The stimulation of shale reservoirs frequently involves significant shear failure,which is crucial for creating fracture networks and enhancing permeability to boost production.As the depth of extraction increases,the...The stimulation of shale reservoirs frequently involves significant shear failure,which is crucial for creating fracture networks and enhancing permeability to boost production.As the depth of extraction increases,the impact of elevated temperatures on the anisotropic shear strength and failure mechanisms of shale becomes pronounced,yet there is a notable lack of relevant research.This study conducts,for the first time,direct shear experiment on shales at four different temperatures and seven bedding angles.By employing acoustic emission(AE)and digital image correlation(DIC)techniques,the evolution of damage and the mechanism of crack propagation under anisotropic direct shearing at varying temperatures is revealed.The results indicate that both shear displacement and strength of shale increase with temperature across different bedding angles.Additionally,shale demonstrates distinct brittle failure characteristics under various conditions during direct shearing tests.The types of anisotropic shear failure observed under the influence of temperature include central shearing fracture,central shearing with secondary fracture,and deflected slip along the bedding.Moreover,the temperature effect enhances shear-induced crack propagation along bedding planes.Shear failure in shale predominantly occurs during higher loading stages,which coincide with a substantial amount of AE signals.Finally,the introduction of the anisotropy index and temperature sensitivity coefficient further elucidates the interaction mechanism between thermal effects and anisotropy.This study offers a novel methodology to explore the anisotropic shear failure behavior of shale under elevated temperatures,and also provides crucial theoretical and experimental insights into shear failure behavior relevant to practical shale reservoir stimulation.展开更多
Objective The use of lasers has been an important part of urology in the treatment of stone and prostate disease.The thermal effects of lasers in lithotripsy have been a subject of debate over the years.The objective ...Objective The use of lasers has been an important part of urology in the treatment of stone and prostate disease.The thermal effects of lasers in lithotripsy have been a subject of debate over the years.The objective of this review was to assess the current state of knowledge available on the thermal effects of lasers in lithotripsy,as well as explore any new areas where studies are needed.Methods In August 2022,a keyword search on Google Scholar,PubMed,and Scopus for all papers containing the phrases“thermal effects”AND“laser”AND“lithotripsy”AND“urology”was done followed by citation jumping to other studies pertaining to the topic and 35 relevant papers were included in our study.The data from relevant papers were segregated into five groups according to the factor studied and type of study,and tables were created for a comparison of data.Results Temperature above the threshold of 43℃ was reached only when the power was>40 W and when there was adequate irrigation(at least 15–30 mL/min).Shorter lasing time divided by lithotripsy time or operator duty cycles less than 70%also resulted in a smaller temperature rise.Conclusion At least eight factors modify the thermal effects of lasers,and most importantly,the use of chilled irrigation at higher perfusion rates,lower power settings of<40 W,and with a shorter operator duty cycle will help to prevent thermal injuries from occurring.Stones impacted in the ureter or pelvi-ureteric junction further increase the probability of thermal injuries during laser firing.展开更多
Dielectric barrier discharge(DBD)plasma excited by a high-frequency alternating-current(AC)power supply is widely employed for the degradation of volatile organic compounds(VOCs).However,the thermal effect generated d...Dielectric barrier discharge(DBD)plasma excited by a high-frequency alternating-current(AC)power supply is widely employed for the degradation of volatile organic compounds(VOCs).However,the thermal effect generated during the discharge process leads to energy waste and low energy utilization efficiency.In this work,an innovative DBD thermally-conducted catalysis(DBD-TCC)system,integrating high-frequency AC-DBD plasma and its generated thermal effects to activate the Co/SBA-15 catalyst,was employed for toluene removal.Specifically,Co/SBA-15 catalysts are closely positioned to the ground electrode of the plasma zone and can be heated and activated by the thermal effect when the voltage exceeds 10 k V.At12.4 k V,the temperature in the catalyst zone reached 261℃ in the DBD-TCC system,resulting in an increase in toluene degradation efficiency of 17%,CO_(2)selectivity of 21.2%,and energy efficiency of 27%,respectively,compared to the DBD system alone.In contrast,the DBD thermally-unconducted catalysis(DBD-TUC)system fails to enhance toluene degradation due to insufficient heat absorption and catalytic activation,highlighting the crucial role of AC-DBD generated heat in the activation of the catalyst.Furthermore,the degradation pathway and mechanism of toluene in the DBD-TCC system were hypothesized.This work is expected to provide an energy-efficient approach for high-frequency AC-DBD plasma removal of VOCs.展开更多
Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature dis...Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature distribution were discussed. The simulation results indicate that the system temperature distribution presents a roughly concentric shape, a steep temperature gradient is observed in diamond cutting tool, and the highest temperature is located in chip. Centrosymmetry parameter method was used to monitor defect structures. Dislocations and vacancies are the two principal types of defect structures. Residual defect structures impose a major change on the workpiece physical properties and machined surface quality. The defect structures in workpiece are temperature dependent. As the temperature increases, the dislocations are mainly mediated from the workpiece surface, while the others are dissociated into point defects. The relatively high cutting speed used in nanomachining results in less defect structures, beneficial to obtain highly machined surface quality.展开更多
