carbon vacancies more effectively, substantially enhancing the minority carrier lifetime in P-type 4H-SiC. This improvement is advantageous for the application of high-voltage SiC bipolar devices. 展开更多
关键词 4H-SIC carrier lifetime thermal oxidation hydrogen annealing
原文传递
Effects of thermal oxidation on microwave-absorbing and mechanical properties of SiC_f/SiC composites with PyC interphase 被引量:3
2
作者 史毅敏 罗发 +3 位作者 丁冬海 穆阳 周万城 朱冬梅 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1484-1489,共6页
The SiCf/SiC composites containing PyC interphase were prepared by chemical vapor infiltration process. The influences of thermal oxidation on the complex permittivity and microwave absorption properties of Si Cf/Si C... The SiCf/SiC composites containing PyC interphase were prepared by chemical vapor infiltration process. The influences of thermal oxidation on the complex permittivity and microwave absorption properties of Si Cf/Si C composites were investigated in the frequency range of 8.2-12.4 GHz. Both the real and imaginary parts of the complex permittivity decreased after thermal oxidation. The composites after 100 h thermal oxidation showed that reflection loss exceeded-10 d B in the frequency of 9.7-11.9 GHz and the minimum value was-11.4 d B at 11.0 GHz. The flexural strength of composites decreased but fracture behavior was improved obviously after thermal oxidation. These results indicate that the SiCf/SiC composites containing PyC interphase after thermal oxidation possess good microwave absorbing property and fracture behavior. 展开更多
关键词 SiCf/SiC composites thermal oxidation dielectric properties microwave absorbing mechanical properties
在线阅读 下载PDF
P-Type Nitrogen-Doped ZnO Films Prepared by In-Situ Thermal Oxidation of Zn_3N_2 Films
3
作者 靳玉平 张斌 +1 位作者 王建中 施立群 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第5期119-122,共4页
P-type nitrogen-doped ZnO films are prepared successfully by in-situ thermal oxidation of Zn3N2 films. The prepared films are characterized by x-ray diffraction, non-Rutherford back.scattering (non-RBS) spectroscopy... P-type nitrogen-doped ZnO films are prepared successfully by in-situ thermal oxidation of Zn3N2 films. The prepared films are characterized by x-ray diffraction, non-Rutherford back.scattering (non-RBS) spectroscopy, x- ray photoelectron spectroscopy, and photoluminescence spectrum. The results show that the Zn3N1 films start to transform to ZnO at 400℃ and the total nitrogen content decreases with the increasing annealing temperature. The p-type fihns are achieved at 500℃ with a low resistivity of 6.33Ω.cm and a high hole concentration of +8.82 × 10^17 cm-3, as well as a low level of carbon contamination, indicating that the substitutional nitrogen (No) is an effective acceptor in the ZnO:N film. The photoluminescence spectra show clear UV emissions and also indicate the presence of oxygen vacancy (Vo) defects in the ZnO:N films. The p-type doping mechanism is briefly discussed. 展开更多
关键词 ZnO in or as In P-Type Nitrogen-Doped ZnO Films Prepared by In-Situ thermal oxidation of Zn3N2 Films of by
原文传递
Thermal Oxidation Resistance of Rare Earth-Containing Composite Elastomer
4
作者 邱关明 张明 +3 位作者 周兰香 中北里志 井上真一 冈本弘 《Journal of Rare Earths》 SCIE EI CAS CSCD 2001年第3期192-197,共6页
The rare earth-containing composite elastomer was obtained by the reaction of vinyl pyridine-SBR (PSBR) latex with rare earth alkoxides, and its thermal oxidation resistance was studied. After aging test, it is found ... The rare earth-containing composite elastomer was obtained by the reaction of vinyl pyridine-SBR (PSBR) latex with rare earth alkoxides, and its thermal oxidation resistance was studied. After aging test, it is found that its retention rate of mechanical properties is far higher than that of the control sample. The results of thermogravimetric analysis show that its thermal-decomposing temperature rises largely. The analysis of oxidation mechanisms indicates that the main reasons for thermal oxidation resistance are that rare earth elements are of the utility to discontinue autoxidation chain reaction and that the formed complex structure has steric hindrance effect on oxidation. 展开更多
