After millions of years of natural evolution,horsetails have evolved unique stem structures that enable survival in harsh environments.Inspired by the cross-sectional characteristics of horsetail stems,a series of bio...After millions of years of natural evolution,horsetails have evolved unique stem structures that enable survival in harsh environments.Inspired by the cross-sectional characteristics of horsetail stems,a series of bioinspired sandwich structures were designed and fabricated using the laser powder bed fusion(LPBF)process.By combining experimental and finite element simulation methods,the formability,mechanical properties,deformation behavior,and thermal conduction performance of these structures were determined.Results show that the surface morphology of the bioinspired sandwich structures was smooth,with no cracks observed.The bioinspired sandwich structure with an inner tube diameter of 1.9 mm(D_(1.9))exhibited optimal comprehensive mechanical properties,with a specific strength of 64.2 MPa/(g/cm^(3)),and specific energy absorption of 3.3 J/g.Stress distribution results revealed that the D_(1.9)structures had the most uniform stress distribution.Furthermore,increasing the internal conduction paths improved heat transfer;therefore,the thermal conductivities of the D_(1.4),D_(1.9),and D_(2.4)structures were higher than that of the D0 structure.This study demonstrates that a bioinspired design approach,combined with additive manufacturing technology,enables the development of high-performance structures with both load-bearing and thermally insulating capabilities.展开更多
The development of high-performance functional composites has become a research hotspot in response to the hazards of over-heating and electromagnetic radiation in modern electronic devices.Herein,we grew magnetic Fe_...The development of high-performance functional composites has become a research hotspot in response to the hazards of over-heating and electromagnetic radiation in modern electronic devices.Herein,we grew magnetic Fe_(3)O_(4)particles in situ on the MXene layer to obtain an MXene@Fe_(3)O_(4)composite with rich heterogeneous interfaces.Owing to the unique heterostructure and the synergistic effects of multiple electromagnetic wave absorption mechanisms,the composite achieved a minimum reflection loss of-27.14 dB and an effect-ive absorption bandwidth of 2.05 GHz at an absorption thickness of 2 mm.Moreover,the MXene@Fe_(3)O_(4)composite could be encapsu-lated in thermoplastic polyurethane(TPU)via thermal curing.The obtained composite elastomer exhibited a strong tensile strength,and its thermal diffusivity was 113%higher than that of pure TPU.Such additional mechanical properties and thermal conduction features render this composite elastomer an advanced electromagnetic absorber to adapt to the ever-changing environment for expanding practical applications.展开更多
A rotary-concentrating device for thermal conduction is constructed to control and guide thermal energy transmitting in elastic plates.The designed device has the ability of concentrating for thermal conduction and co...A rotary-concentrating device for thermal conduction is constructed to control and guide thermal energy transmitting in elastic plates.The designed device has the ability of concentrating for thermal conduction and controlling the processes of thermal diffusion in a plate.The multilayered isotropic material properties of the rotary-concentrating device are derived based on the transformation and rotary medium method and a rotation parameter to control the thermal diffusion process is introduced.The efficiency of the rotary-concentrating device for thermal conduction is verified.Stability of temperature fields in a plate with the rotary-concentrating device is analyzed to study the performance of rotary-concentrating.Numerical examples show that the constructed rotary-concentrating device for thermal conduction can effectively rotate and focus on the thermal energy into the device for a wide range of diffusion temperatures,which can enhance the thermal conduction.Therefore,this study can provide a theoretical support for potential applications in fields of energy harvesting and thermal conduction control.展开更多
We study the thermal conduction behaviors of one-dimensional lattice models with asymmetric harmonic interparticle interactions. Normal thermal conductivity that is independent of system size is observed when the latt...We study the thermal conduction behaviors of one-dimensional lattice models with asymmetric harmonic interparticle interactions. Normal thermal conductivity that is independent of system size is observed when the lattice chains are long enough. Because only the harmonic interactions are involved, the result confirms, without ambiguity, that asymmetry plays a key role in normal thermal conduction in one-dimensional momentum conserving lattices. Both equilibrium and nonequilibrium simulations are performed to support the conclusion.展开更多