A DC to 5GHz series MEMS switch is designed and fabricated for wireless communication applications,and thermal effect and power handling of the series switch are discussed.The switch is made on glass substrate,and gol...A DC to 5GHz series MEMS switch is designed and fabricated for wireless communication applications,and thermal effect and power handling of the series switch are discussed.The switch is made on glass substrate,and gold platinum contact is used to get a stable and little insert loss.From DC to 5GHz,0 6dB insertion loss,30dB isolation,and 30μs delay are demonstrated.Thermal effect of the switch is tested in 85℃ and -55℃ atmosphere separately.From DC to 4GHz,the insert loss of the switch increases 0 2dB in 85℃ and 0 4dB in -55℃,while the isolation holds the same value as that in room temperature.To measure the power handling capability of the switch,we applied a continuous RF power increasing from 10dBm to 35 1dBm with the step of 1 0dBm across the switch at 4GHz.The switch keeps working and shows a decrease of the insert loss for 0 1~0 6dB.The maximum continuous power handling (35 1dBm,about 3 24W) is higer than the reported value of shunt switch (about 420mW),which implies series switches have much better power handling capability.展开更多
This paper reports the modeling method and outcomes of mechanical performance and damage evolution of single-lap bolted composite interference-fit joints under extreme temperatures.The anisotropic continuum damage mod...This paper reports the modeling method and outcomes of mechanical performance and damage evolution of single-lap bolted composite interference-fit joints under extreme temperatures.The anisotropic continuum damage model involving thermal effects is established on continuum damage mechanics which integrates the shear nonlinearity constitutive relations characterized by Romberg-Osgood equation.The temperature-induced modification of thermal strains and material properties is incorporated in stress-strain analysis,extended 3 D failure criteria and exponential damage evolution rules.The proposed model is calibrated and employed to simulate behavior of composite joints in interference fitting,bolt preloading,thermal and bearing loading processes,during which the influence of interference-fit sizes,preload levels,laminate layups and service temperatures is thoroughly investigated.The predicated interfacial behavior,bearing response and failure modes are in good agreement with experimental tests.The numerical model is even capable of reflecting some non-intuitive experimental findings such as residual stress relaxation and matrix softening at elevated temperatures.展开更多
In this study, we examined the thermal effects throughout the process of the placement of span-scale girder segments on a 6×110-m continuous steel box girder in the Hong Kong-Zhuhai-Macao Bridge. Firstly, when a ...In this study, we examined the thermal effects throughout the process of the placement of span-scale girder segments on a 6×110-m continuous steel box girder in the Hong Kong-Zhuhai-Macao Bridge. Firstly, when a span-scale girder segment is temporarily stored in the open air, temperature gradients will significantly increase the maximum reaction force on temporary supports and cause local buckling at the bottom of the girder segment. Secondly, due to the temperature difference of the girder segments before and after girth-welding, some residual thermal deflections will appear on the girder segments because the boundary conditions of the structure are changed by the girth-welding. Thirdly, the thermal expansion and thermal bending of girder segments will cause movement and rotation of bearings, which must be considered in setting bearings. We propose control measures for these problems based on finite element method simulation with field-measured temperatures. The local buckling during open-air storage can be avoided by reasonably determining the appropriate positions of temporary supports using analysis of overall and local stresses. The residual thermal deflections can be overcome by performing girth-welding during a period when the vertical temperature difference of the girder is within 1 °C, such as after 22:00. Some formulas are proposed to determine the pre-set distances for bearings, in which the movement and rotation of the bearings due to dead loads and thermal loads are considered. Finally, the feasibility of these control measures in the placement of span-scale girder segments on a real continuous girder was verified: no local buckling was observed during open-air storage;the residual thermal deflections after girth-welding were controlled within 5 mm and the residual pre-set distances of bearings when the whole continuous girder reached its design state were controlled within 20 mm.展开更多
Thermal effects on the Callovo-Oxfordian and Opalinus clay rocks for hosting high-level radioactive waste were comprehensively investigated with laboratory and in situ experiments under repository relevant conditions:...Thermal effects on the Callovo-Oxfordian and Opalinus clay rocks for hosting high-level radioactive waste were comprehensively investigated with laboratory and in situ experiments under repository relevant conditions:(1) stresses covering the range from the initial lithostatic state to redistributed levels after excavation,(2) hydraulic drained and undrained boundaries, and(3) heating from ambient temperature up to 90℃-120℃ and a subsequent cooling phase. The laboratory experiments were performed on normal-sized and large hollow cylindrical samples in various respects of thermal expansion and contraction, thermally-induced pore water pressure, temperature influences on deformation and strength, thermal impacts on swelling, fracture sealing and permeability. The laboratory results obtained from the samples are consistent with the in situ observations during heating experiments in the underground research laboratories at Bure and Mont-Terri. Even though the claystones showed significant responses to thermal loading, no negative effects on their favorable barrier properties were observed.展开更多
Based on some assumptions, the numerical model of thermal distribution in solid state laser crystal pumped by pulsed laser diode is set up due to the pumped intensity distribution. Taking into account the property of ...Based on some assumptions, the numerical model of thermal distribution in solid state laser crystal pumped by pulsed laser diode is set up due to the pumped intensity distribution. Taking into account the property of YAG materials that varies with temperature, the transient temperature distribution of the laser crystal is calculated using finite element method on condition that K is a constant and a function of temperature. Then, the influence of the pumping parameters on the thermal effect in laser crystal is also discussed. This study is helpful to optimize the design of the diode side pumped solid state lasers.展开更多
Objective The distribution characteristics and formation mechanism of rearranged hopanes in hydrocarbon source rocks are affected by various geological conditions.Among these geological conditions,thermal action has a...Objective The distribution characteristics and formation mechanism of rearranged hopanes in hydrocarbon source rocks are affected by various geological conditions.Among these geological conditions,thermal action has an important influence on the formation of rearranged hopanes,which has been however little documented previously.展开更多