关键词 rare earths composite elastomer thermal oxidation resistance discontinue autoxidation steric structure
在线阅读 下载PDF
Wrinkling and Growth Mechanism of CuO Nanowires in Thermal Oxidation of Copper Foil
5
作者 Fa-chun Lai Suan-zhi Lin +2 位作者 Zhi-gao Chen Hai-long Hu Li-mei Lin 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第5期585-589,I0004,共6页
We report a systematic study on wrinkling and CuO nanowires (NWs) growth in the thermal oxidation of copper foil. Copper foils with thickness of 0.5 mm were thermally oxidized in air at 500℃ for 0.5-10 h. It is fou... We report a systematic study on wrinkling and CuO nanowires (NWs) growth in the thermal oxidation of copper foil. Copper foils with thickness of 0.5 mm were thermally oxidized in air at 500℃ for 0.5-10 h. It is found that all the samples have wrinkles and the size of the wrinkles increases with the oxidation time increasing. CuO NWs can grow on both the sidehill and hilltop of wrinkle. The CuO NWs on sidehill are longer and denser than those on hilltop. The growth direction of the CuO NWs on sidehill is not vertical to the substrate but vertical to their growth surfaces. The process of wrinkling and CuO NWs growth can be divided into three stages: undulating, voiding, and cracking. The CuO NWs on both sidehill and hilltop grow at the undulating stage. However, only the CuO NWs on sidehill grow and those on hilltop stop growing at the voiding and cracking stages because of the void in hilltop. The local electric field in a wrinkle at undulating stage was calculated, and it is found that the difference of local electric field strengths between hilltop and sidehill is small, which indicates that the predominant driving force for the diffusion of Cu ion during CuO NWs growth is internal stress. 展开更多
关键词 CuO nanowire WRINKLING thermal oxidation Growth mechanism
在线阅读 下载PDF
Effect of ultrathin GeO_x interfacial layer formed by thermal oxidation on Al_2O_3 capped Ge
6
作者 韩乐 王盛凯 +4 位作者 张雄 薛百清 吴汪然 赵毅 刘洪刚 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期482-487,共6页
We propose a modified thermal oxidation method in which an Al2O3 capping layer is used as an oxygen blocking layer (OBL) to form an ultrathin GeOx interracial layer, and obtain a superior Al2O3/GeOx/Ge gate stack. T... We propose a modified thermal oxidation method in which an Al2O3 capping layer is used as an oxygen blocking layer (OBL) to form an ultrathin GeOx interracial layer, and obtain a superior Al2O3/GeOx/Ge gate stack. The GeOx interfacial layer is formed in oxidation reaction by oxygen passing through the Al2O3 OBL, in which theAl2O3 layer could restrain the oxygen diffusion and suppress the GeO desorption during thermal treatment. The thickness of the GeOx interfacial layer would dramatically decrease as the thickness of Al2O3 OBL increases, which is beneficial to achieving an ultrathin GeOx interfacial layer to satisfy the demand for small equivalent oxide thickness (EOT). In addition, the thickness of the GeOx interfacial layer has little influence on the passivation effect of the Al2O3/Ge interface. Ge (100) p-channel metal- oxide-semiconductor field-effect transistors (pMOSFETs) using the Al2O3/GeOx/Ge gate stacks exhibit excellent electrical characteristics; that is, a drain current on-off (Ionloft) ratio of above 1 104, a subthreshold slope of - 120 mV/dec, and a peak hole mobility of 265 cm2/V.s are achieved. 展开更多
关键词 GeOx interfacial layer thermal oxidation GeO desorption AL2O3
原文传递
Retarded thermal oxidation of strained Si substrate
7
作者 孙家宝 唐晓雨 +2 位作者 杨周伟 施毅 赵毅 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第6期407-410,共4页