In this paper, using computer simulation and mathematic experiment method to solve the simplified one dimensional thermal conduction equation and to obtain the temperature distribution in a metal bar when its one end ...In this paper, using computer simulation and mathematic experiment method to solve the simplified one dimensional thermal conduction equation and to obtain the temperature distribution in a metal bar when its one end was heated. According to principle of hot expansion, a holograph of temperature distribution in the bar by laser holo-technique was taken. The results of numerical simulation and experiments are in good agreement and a new method for study on thermal conduction by laser holo-technique was found.展开更多
In this study,three computational approaches for the optimization of a thermal conduction problem are critically compared.These include a Direct Method(DM),a Genetic Algorithm(GA),and a Pattern Search(PS)technique.The...In this study,three computational approaches for the optimization of a thermal conduction problem are critically compared.These include a Direct Method(DM),a Genetic Algorithm(GA),and a Pattern Search(PS)technique.The optimization aims to minimize the maximum temperature of a hot medium(a medium with uniform heat generation)using a constant amount of high conductivity materials(playing the role of fixed factor constraining the considered problem).The principal goal of this paper is to determine the most efficient and fastest option among the considered ones.It is shown that the examined three methods approximately lead to the same result in terms of maximum tem-perature.However,when the number of optimization variables is low,the DM is the fastest one.An increment in the complexity of the design and the number of degrees of freedom(DOF)can make the DM impractical.Results also show that the PS algorithm becomes faster than the GA as the number of variables for the optimization rises.展开更多
The electrocaloric effect of ferroelectric ceramics has been studied extensively for solid-state caloric cooling.Generally,most ferroelectric ceramics are poor thermal conductors.In this work,the possibility of enhanc...The electrocaloric effect of ferroelectric ceramics has been studied extensively for solid-state caloric cooling.Generally,most ferroelectric ceramics are poor thermal conductors.In this work,the possibility of enhancing the thermal conduction of ferroelectric ceramics through the electrocaloric effect is studied.A multilayer ceramic structure is proposed and the proper sequential electric field is applied to each ceramic layer.The result shows that the thermal conduction of the multilayer structure is significantly enhanced because of the electrocaloric effect of the ferroelectric ceramics.As a result,the work finds an alternatively way of applying the electrocaloric effect,prompting thermal conduction.展开更多
We have explored the structure of a hot flow bathed in a general large-scale magnetic field. The importance of outflow and thermal conduction on the self-similar structure of a hot accretion flow has been investigated...We have explored the structure of a hot flow bathed in a general large-scale magnetic field. The importance of outflow and thermal conduction on the self-similar structure of a hot accretion flow has been investigated. We consider the additional 2 2 2 magnetic parameters are the Alfv6n sound speeds in three directions of cylindrical coordinates. In comparison to the accretion disk without winds, our results show that the radial and rotational velocities of the disk become faster, but the disk becomes cooler because of the angular momentum and energy flux which are taken away by the winds. Moreover, thermal conduction opposes the effect of winds and not only decreases the rotational velocity but also in- creases the radial velocity as well as the sound speed of the disk. In addition, we study the effect of the global magnetic field on the structure of the disk. Our numerical re- suits show that all the components of a magnetic field can be important and they have a considerable effect on velocities and vertical structure of the disk.展开更多
Diamond/metal composites are widely used in aerospace and electronic packaging fields due to their outstanding high thermal conductivity and low expansion.However,the difference in chemical properties leads to interfa...Diamond/metal composites are widely used in aerospace and electronic packaging fields due to their outstanding high thermal conductivity and low expansion.However,the difference in chemical properties leads to interface incompatibility between diamond and metal,which has a considerable impact on the performance of the composites.To improve the interface compatibility between diamond and metal,it is necessary to modify the interface of composites.This paper reviews the experimental research on interface modification and the application of computational simulation in diamond/metal composites.Combining computational simulation with experimental methods is a promising way to promote diamond/metal composite interface modification research.展开更多