The results of thermomagnetic (TM) and calorimetric (DSC) measurements have been compared in order to clarify some details of the mechanism of nanophase-formation from Finemet-type precursors with different Nb content...The results of thermomagnetic (TM) and calorimetric (DSC) measurements have been compared in order to clarify some details of the mechanism of nanophase-formation from Finemet-type precursors with different Nb contents. It was found that the main features of the DSC thermograms (shape, relative separation and amplitude of the exothermic peaks characteristic for the precipitation of the Fe-(Si) solid solution and the transition metal borides) depend mainly on the composition of the precursor glass, and are only slightly affected by the heating rate between 20 and 80 K/min. The amplitude of the uprise of the magnetization in the TM curves (attributed to the precipitation of bcc-Fe(Si) and borides) decreases with increasing Nb-content. The Curietemperature of the precursor glasses. Tc(am1), the remainder amorphous phases, Tc(am2) and the bcc nanophase, Tc(n-Fe) are determined from the thermomagnetic curves. The shape of the TM curves is interpreted on the basis of the reactions describing the crystalIization of the hypo-eutectic Fe-B glasses.展开更多
Precipitation reactions in the differential scanning calorimetry (DSC) of an Al-Cu-Mg-Ag alloy were identified by analyzing the results from hardness test,electrical conductivity test,and transmission electron micro...Precipitation reactions in the differential scanning calorimetry (DSC) of an Al-Cu-Mg-Ag alloy were identified by analyzing the results from hardness test,electrical conductivity test,and transmission electron microscope (TEM) examination.It is discovered that thermal effects can be identified through selected area electron diffraction and bright-field images.The reaction peaks around 171,231,and 276℃ can be attributed to a structural rearrangement of coherent zones,to the precipitation of Ω phases,and to the precipitation of Ω and θ' and possible combination with the transition of θ'→θ,respectively.In addition,the hardness and electrical conductivity of the alloy change proportionately with the progression of reactions during the heating process.This phenomenon can be attributed to the evolution of the micro-structure.展开更多
Ammonia (NH<sub>3</sub>) dissociation and oxidation in a cylindrical quartz reactor has been experimentally studied for various inlet NH<sub>3</sub> concentrations (5%, 10%, and 15%) and reacto...Ammonia (NH<sub>3</sub>) dissociation and oxidation in a cylindrical quartz reactor has been experimentally studied for various inlet NH<sub>3</sub> concentrations (5%, 10%, and 15%) and reactor temperatures between 700 K and 1000 K. The thermal effects during both NH<sub>3</sub> dissociation (endothermic) and oxidation (exothermic) were observed using a bundle of thermocouples positioned along the central axis of the quartz reactor, while the corresponding NH<sub>3</sub> conversions and nitrogen oxides emissions were determined by analysing the gas composition of the reactor exit stream. A stronger endothermic effect, as indicated by a greater temperature drop during NH<sub>3</sub> dissociation, was observed as the NH<sub>3</sub> feed concentration and reactor temperature increased. During NH<sub>3</sub> oxidation, a predominantly greater exothermic effect with increasing NH<sub>3</sub> feed concentration and reactor temperature was also evident;however, it was apparent that NH<sub>3</sub> dissociation occurred near the reactor inlet, preceding the downstream NH<sub>3</sub> and H<sub>2</sub> oxidation. For both NH<sub>3</sub> dissociation and oxidation, NH<sub>3</sub> conversion increased with increasing temperature and decreasing initial NH<sub>3</sub> concentration. Significant levels of NO<sub>X</sub> emissions were observed during NH<sub>3</sub> oxidation, which increased with increasing temperature. From the experimental results, it is speculated that the stainless-steel in the thermocouple bundle may have catalysed NH<sub>3</sub> dissociation and thus changed the reaction chemistry during NH<sub>3</sub> oxidation.展开更多
We maintained gravid Chinese skinks(Plestiodon chinensis) at three constant temperatures(25, 28 and 31 °C) during gestation, and randomly assigned eggs from each female to one of the same three temperatures for i...We maintained gravid Chinese skinks(Plestiodon chinensis) at three constant temperatures(25, 28 and 31 °C) during gestation, and randomly assigned eggs from each female to one of the same three temperatures for incubation to determine maternal thermal effects on female reproduction and hatchling phenotype. Maternal temperature affected egg-laying date, hatching success and hatchling linear size(snout-vent length, SVL) but not clutch size, egg size, egg component, and embryonic stage at laying. More specifically, females at higher temperatures laid eggs earlier than did those at low temperatures, eggs laid at 31 °C were less likely to hatch than those laid at 25 °C or 28 °C, and hatchlings from eggs laid at 31 °C were smaller in SVL. Our finding that maternal temperature(pre-ovipositional thermal condition) rather than incubation temperature(post-ovipositional thermal condition) affected hatching success indicated that embryos at early stages were more vulnerable to temperature than those at late stages. Our data provide an inference that moderate maternal temperatures enhance reproductive fitness in P. chinensis.展开更多
This study examined the thermal effects of building′s external wall surfaces, using observational data of spatial-temporal distribution of surface temperature, air temperature, and heat flux into and out of external ...This study examined the thermal effects of building′s external wall surfaces, using observational data of spatial-temporal distribution of surface temperature, air temperature, and heat flux into and out of external surface. Results indicate that external wall surface temperature and nearby air temperature vary with the change of orientation, height and season. In general, the external wall surface temperature is lower near the ground, and is higher near the roof, than nearby air temperature. But north wall surface temperature is mostly lower than nearby air temperature at the same height; south wall surface temperature during the daytime in December, and west wall surface temperature all day in August, is respectively higher than nearby air temperature. The heat fluxes into and out of external wall surfaces show the differences that exist in the various orientations, heights and seasons. In December, south wall surface at the lower sites emits heat and north wall surface at the higher sites absorbs heat. In April, all external wall surfaces, emit heat near the ground and absorb heat near the roof. In August, west wall surface all day emits heat, and other wall surfaces just show the commensurate behavior with that in April.展开更多