Strained Si is recognized as a necessary technology booster for modem integrated circuit technology. However, the thermal oxidation behaviors of strained Si substrates are not well understood yet despite their importa... Strained Si is recognized as a necessary technology booster for modem integrated circuit technology. However, the thermal oxidation behaviors of strained Si substrates are not well understood yet despite their importance. In this study, we for the first time experimentally find that all types of strained Si substrates (uniaxial tensile, uniaxial compressive, biaxial tensile, and biaxial compressive) show smaller thermal oxidation rates than an unstrained Si substrate. The possible mechanisms for these retarded thermal oxidation rates in strained Si substrates are also discussed. 展开更多
关键词 strained Si uniaxial and biaxial tensile and compressive stresses thermal oxidation rates
原文传递
One-step thermal oxidation synthesis of large-area Mn_(3)O_(4)nanoflakes at low temperature in air atmosphere
8
作者 Ming-Long Zhong Bin Yang +3 位作者 Cheng-Jun Guo Hai-Ping Huang Bai-Xiong Liu Hui-Ping Liu 《Rare Metals》 SCIE EI CAS CSCD 2020年第12期1469-1472,共4页
Single-crystalline Mn_(3)O_(4)nanoflakes were grown on manganese sheets by one-step thermal oxidation process at 360-500℃in ambient atmosphere.The samples were characterized by scanning electron microscope(SEM),X-ray... Single-crystalline Mn_(3)O_(4)nanoflakes were grown on manganese sheets by one-step thermal oxidation process at 360-500℃in ambient atmosphere.The samples were characterized by scanning electron microscope(SEM),X-ray diffraction(XRD),Raman and transmission electron microscope(TEM).The nanoflakes with a size of 15-20 nm in thickness,~60 nm in width,and~210 nm in length are obtained at 360℃for 24 h.A surface diffusion mechanism is proposed to explain the growth of manganese oxide nanostructures via thermal oxidation,which includes two steps:manganese oxide(MnO/Mn_(3)O_(4))layers form firstly,and then Mn_(3)O_(4)nanostructures grow above the upper metal oxide layer to form multi-layered structures,MnO/Mn_(3)O_(4)/Mn_(3)O_(4)-nanoflakes.The nucleation and growth of Mn_(3)O_(4)nanostructures are related to the surface energy and different growth rates along different crystal directions,which are controlled by the diffusion of the metal and gas molecule. 展开更多
关键词 Mn_(3)O_(4) NANOSTRUCTURE thermal oxidation Growth mechanism
原文传递
Thermal Oxidation of Silicon Carbide Substrates
9
作者 Xiufang Chen Liana Ning Yingmin Wang Juan Li Xiangang Xu Xiaobo Hu Minhua Jiang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第1期115-118,共4页
Thermal oxidation was used to remove the subsurface damage of silicon carbide (SIC) surfaces. The anisotropy of oxidation and the composition of oxide layers on Si and C faces were analyzed. Regular pits were observ... Thermal oxidation was used to remove the subsurface damage of silicon carbide (SIC) surfaces. The anisotropy of oxidation and the composition of oxide layers on Si and C faces were analyzed. Regular pits were observed on the surface after the removal of the oxide layers, which were detrimental to the growth of high quality epitaxial layers. The thickness and composition of the oxide layers were characterized by Rutherford backscattering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS), respectively. Epitaxial growth was performed in a metal organic chemical vapor deposition (MOCVD) system. The substrate surface morphology after removing the oxide layer and gallium nitride (GaN) epilayer surface were observed by atomic force microscopy (AFM). The results showed that the GaN epilayer grown on the oxidized substrates was superior to that on the unoxidized substrates. 展开更多
关键词 SIC thermal oxidation GaN epitaxy
在线阅读 下载PDF
Leakage current reduction by thermal oxidation in Ni/Au Schottky contacts on lattice-matched In_(0.18)Al_(0.82)N/GaN heterostructures
10
作者 林芳 沈波 +3 位作者 卢励吾 许福军 刘新宇 魏珂 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期493-497,共5页