High-entropy alloys are characteristic of extensive atomic occupational disorder on high-symmetric lattices,differing from traditional alloys.Here,we investigate the magnetic and thermal transport properties of the pr...High-entropy alloys are characteristic of extensive atomic occupational disorder on high-symmetric lattices,differing from traditional alloys.Here,we investigate the magnetic and thermal transport properties of the prototype face-centered-cubic high-entropy alloy CrMnFeCoNi by combining physical properties measurements and neutron scattering.Direct-current and alternating-current magnetizations measurements indicate a mictomagnetic behavior with coexisting antiferromagnetic and ferromagnetic interactions below room temperature and three anomalies are found at about 80,40,and 20 K,which are related to the paramagnetic to antiferromagnetic transition,the antiferromagnetic to ferromagnetic transition,and the spin freezing,respectively.The electrical and thermal conductivities are significantly reduced compared to Ni,and the temperature dependence of lattice thermal conductivity exhibits a glasslike plateau.Inelastic neutron scattering measurements suggest weak anharmonicity so that the thermal transport is expected to be dominated by the defect scattering.展开更多
Manipulating thermal conductivities are fundamentally important for controlling the conduction of heat at will. Thermal cloaks and concentrators, which have been extensively studied recently, are actually graded mater...Manipulating thermal conductivities are fundamentally important for controlling the conduction of heat at will. Thermal cloaks and concentrators, which have been extensively studied recently, are actually graded materials designed according to coordinate transformation approaches, and their effective thermal conductivity is equal to that of the host medium outside the cloak or concentrator. Here we attempt to investigate a more general problem: what is the effective thermal conductivity of graded materials? In particular, we perform a first-principles approach to the analytic exact results of effective thermal conductivities of materials possessing either power-law or linear gradation profiles. On the other hand, by solving Laplace's equation, we derive a differential equation for calculating the effective thermal conductivity of a material whose thermal conductivity varies along the radius with arbitrary gradation profiles.The two methods agree with each other for both external and internal heat sources, as confirmed by simulation and experiment. This work provides different methods for designing new thermal metamaterials(including thermal cloaks and concentrators), in order to control or manipulate the transfer of heat.展开更多
For deep mining engineering, heat transfer of coal mass is a vital factor in the thermal environment of coal mines. In order to study the thermal conduction mechanism, we obtained gray images of coal mass microstructu...For deep mining engineering, heat transfer of coal mass is a vital factor in the thermal environment of coal mines. In order to study the thermal conduction mechanism, we obtained gray images of coal mass microstructure by scanning samples with a digital microscope. With the use of Matlab, these gray images were transformed into binary images, which were then transformed into a corresponding matrix consisting only of the values 0 and 1. According to the calculation method of box-counting dimension, we calculated the fractal dimension of the loose coal to be approximately 1.86. The thermal conductivity expressions of loose coal were derived based on the simulation method of thermal resistance. We calculated the thermal conductivity of loose coal by using a fractal model and compared the calculated values with our experimental data. The results show that the test data show an encourag-ing agreement with the calculated values. Hence fractal theory is a feasible method for studying thermal conductivity of loose coal.展开更多
The relationship between thermal conductivity and properties of mixing particles is required for quantitative study of heat transfer processes in asphalt-based materials. In this paper, we measured the e?ective ther-...The relationship between thermal conductivity and properties of mixing particles is required for quantitative study of heat transfer processes in asphalt-based materials. In this paper, we measured the e?ective ther- mal conductivity of asphalt-based materials with thermal conduction (graphite) and insulation (cenosphere) powders modification. By taking account of the particle shape, volume fraction, the thermal conductivity of filling particles and base asphalt, we present a new differential effective medium formula to predict the thermal conductivity modification in asphalt-based composite. Our theoretical predications are in good agreement with the experiment data. The new model can be applied for predicting the thermal properties of asphalt-based mixture, which is available for most of thermal modification in two-phase composites.展开更多