Operating point drift over large temperature spans can significantly degrade the performance of servo valves.The direction and magnitude of the deviation of the operating point are uncertain.To analyze and evaluate th...Operating point drift over large temperature spans can significantly degrade the performance of servo valves.The direction and magnitude of the deviation of the operating point are uncertain.To analyze and evaluate the mechanism of this complex system with a multi-level structure and multi-variables,it is necessary to construct a theoretical model with a clear physical concept to describe it.However,since the physical processes contain complex variations of structural parameters and flow properties,there is a problem of simplifying approximations in deriving analytical mathematical relations.The advantages of multi-physics field numerical analysis can compensate for this shortcoming of analytical formulations.Based on this,we constructed a whole-valve transfer function model to realize the mechanism analysis and evaluate the operating point drift when a thermal effect acts on a servo valve.The results show that the asymmetric fit relationship between the armature-nozzle assemblies is an important reason for the drift of the operating point caused by the thermal effect.Differences in structural parameters and fluid medium characteristics at different temperatures lead to nonlinear changes in the operating point.When the deviation angle reaches±1°,an increase in temperature will cause the absolute value of the tangent slope of the displacement deviation of the spool to decrease from 1.44×10^(−5) m/℃to 1.25×10^(−6) m/℃.The influence of the deviation angle is reflected in the change in the absolute value of the tangent slope of the pressure deviation from 1.14×10^(3) Pa/℃to 110 Pa/℃.展开更多
Consistency between density functional theory calculations and X-ray photoelectron spectroscopy measurements confirms our predications on the undercoordination-induced local bond relaxation and core level shift of alk...Consistency between density functional theory calculations and X-ray photoelectron spectroscopy measurements confirms our predications on the undercoordination-induced local bond relaxation and core level shift of alkali metal,which determine the surface,size and thermal properties of materials.Zone-resolved photoelectron spectroscopyanalysis method and bond order-length-strength theory can be utilized to quantify the physical parameters regarding bonding identities and electronic property of metal surfaces,which allows for the study of the core-electron binding-energy shifts in alkali metals.By employing these methods and first principle calculation in this work,we can obtain the information of bond and atomic cohesive energy of under-coordinated atoms at the alkali metal surface.In addition,the effect of size and temperature towards the binding-energy in the surface region can be seen from the view point of Hamiltonian perturbation by atomic relaxation with atomic bonding.展开更多
We report a numerical simulation of continuous terahertz beam induced transient thermal effects on static water. The terahertz wave used in this paper has a Gaussian beam profile. Based on the transient heat conductio...We report a numerical simulation of continuous terahertz beam induced transient thermal effects on static water. The terahertz wave used in this paper has a Gaussian beam profile. Based on the transient heat conduction equation, the finite element method (FEM) is utilized to calculate the temperature distribution. The simulation results show the dynamic process of temperature change in water during terahertz irradiation. After about 300 s, the temperature reaches a steady state with a water layer thickness of 5 mm and a beam radius of 0.25 mm. The highest temperature increase is 7 K/mW approximately. This work motivates further study on the interaction between terahertz wave and bio-tissue, which has a high water content.展开更多
Bridge structures experience complex thermal effects under the influence of environmental factors and internal heat sources,leading to adverse impacts on structural safety and durability.To enhance comprehension of br...Bridge structures experience complex thermal effects under the influence of environmental factors and internal heat sources,leading to adverse impacts on structural safety and durability.To enhance comprehension of bridge temperature issues and mitigate adverse thermal stress and deformation,the fundamental principles of“resistance”,“release”,“prevention”,and“utilization”are summarized based on the causes of thermal effects,which are resisting thermal stress,releasing thermal deformation,preventing temperature actions,and utilizing thermal effects.Subsequently,typical approaches are summarized based on each principle.Under the“resistance”principle,measures such as rational reinforcement design,increasing early concrete strength,and utilizing new materials with high tensile strength can be employed to reduce the risk of structural cracking.Following the“release”principle,techniques like proper arrangement of expansion joints and bearings,flexible foundation design for jointless bridge and mass concrete layering method can be utilized to release thermal deformations.Based on the“prevention”principle,reducing the hydration heat,applying heat-insulating coatings,shading panels,and phase-change materials can decrease temperature differences in the structure.Improved calculation of thermal effects during construction can also aid in construction control.Based on the“utilization”principle,it is possible to strengthen arch bridges and treat expansion joints with the help of favorable thermal effects.Finally,the advancements are prospected to make the bridge better adapted to the thermal effects.展开更多
A comprehensive numerical investigation into mixed⁃mode delamination is presented in this study.It aims to assess the impact of thermal and friction effects through mixed⁃mode flexure crack propagation testing.Finite ...A comprehensive numerical investigation into mixed⁃mode delamination is presented in this study.It aims to assess the impact of thermal and friction effects through mixed⁃mode flexure crack propagation testing.Finite element analysis was employed to model the delamination process,incorporating a contact cohesive zone model.This model couples the traction⁃separation law,the contact law,and the Coulomb friction law simultaneously.The thermomechanical analysis in this study is performed using a sequentially coupled approach,implemented with the finite element software ABAQUS.The findings underscore the importance of this study.展开更多
基金supported by the National Natural Science Fund of China (Grant Nos.U22A20166 and 52374131)the Shenzhen Science and Technology Program (Grant No.JCYJ20220531102012028)the Young Elite Scientists Sponsorship Program by CAST.