By using temperature-dependent current-voltage, variable-frequency capacitance-voltage, and Hall measurements, the effects of the thermal oxidation on the electrical properties of Ni/Au Schottky contacts on lattice-ma... By using temperature-dependent current-voltage, variable-frequency capacitance-voltage, and Hall measurements, the effects of the thermal oxidation on the electrical properties of Ni/Au Schottky contacts on lattice-matched Ino.18Alo.82N/GaN heterostructures are investigated. Decrease of the reverse leakage current down to six orders of magni- tude is observed after the thermal oxidation of the Ino.18Alo.82N/GaN heterostructures at 700 ℃. It is confirmed that the reverse leakage current is dominated by the Frenkel-Poole emission, and the main origin of the leakage current is the emis- sion of electrons from a trap state near the metal/semiconductor interface into a continuum of electronic states associated with the conductive dislocations in the InxAll-xN barrier. It is believed that the thermal oxidation results in the formation of a thin oxide layer on the InxAll-xN surface, which increases the electron emission barrier height. 展开更多
关键词 leakage current thermal oxidation Frenkel-Poole emission
原文传递
Compositional and structural evolution of the titanium dioxide formation by thermal oxidation
11
作者 苏卫锋 Gnaser Hubert +2 位作者 樊永良 蒋最敏 乐永康 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第8期3003-3007,共5页
Titanium oxide films were prepared by annealing DC magnetron sputtered titanium films in an oxygen ambient. X-ray diffraction (XRD), Auger electron spectroscopy (AES) sputter profiling, MCs^+-mode secondary ion m... Titanium oxide films were prepared by annealing DC magnetron sputtered titanium films in an oxygen ambient. X-ray diffraction (XRD), Auger electron spectroscopy (AES) sputter profiling, MCs^+-mode secondary ion mass spectrometry (MCs^+-SIMS) and atomic force microscopy (AFM) were employed, respectively, for the structural, com- positional and morphological characterization of the obtained films. For temperatures below 875 K, titanium films could not be fully oxidized within one hour. Above that temperature, the completely oxidized films were found to be rutile in structure. Detailed studies on the oxidation process at 925K were carried out for the understanding of the underlying mechanism of titanium dioxide (TiO2) formation by thermal oxidation. It was demonstrated that the formation of crystalline TiO2 could be divided into a short oxidation stage, followed by crystal forming stage. Relevance of this recognition was further discussed. 展开更多
关键词 thermal oxidation titanium oxide compositional and structural evolution
原文传递
Morphology and Structure of SiO_2 Film Using Thermal Oxidation Process on(111)Silicon Crystals in Dry Oxygen Atmosphere
12
作者 TaokaT. 《Rare Metals》 SCIE EI CAS CSCD 1989年第1期32-38,共7页
By means of scanning electron microscope(SEM)and high voltage electron microscope(HVEM)we have observed and analysed morphology and micro-structure of silicon oxide film with different thickness formed on(111)silicon ... By means of scanning electron microscope(SEM)and high voltage electron microscope(HVEM)we have observed and analysed morphology and micro-structure of silicon oxide film with different thickness formed on(111)silicon monocrystal under dry oxygen atmosphere at 1100℃.Compared with their oxidation kinetic curves consisted of three stages,we suggested a mechanism on forming silicon oxide film.According to electron and X-ray diffraction analyses the silicon oxide films consisted of silica with different crystal structure.We also have discussed a stacking fault and a dislocation formed in the Si-Sio_2 interface region simulaneously forming silicon oxide film. 展开更多
关键词 Silicon Crystals in Dry Oxygen Atmosphere Morphology and Structure of SiO2 Film Using thermal oxidation Process on SIO
在线阅读 下载PDF
The p-type ZnO thin films obtained by a reversed substitution doping method of thermal oxidation of Zn_3N_2 precursors
13
作者 李炳生 肖芝燕 +1 位作者 马剑刚 刘益春 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第11期1-14,共14页