This review summarizes the current studies of the thermal transport properties of one-dimensional(1D)carbon nano-materials and nanoarchitectures.Considering different hybridization states of carbon,emphases are laid o...This review summarizes the current studies of the thermal transport properties of one-dimensional(1D)carbon nano-materials and nanoarchitectures.Considering different hybridization states of carbon,emphases are laid on a variety of 1D carbon nanomaterials,such as diamond nanothreads,penta-graphene nanotubes,supernanotnbes,and carbyne.Based on experimental measurements and simulation/calculation results,we discuss the dependence of the thermal conductivity of these 1D carbon nanomaterials on a wide range of factors,including the size effect,temperature influence,strain effect,and others.This review provides an overall understanding of the thermal transport properties of 1D carbon nanomaterials and nanoarchitectures,which paves the way for effective thermal management at nanoscale.展开更多
In this work thermal conduction in one-dimensional (1D) chains of anharmonic oscillators are studied using computer simulation. The temperature profile, heat flux and thermal conductivity are investigated for chain ...In this work thermal conduction in one-dimensional (1D) chains of anharmonic oscillators are studied using computer simulation. The temperature profile, heat flux and thermal conductivity are investigated for chain length N = 100, 200, 400, 800 and 1600. In the computer simulation anharmonicity is introduced due to Fermi-Pasta- U1am-β (FPU-β) model For substrate interaction, an onsite potential due to Frenkel-Kontorova (FK) model has been used. Numerical simulations demonstrate that temperature gradient scales behave as N-1 linearly with the relation J = 0.1765/N. For the thermal conductivity K, KN to N obey the linear relation of the type KN = 0.8805N. It is shown that thermal transport is dependent on phonon-phonon interaction as web as phonon-lattice interaction. The thermal conductivity increases linearly with increase inanharmonicity and predicts relation κ =0.133 + 0.804β. It is also concluded that for higher value of the strength of the onsite potential system tends to a thermal insulator.展开更多
Lattice thermal conductivity(LTC)of cadmium arsenide(Cd_(3)As_(2))is studied over a wide temperature range(1–400 K)by employing the Callaway model.The acoustic phonons are considered to be the major carriers of heat ...Lattice thermal conductivity(LTC)of cadmium arsenide(Cd_(3)As_(2))is studied over a wide temperature range(1–400 K)by employing the Callaway model.The acoustic phonons are considered to be the major carriers of heat and to be scattered by the sample boundaries,disorder,impurities,and other phonons via both Umklapp and normal phonon processes.Numerical calculations of LTC of Cd_(3)As_(2)bring out the relative importance of the scattering mechanisms.Our systematic analysis of recent experimental data on thermal conductivity(TC)of Cd_(3)As_(2)samples of different groups,presented in terms of LTC,κL,using a nonlinear regression method,reveals good fits to the TC data of the samples considered for T<~50 K,and suggests a value of 0.2 for the Gruneisen parameter.It is,however,found that for T>100 K the inclusion of the electronic component of TC,κe,incorporating contributions from relevant electron scattering mechanisms,is needed to obtain good agreement with the TC data over the wide temperature range.More detailed investigations of TC of Cd_(3)As_(2)are required to better understand its suitability in thermoelectric and thermal management devices.展开更多
This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural fe...This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural features of cellular structures,which stems from the degree of porosity and the distri-bution of the pores.Unlike the phonon-driven surface effect at the nanoscale,the macro-scale surface mechanism in thermal cellular structures is found to be the microstructure-induced changes in the heat conduction path based on fully resolved 3D numerical simulations.The surface region is determined by the microstructure,characterized by the intrinsic length.With the coupling between extrinsic and intrinsic length scales under the surface mechanism,a surface-enriched multiscale method was devel-oped to accurately capture the complex size-dependent thermal conductivity.The principle of scale separation required by classical multiscale methods is not necessary to be satisfied by the proposed multiscale method.The significant potential of the surface-enriched multiscale method was demon-strated through simulations of the effective thermal conductivity of a thin-walled metamaterial struc-ture.The surface-enriched multiscale method offers higher accuracy compared with the classical multiscale method and superior efficiency over high-fidelity finite element methods.展开更多