文摘The stimulation of shale reservoirs frequently involves significant shear failure,which is crucial for creating fracture networks and enhancing permeability to boost production.As the depth of extraction increases,the impact of elevated temperatures on the anisotropic shear strength and failure mechanisms of shale becomes pronounced,yet there is a notable lack of relevant research.This study conducts,for the first time,direct shear experiment on shales at four different temperatures and seven bedding angles.By employing acoustic emission(AE)and digital image correlation(DIC)techniques,the evolution of damage and the mechanism of crack propagation under anisotropic direct shearing at varying temperatures is revealed.The results indicate that both shear displacement and strength of shale increase with temperature across different bedding angles.Additionally,shale demonstrates distinct brittle failure characteristics under various conditions during direct shearing tests.The types of anisotropic shear failure observed under the influence of temperature include central shearing fracture,central shearing with secondary fracture,and deflected slip along the bedding.Moreover,the temperature effect enhances shear-induced crack propagation along bedding planes.Shear failure in shale predominantly occurs during higher loading stages,which coincide with a substantial amount of AE signals.Finally,the introduction of the anisotropy index and temperature sensitivity coefficient further elucidates the interaction mechanism between thermal effects and anisotropy.This study offers a novel methodology to explore the anisotropic shear failure behavior of shale under elevated temperatures,and also provides crucial theoretical and experimental insights into shear failure behavior relevant to practical shale reservoir stimulation.
文摘Objective The use of lasers has been an important part of urology in the treatment of stone and prostate disease.The thermal effects of lasers in lithotripsy have been a subject of debate over the years.The objective of this review was to assess the current state of knowledge available on the thermal effects of lasers in lithotripsy,as well as explore any new areas where studies are needed.Methods In August 2022,a keyword search on Google Scholar,PubMed,and Scopus for all papers containing the phrases“thermal effects”AND“laser”AND“lithotripsy”AND“urology”was done followed by citation jumping to other studies pertaining to the topic and 35 relevant papers were included in our study.The data from relevant papers were segregated into five groups according to the factor studied and type of study,and tables were created for a comparison of data.Results Temperature above the threshold of 43℃ was reached only when the power was>40 W and when there was adequate irrigation(at least 15–30 mL/min).Shorter lasing time divided by lithotripsy time or operator duty cycles less than 70%also resulted in a smaller temperature rise.Conclusion At least eight factors modify the thermal effects of lasers,and most importantly,the use of chilled irrigation at higher perfusion rates,lower power settings of<40 W,and with a shorter operator duty cycle will help to prevent thermal injuries from occurring.Stones impacted in the ureter or pelvi-ureteric junction further increase the probability of thermal injuries during laser firing.
基金supported by National Natural Science Foundation of China(No.52177130)the Key Projects for Industrial Prospects and Core Technology Research in Suzhou City(No.SYC2022029)。
文摘Dielectric barrier discharge(DBD)plasma excited by a high-frequency alternating-current(AC)power supply is widely employed for the degradation of volatile organic compounds(VOCs).However,the thermal effect generated during the discharge process leads to energy waste and low energy utilization efficiency.In this work,an innovative DBD thermally-conducted catalysis(DBD-TCC)system,integrating high-frequency AC-DBD plasma and its generated thermal effects to activate the Co/SBA-15 catalyst,was employed for toluene removal.Specifically,Co/SBA-15 catalysts are closely positioned to the ground electrode of the plasma zone and can be heated and activated by the thermal effect when the voltage exceeds 10 k V.At12.4 k V,the temperature in the catalyst zone reached 261℃ in the DBD-TCC system,resulting in an increase in toluene degradation efficiency of 17%,CO_(2)selectivity of 21.2%,and energy efficiency of 27%,respectively,compared to the DBD system alone.In contrast,the DBD thermally-unconducted catalysis(DBD-TUC)system fails to enhance toluene degradation due to insufficient heat absorption and catalytic activation,highlighting the crucial role of AC-DBD generated heat in the activation of the catalyst.Furthermore,the degradation pathway and mechanism of toluene in the DBD-TCC system were hypothesized.This work is expected to provide an energy-efficient approach for high-frequency AC-DBD plasma removal of VOCs.
基金Project (50925521) supported by the National Natural Science Fund for Distinguished Young Scholars of China
文摘Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature distribution were discussed. The simulation results indicate that the system temperature distribution presents a roughly concentric shape, a steep temperature gradient is observed in diamond cutting tool, and the highest temperature is located in chip. Centrosymmetry parameter method was used to monitor defect structures. Dislocations and vacancies are the two principal types of defect structures. Residual defect structures impose a major change on the workpiece physical properties and machined surface quality. The defect structures in workpiece are temperature dependent. As the temperature increases, the dislocations are mainly mediated from the workpiece surface, while the others are dissociated into point defects. The relatively high cutting speed used in nanomachining results in less defect structures, beneficial to obtain highly machined surface quality.