P-type ZnO is crucial for the realization of ZnO-based homojunction ultraviolet optoelectronic devices. The problem associated with the preparation of stable p-type ZnO with high hole density still hinders device appl... P-type ZnO is crucial for the realization of ZnO-based homojunction ultraviolet optoelectronic devices. The problem associated with the preparation of stable p-type ZnO with high hole density still hinders device applications. In this paper,we introduce an alternative route to stabilizing N in the oxidation process, the thermal stability of p-ZnO is significantly improved. Finally, we discuss the limitations of the alternative doping method and provide some prospective outlook of the method. 展开更多
关键词 wide band gap semiconductor p-ZnO Zn3N2 thermal oxidation
原文传递
Isothermal and cyclic oxidation behaviour of Ni-25Cr-10Al-0.5Y coating deposited by AIP and magnetron sputtering at 1323 K
14
作者 Chun-tang YU Shu-tao CHEN +8 位作者 Xiao-yun LI Wen-yao SUN Min FENG Cheng-yang JIANG Wan-qi PU Han-qing XIE De-quan WU Sheng-long ZHU Fu-hui WANG 《Transactions of Nonferrous Metals Society of China》 2025年第6期1907-1918,共12页
Two kinds of NiCrAlY coatings(Ni-25Cr-10Al-0.5Y)were prepared on K417 superalloy using ion plating(AIP)and magnetron sputtering(MS),respectively.The isothermal and cyclic oxidation behaviors of the two NiCrAlY coating... Two kinds of NiCrAlY coatings(Ni-25Cr-10Al-0.5Y)were prepared on K417 superalloy using ion plating(AIP)and magnetron sputtering(MS),respectively.The isothermal and cyclic oxidation behaviors of the two NiCrAlY coatings were evaluated at 1323 K in stair air.The results revealed that the nanocrystalline NiCrAlY coating exhibited better isothermal and cyclic oxidation resistance compared to the conventional NiCrAlY at 1323 K.The mass gain and parabolic rate constant Kp of the nanocrystalline NiCrAlY coating were 45.2%and 44.7%lower than those of the conventional NiCrAlY coating,respectively.During cyclic oxidation,the tendency for spallation of the oxide scale was evidently decreased by nanocrystallization due to the formation of a continuous,compact,adherent,and slow-growing exclusiveα-Al_(2)O_(3)scale.The mechanism responsible for the improvement of the nanocrystalline NiCrAlY coating was discussed. 展开更多
关键词 MCRALY NANOCRYSTALLINE thermal grown oxide high-temperature oxidation SPALLATION
在线阅读 下载PDF
Effect of Low-Temperature Thermal Oxidation on the Capillary Performance of Sintered Copper Powder Wicks
15
作者 ZHU Minghan FANG Runquan +3 位作者 HU Yanxin ZHANG Jiangyun SHAO Dan HUANG Jin 《Journal of Thermal Science》 SCIE EI CSCD 2024年第1期29-40,共12页
In this study,a composite powder capillary wick is prepared,manufactured by sintering copper powder and surface treated by low-temperature thermal oxidation.It is used to improve the performance of the capillary wick.... In this study,a composite powder capillary wick is prepared,manufactured by sintering copper powder and surface treated by low-temperature thermal oxidation.It is used to improve the performance of the capillary wick.The forced flow method and infrared imaging method are used to test the permeability and capillary performance of the samples.The effects of different oxidation temperatures on the performance of capillary wick are investigated.The experimental results show that the wetting performance of the oxidized samples is significantly enhanced.With the increase of oxidation temperature,the permeability decreases.The capillary height and velocity of the thermally oxidized samples are significantly higher than those of the untreated capillary wick.However,the oxidation temperature needs to be adjusted to obtain the best capillary performance.The highest capillary performance is found at oxidation temperature of 300℃,with an increase of 46% compared to the untreated ones.Comparisons with other composite wicks show that the sample with an oxidation temperature of 300℃ has competitive capillary performance,making it a favorable alternative to two-phase heat transfer device.This study shows that combining low-temperature thermal oxidation technology with powder sintering is a convenient and effective method to improve the capillary performance of powder wicks. 展开更多
关键词 low-temperature thermal oxidation capillary performance copper powder PERMEABILITY
原文传递