文摘A DC to 5GHz series MEMS switch is designed and fabricated for wireless communication applications,and thermal effect and power handling of the series switch are discussed.The switch is made on glass substrate,and gold platinum contact is used to get a stable and little insert loss.From DC to 5GHz,0 6dB insertion loss,30dB isolation,and 30μs delay are demonstrated.Thermal effect of the switch is tested in 85℃ and -55℃ atmosphere separately.From DC to 4GHz,the insert loss of the switch increases 0 2dB in 85℃ and 0 4dB in -55℃,while the isolation holds the same value as that in room temperature.To measure the power handling capability of the switch,we applied a continuous RF power increasing from 10dBm to 35 1dBm with the step of 1 0dBm across the switch at 4GHz.The switch keeps working and shows a decrease of the insert loss for 0 1~0 6dB.The maximum continuous power handling (35 1dBm,about 3 24W) is higer than the reported value of shunt switch (about 420mW),which implies series switches have much better power handling capability.
基金finically supported by Joint Found for Equipment Advance Research and Aerospace Science and Technology of China(No.6141B061401)Fund for Distinguished Young Scholars in Shaanxi Province of China(No.2018-JC-009)。
文摘This paper reports the modeling method and outcomes of mechanical performance and damage evolution of single-lap bolted composite interference-fit joints under extreme temperatures.The anisotropic continuum damage model involving thermal effects is established on continuum damage mechanics which integrates the shear nonlinearity constitutive relations characterized by Romberg-Osgood equation.The temperature-induced modification of thermal strains and material properties is incorporated in stress-strain analysis,extended 3 D failure criteria and exponential damage evolution rules.The proposed model is calibrated and employed to simulate behavior of composite joints in interference fitting,bolt preloading,thermal and bearing loading processes,during which the influence of interference-fit sizes,preload levels,laminate layups and service temperatures is thoroughly investigated.The predicated interfacial behavior,bearing response and failure modes are in good agreement with experimental tests.The numerical model is even capable of reflecting some non-intuitive experimental findings such as residual stress relaxation and matrix softening at elevated temperatures.
基金Project supported by the National Natural Science Foundation of China(Nos.51578496 and 51878603)the Zhejiang Provincial Natural Science Foundation of China(No.LZ16E080001)。
文摘In this study, we examined the thermal effects throughout the process of the placement of span-scale girder segments on a 6×110-m continuous steel box girder in the Hong Kong-Zhuhai-Macao Bridge. Firstly, when a span-scale girder segment is temporarily stored in the open air, temperature gradients will significantly increase the maximum reaction force on temporary supports and cause local buckling at the bottom of the girder segment. Secondly, due to the temperature difference of the girder segments before and after girth-welding, some residual thermal deflections will appear on the girder segments because the boundary conditions of the structure are changed by the girth-welding. Thirdly, the thermal expansion and thermal bending of girder segments will cause movement and rotation of bearings, which must be considered in setting bearings. We propose control measures for these problems based on finite element method simulation with field-measured temperatures. The local buckling during open-air storage can be avoided by reasonably determining the appropriate positions of temporary supports using analysis of overall and local stresses. The residual thermal deflections can be overcome by performing girth-welding during a period when the vertical temperature difference of the girder is within 1 °C, such as after 22:00. Some formulas are proposed to determine the pre-set distances for bearings, in which the movement and rotation of the bearings due to dead loads and thermal loads are considered. Finally, the feasibility of these control measures in the placement of span-scale girder segments on a real continuous girder was verified: no local buckling was observed during open-air storage;the residual thermal deflections after girth-welding were controlled within 5 mm and the residual pre-set distances of bearings when the whole continuous girder reached its design state were controlled within 20 mm.
基金funding by the German Federal Ministry of Economics and Technology (BMWi) under contract No.02E10377the French National Radioactive Waste Management Agency (Andra)
文摘Thermal effects on the Callovo-Oxfordian and Opalinus clay rocks for hosting high-level radioactive waste were comprehensively investigated with laboratory and in situ experiments under repository relevant conditions:(1) stresses covering the range from the initial lithostatic state to redistributed levels after excavation,(2) hydraulic drained and undrained boundaries, and(3) heating from ambient temperature up to 90℃-120℃ and a subsequent cooling phase. The laboratory experiments were performed on normal-sized and large hollow cylindrical samples in various respects of thermal expansion and contraction, thermally-induced pore water pressure, temperature influences on deformation and strength, thermal impacts on swelling, fracture sealing and permeability. The laboratory results obtained from the samples are consistent with the in situ observations during heating experiments in the underground research laboratories at Bure and Mont-Terri. Even though the claystones showed significant responses to thermal loading, no negative effects on their favorable barrier properties were observed.
基金Natural Science Foundation of Jinlin Provine Education Depart ment(2006JYT01)
文摘Based on some assumptions, the numerical model of thermal distribution in solid state laser crystal pumped by pulsed laser diode is set up due to the pumped intensity distribution. Taking into account the property of YAG materials that varies with temperature, the transient temperature distribution of the laser crystal is calculated using finite element method on condition that K is a constant and a function of temperature. Then, the influence of the pumping parameters on the thermal effect in laser crystal is also discussed. This study is helpful to optimize the design of the diode side pumped solid state lasers.