Oxidation Behavior and Mechanical Property of Ceramifiable Phenolic Resin Matrix Composites with a Wide Temperature Range
16
作者 YANG Suohui ZHANG Shiquan +2 位作者 ZHANG Ruizhi ZHANG Jian SHEN Qiang 《Journal of Wuhan University of Technology(Materials Science)》 2025年第5期1231-1238,共8页
The surface of MoSi2-SiB6/phenolic resin matrix composites was modified by mica,and the thermal oxidation behavior of the composites and the mechanical properties of the pyrolysis products were studied.The results sho... The surface of MoSi2-SiB6/phenolic resin matrix composites was modified by mica,and the thermal oxidation behavior of the composites and the mechanical properties of the pyrolysis products were studied.The results showed that the mica improved the thermal properties of the composites,the thermal expansion coefficient decreased,and the liquid phase formation caused the composites to shrink and increase the density.The flexural strength of mica surface modified composites not only increased to 78.64MPa after thermal treatment at 800-1200℃,but reached 83.02 MPa after high temperature treatment at1400℃.The improvement of the mechanical properties of the residual product benefits from the formation of high temperature ceramic phases such as Mo_(2)C and MoB,and the improvement of the shear strength of the composites by the mica.The shear strength of MBm5-2 at room temperature reached 33.08 MPa,indicating that the improvement of the interlayer properties of the composites further improved its mechanical properties. 展开更多
关键词 phenolic resin matrix composites MICA surface modification thermal oxidation behavior mechanical property
原文传递
Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber
17
作者 Guizhi Zhu Junrui Tan +5 位作者 Longfei Tan Qiong Wu Xiangling Ren Changhui Fu Zhihui Chen Xianwei Meng 《Chinese Chemical Letters》 2025年第1期381-386,共6页
High-efficient rubber antioxidants for enhanced heat resistance without compromising mechanical properties remain an enormous and long-term challenge for the rubber industry.Herein,we employed the in-situ growth of Ce... High-efficient rubber antioxidants for enhanced heat resistance without compromising mechanical properties remain an enormous and long-term challenge for the rubber industry.Herein,we employed the in-situ growth of Ce-doped Co-metal-organic framework(Ce Co-MOF)in dendritic mesoporous organosilica nanoparticles(DMONs@Ce Co-MOF,denoted as DCCM)to prepare a novel antioxidant that exhibit outstanding thermal stability.Dendritic mesoporous organosilica nanoparticles(DMONs)effectively alleviated the incompatibility of Ce Co-MOF in the polymer matrix,and the effective scavenging of free radicals was attributed to the various oxidation states of metal ions in Ce Co-MOF.Surprising,by adding only0.5 phr(parts per hundred of rubber)of DMONs@Ce Co-MOF to silicone rubber,(SR),the retention rate of tensile strength increased from 37.3%to 61.6%after aging 72 h at 250℃,and the retention rate of elongation at break of DCCM/SR1 composites reached 68%,which was 5.43 times of SR.The strategy of anchoring MOFs on the surface of silica also provides a viable method for preparing effective compound functionalized rubber antioxidant. 展开更多
关键词 Mesoporous organosilica nanoparticles Silicone rubber Metal-organic framework ANTIOXIDANTS thermal stability thermal oxidative degradation
原文传递
Thermal aging and pyrolysis behavior of hyperbranched polymers grafted carbon fibers reinforced phthalonitrile/cyanate ester blend composites
18
作者 Abbas Daham Abdeldjalil Zegaoui +6 位作者 Athar Ali Khan Gorar Zhicheng Wang Jun Wang Zhiyi Guo Zhongcheng Pan Wenbin Liu Mehdi Derradji 《Chinese Journal of Chemical Engineering》 2025年第5期161-170,共10页