基金supported by the National Natural Science Foundation of China (grant No.41272170)the National Oil and Gas Major Project (grant No.2016ZX05007-001)
文摘Objective The distribution characteristics and formation mechanism of rearranged hopanes in hydrocarbon source rocks are affected by various geological conditions.Among these geological conditions,thermal action has an important influence on the formation of rearranged hopanes,which has been however little documented previously.
文摘The results of thermomagnetic (TM) and calorimetric (DSC) measurements have been compared in order to clarify some details of the mechanism of nanophase-formation from Finemet-type precursors with different Nb contents. It was found that the main features of the DSC thermograms (shape, relative separation and amplitude of the exothermic peaks characteristic for the precipitation of the Fe-(Si) solid solution and the transition metal borides) depend mainly on the composition of the precursor glass, and are only slightly affected by the heating rate between 20 and 80 K/min. The amplitude of the uprise of the magnetization in the TM curves (attributed to the precipitation of bcc-Fe(Si) and borides) decreases with increasing Nb-content. The Curietemperature of the precursor glasses. Tc(am1), the remainder amorphous phases, Tc(am2) and the bcc nanophase, Tc(n-Fe) are determined from the thermomagnetic curves. The shape of the TM curves is interpreted on the basis of the reactions describing the crystalIization of the hypo-eutectic Fe-B glasses.
文摘Precipitation reactions in the differential scanning calorimetry (DSC) of an Al-Cu-Mg-Ag alloy were identified by analyzing the results from hardness test,electrical conductivity test,and transmission electron microscope (TEM) examination.It is discovered that thermal effects can be identified through selected area electron diffraction and bright-field images.The reaction peaks around 171,231,and 276℃ can be attributed to a structural rearrangement of coherent zones,to the precipitation of Ω phases,and to the precipitation of Ω and θ' and possible combination with the transition of θ'→θ,respectively.In addition,the hardness and electrical conductivity of the alloy change proportionately with the progression of reactions during the heating process.This phenomenon can be attributed to the evolution of the micro-structure.
文摘Ammonia (NH<sub>3</sub>) dissociation and oxidation in a cylindrical quartz reactor has been experimentally studied for various inlet NH<sub>3</sub> concentrations (5%, 10%, and 15%) and reactor temperatures between 700 K and 1000 K. The thermal effects during both NH<sub>3</sub> dissociation (endothermic) and oxidation (exothermic) were observed using a bundle of thermocouples positioned along the central axis of the quartz reactor, while the corresponding NH<sub>3</sub> conversions and nitrogen oxides emissions were determined by analysing the gas composition of the reactor exit stream. A stronger endothermic effect, as indicated by a greater temperature drop during NH<sub>3</sub> dissociation, was observed as the NH<sub>3</sub> feed concentration and reactor temperature increased. During NH<sub>3</sub> oxidation, a predominantly greater exothermic effect with increasing NH<sub>3</sub> feed concentration and reactor temperature was also evident;however, it was apparent that NH<sub>3</sub> dissociation occurred near the reactor inlet, preceding the downstream NH<sub>3</sub> and H<sub>2</sub> oxidation. For both NH<sub>3</sub> dissociation and oxidation, NH<sub>3</sub> conversion increased with increasing temperature and decreasing initial NH<sub>3</sub> concentration. Significant levels of NO<sub>X</sub> emissions were observed during NH<sub>3</sub> oxidation, which increased with increasing temperature. From the experimental results, it is speculated that the stainless-steel in the thermocouple bundle may have catalysed NH<sub>3</sub> dissociation and thus changed the reaction chemistry during NH<sub>3</sub> oxidation.
基金the National Science Foundation of China (31670399 and 31670422)
文摘We maintained gravid Chinese skinks(Plestiodon chinensis) at three constant temperatures(25, 28 and 31 °C) during gestation, and randomly assigned eggs from each female to one of the same three temperatures for incubation to determine maternal thermal effects on female reproduction and hatchling phenotype. Maternal temperature affected egg-laying date, hatching success and hatchling linear size(snout-vent length, SVL) but not clutch size, egg size, egg component, and embryonic stage at laying. More specifically, females at higher temperatures laid eggs earlier than did those at low temperatures, eggs laid at 31 °C were less likely to hatch than those laid at 25 °C or 28 °C, and hatchlings from eggs laid at 31 °C were smaller in SVL. Our finding that maternal temperature(pre-ovipositional thermal condition) rather than incubation temperature(post-ovipositional thermal condition) affected hatching success indicated that embryos at early stages were more vulnerable to temperature than those at late stages. Our data provide an inference that moderate maternal temperatures enhance reproductive fitness in P. chinensis.
文摘This study examined the thermal effects of building′s external wall surfaces, using observational data of spatial-temporal distribution of surface temperature, air temperature, and heat flux into and out of external surface. Results indicate that external wall surface temperature and nearby air temperature vary with the change of orientation, height and season. In general, the external wall surface temperature is lower near the ground, and is higher near the roof, than nearby air temperature. But north wall surface temperature is mostly lower than nearby air temperature at the same height; south wall surface temperature during the daytime in December, and west wall surface temperature all day in August, is respectively higher than nearby air temperature. The heat fluxes into and out of external wall surfaces show the differences that exist in the various orientations, heights and seasons. In December, south wall surface at the lower sites emits heat and north wall surface at the higher sites absorbs heat. In April, all external wall surfaces, emit heat near the ground and absorb heat near the roof. In August, west wall surface all day emits heat, and other wall surfaces just show the commensurate behavior with that in April.
基金supported by the Civil Aircraft Research Project(No.MJ-2016-S-54),China。
文摘Operating point drift over large temperature spans can significantly degrade the performance of servo valves.The direction and magnitude of the deviation of the operating point are uncertain.To analyze and evaluate the mechanism of this complex system with a multi-level structure and multi-variables,it is necessary to construct a theoretical model with a clear physical concept to describe it.However,since the physical processes contain complex variations of structural parameters and flow properties,there is a problem of simplifying approximations in deriving analytical mathematical relations.The advantages of multi-physics field numerical analysis can compensate for this shortcoming of analytical formulations.Based on this,we constructed a whole-valve transfer function model to realize the mechanism analysis and evaluate the operating point drift when a thermal effect acts on a servo valve.The results show that the asymmetric fit relationship between the armature-nozzle assemblies is an important reason for the drift of the operating point caused by the thermal effect.Differences in structural parameters and fluid medium characteristics at different temperatures lead to nonlinear changes in the operating point.When the deviation angle reaches±1°,an increase in temperature will cause the absolute value of the tangent slope of the displacement deviation of the spool to decrease from 1.44×10^(−5) m/℃to 1.25×10^(−6) m/℃.The influence of the deviation angle is reflected in the change in the absolute value of the tangent slope of the pressure deviation from 1.14×10^(3) Pa/℃to 110 Pa/℃.
基金supported by the National Natural Science Foundation of China (No.11947205 and No.61504079)the China Postdoctoral Science Foundation (No.2019M663877XB)+2 种基金the Startup Fund for Youngman Research at Shanghai Jiao Tong University (No.19X100040004)The fund from the Chongqing Special Postdoctoral Science Foundation(No.XmT2019021)supported by the center for HPC,Shanghai Jiao Tong University
文摘Consistency between density functional theory calculations and X-ray photoelectron spectroscopy measurements confirms our predications on the undercoordination-induced local bond relaxation and core level shift of alkali metal,which determine the surface,size and thermal properties of materials.Zone-resolved photoelectron spectroscopyanalysis method and bond order-length-strength theory can be utilized to quantify the physical parameters regarding bonding identities and electronic property of metal surfaces,which allows for the study of the core-electron binding-energy shifts in alkali metals.By employing these methods and first principle calculation in this work,we can obtain the information of bond and atomic cohesive energy of under-coordinated atoms at the alkali metal surface.In addition,the effect of size and temperature towards the binding-energy in the surface region can be seen from the view point of Hamiltonian perturbation by atomic relaxation with atomic bonding.
基金supported by the National Basic Research Program of China (Grant Nos. 2007CB310403 and 2007CB310407)the National Natural Science Foundation of China (Grant No. 60801017)
文摘We report a numerical simulation of continuous terahertz beam induced transient thermal effects on static water. The terahertz wave used in this paper has a Gaussian beam profile. Based on the transient heat conduction equation, the finite element method (FEM) is utilized to calculate the temperature distribution. The simulation results show the dynamic process of temperature change in water during terahertz irradiation. After about 300 s, the temperature reaches a steady state with a water layer thickness of 5 mm and a beam radius of 0.25 mm. The highest temperature increase is 7 K/mW approximately. This work motivates further study on the interaction between terahertz wave and bio-tissue, which has a high water content.
基金funded by the Fundamental Research Funds for the Central Universities,CHD(grant number 300102213703)the National Natural Science Foundation of China(grant number 52108111).
文摘Bridge structures experience complex thermal effects under the influence of environmental factors and internal heat sources,leading to adverse impacts on structural safety and durability.To enhance comprehension of bridge temperature issues and mitigate adverse thermal stress and deformation,the fundamental principles of“resistance”,“release”,“prevention”,and“utilization”are summarized based on the causes of thermal effects,which are resisting thermal stress,releasing thermal deformation,preventing temperature actions,and utilizing thermal effects.Subsequently,typical approaches are summarized based on each principle.Under the“resistance”principle,measures such as rational reinforcement design,increasing early concrete strength,and utilizing new materials with high tensile strength can be employed to reduce the risk of structural cracking.Following the“release”principle,techniques like proper arrangement of expansion joints and bearings,flexible foundation design for jointless bridge and mass concrete layering method can be utilized to release thermal deformations.Based on the“prevention”principle,reducing the hydration heat,applying heat-insulating coatings,shading panels,and phase-change materials can decrease temperature differences in the structure.Improved calculation of thermal effects during construction can also aid in construction control.Based on the“utilization”principle,it is possible to strengthen arch bridges and treat expansion joints with the help of favorable thermal effects.Finally,the advancements are prospected to make the bridge better adapted to the thermal effects.
文摘A comprehensive numerical investigation into mixed⁃mode delamination is presented in this study.It aims to assess the impact of thermal and friction effects through mixed⁃mode flexure crack propagation testing.Finite element analysis was employed to model the delamination process,incorporating a contact cohesive zone model.This model couples the traction⁃separation law,the contact law,and the Coulomb friction law simultaneously.The thermomechanical analysis in this study is performed using a sequentially coupled approach,implemented with the finite element software ABAQUS.The findings underscore the importance of this study.