This study investigates the long-term thermal-oxidative stability and mechanical properties of phenolcontaining phthalonitrile monomer(PN75)and dicyanate ester of bisphenol-A(DCBA)composites reinforced with short carb... This study investigates the long-term thermal-oxidative stability and mechanical properties of phenolcontaining phthalonitrile monomer(PN75)and dicyanate ester of bisphenol-A(DCBA)composites reinforced with short carbon fibers T700SC(SCF)within a temperature range of 330375℃.The research focuses on the PN75 monomer and DCBA blend reinforced SCF composites with varying SCF content,examining mass loss and changes in flexural strength after thermal aging for 50 h(h).Results show that the SCF-reinforced composites based on the PN75/DCBA blend consistently outperform the neat blend in flexural strength,both at room temperature and after thermal aging.The introduction of the SCF significantly improves the composites'thermal stability and mechanical retention,with higher SCF content correlating to better performance.Notably,after aging at 350℃,the SCF-reinforced composites based(30%(mass)SCF)retained 88.8%of its flexural strength,compared to 61.1%for the neat blend.Morphological analysis reveals that while thermal aging causes degradation of the PN75/DCBA blend layer on SCF surfaces,the overall composite structure maintains good mechanical properties up to 350℃.At 375℃,significant degradation occurs,yet the composites still retain flexural strengths above 78 MPa.This study demonstrates the potential of the SCF-reinforced composites based on PN75/DCBA blend for high-temperature applications,establishing their upper-temperature limit for long-term use in oxidative environments. 展开更多
关键词 Phenol-containing phthalonitrile monomer Mechanical properties thermal oxidative aging Carbon fibers
在线阅读 下载PDF
Ultraviolet-emitting ZnO thick layer grown by thermal oxidation with gallium
19
作者 YANG Qing ZHOU Xiao Hong +5 位作者 NUKUI Takao SAEKI Yu IZUMI Sotaro TACKEUCHI Atsushi TATSUOKA Hirokazu LIANG Shu Hua 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第12期2500-2503,共4页
The ZnO layer with thickness of 1.6 jim in ZnO/ZnGa2O4 composite structure was grown by the thermal oxidation of ZnS sub- strate with gallium. The optical property of the ZnO thick layer was investigated by time-resol... The ZnO layer with thickness of 1.6 jim in ZnO/ZnGa2O4 composite structure was grown by the thermal oxidation of ZnS sub- strate with gallium. The optical property of the ZnO thick layer was investigated by time-resolved photoluminescence. A single UV emission around 375 nm with short lifetime was observed at room temperature while the visible emission was absolutely quenched. The UV emission band was composed of the neutral donor bound exciton (D^0X) and donor-acceptor pair (DAP) emission peaks with large full-width at half-maximums (FWHMs) at 3.367 and 3.318 eV, respectively, at 10 K. However, the intensity of the D^0X emission was stronger than that of the DAP emission at measuring temperatures of 10-300 K. 展开更多
关键词 ZnO layer thermal oxidation GALLIUM ULTRAVIOLET PHOTOLUMINESCENCE
原文传递
MOS structure fabrication by thermal oxidation of multilayer metal thin films
20
作者 Mohammad Orvatinia Atefeh Chahkoutahi 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2011年第3期135-139,共5页
A novel approach for the fabrication of a metal oxide semiconductor(MOS) structure was reported.The process comprises electrochemical deposition of aluminum and zinc layers on a base of nickel-chromium alloy. This t... A novel approach for the fabrication of a metal oxide semiconductor(MOS) structure was reported.The process comprises electrochemical deposition of aluminum and zinc layers on a base of nickel-chromium alloy. This two-layer structure was thermally oxidized at 400℃for 40 min to produce thin layers of aluminum oxide as an insulator and zinc oxide as a semiconductor on a metallic substrate.Using deposition parameters,device dimensions and SEM micrographs of the layers,the device parameters were calculated.The resultant MOS structure was characterized by a C-V curve method.From this curve,the device maximum capacitance and threshold voltage were estimated to be about 0.74 nF and -2.9 V,respectively,which are in the order of model-based calculations. 展开更多
关键词 MOS structure electrochemical deposition thermal oxidation C-V curve
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部