Molten salts serve as primary heat transfer and storage media in thermal energy storage systems.Adding nanoparticles to molten salt to create nanofluids is known to significantly improve the thermal conductivity of th...Molten salts serve as primary heat transfer and storage media in thermal energy storage systems.Adding nanoparticles to molten salt to create nanofluids is known to significantly improve the thermal conductivity of the molten salts.However,nanoparticle agglomeration is inevitable and substantially affects the thermal con-ductivity of molten salts.Moreover,the mechanisms whereby agglomeration influences thermal conductivity remain unclear.This paper presents an innovative multiscale coupling model that combines molecular dynamics(MD)simulations with the lattice Boltzmann method(LBM)to investigate the thermal conductivity of CuO nanoparticles in ternary NaCl-KCl-LiCl molten salt-based nanofluids.Both nonaggregated and aggregated states were considered.After conducting MD simulations at the microscale to examine the thermal contact resistance at the interface between nanoparticles,we employed the LBM to determine the effective thermal conductivity of the nanofluids at the mesoscale.The findings reveal the formation of significant heat flow channels in nanofluids containing nanoparticles.However,an increase in the thermal contact resistance reduces these channels in agglomerated particles,potentially reducing the thermal conductivity compared with that in the nonaggregated nanofluids.In cluster-like structures,fewer nanoparticles are positioned within heat flow channels,in contrast to chain-like arrangements.This reduction limits the enhancement in the thermal conductivity and minimizes variations in the thermal conductivity due to differences in the aggregate particle number and orientation.Furthermore,the thermal conductivity exhibited notable variations with varying agglomerated nanoparticle diameters at identical mass fractions.Both smaller and larger particles can increase the level of contact thermal resistance,ultimately reducing the thermal conductivity.展开更多
With the continuous advancements in electronics towards downsizing and integration,efficient thermal dissipation from chips has emerged as a critical factor affecting their lifespan and operational efficiency.The fan-...With the continuous advancements in electronics towards downsizing and integration,efficient thermal dissipation from chips has emerged as a critical factor affecting their lifespan and operational efficiency.The fan-less chip cooling system has two critical interfaces for thermal transport,which are the contact interface between the base and the chip dominated by thermal conduction,and the surface of the fins dominated by thermal radiation.The different thermal transfer modes of these two critical interfaces pose different requirements for thermal management materials.In the study,a novel approach was proposed by developing graphene thermal transport functional material whose morphology could be intentionally designed via reformed plasmaenhanced chemical vapor deposition(PECVD)methods to meet the diverse requirements of heat transfer properties.Specifically,graphene with multilevel branching structure of vertical graphene(BVG)was fabricated through the hydrogenassisted PECVD(H_(2)-PECVD)strategy,which contributed a high emissivity of~0.98.BVG was deposited on the fins’surface and functioned as the radiation enhanced layer to facilitate the rapid radiation of heat from the heat sinks into the surrounding air.Meanwhile,the well-oriented vertical graphene(OVG)was successfully prepared through the vertical electric field-assisted PECVD process(EF-PECVD),which showed a high directional thermal conductivity of~53.5 W·m^(-1)·K^(-1).OVG was deposited on the contact interface and functioned as the thermal conduction enhanced layer,allowing for the quick transmission of heat from the chip to the heat sink.Utilizing this design concept,the two critical interfaces in the chip cooling system can be jointly enhanced,resulting in a remarkable cooling efficiency enhancement of~30.7%,demonstrating that this novel material possessed enormous potential for enhancing the performance of cooling systems.Therefore,this research not only provided new design concepts for the cooling system of electronic devices but also opened up new avenues for the application of graphene materials in thermal management.展开更多
In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to...In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to reduce heat loss in buildings.Vacuum insulation panels(VIPs),a type of high-performance insulation material,have been increasingly utilised in the construction industry and have played an increa-singly important role as their performance and manufacturing processes continue to improve.This paper provides a review of the factors affecting the thermal conductivity of VIPs and presents a detailed overview of the research progress on core materials,barrier films,and getters.The current research status of VIPs is summarised,including their thermal conductivity,service life,and thermal bridging effects,as well as their applications in the field of architecture.This review aims to provide a comprehensive understanding for relevant practitioners on the factors influencing the thermal conductivity of VIPs,and based on which,measures can be taken to produce VIPs with lower thermal conductivity and longer service life.展开更多
基金supported by National Key Research and Development Program of China(Grant No.2021YFB1715400)National Natural Science Foundation of China(Grant No.52225503)+3 种基金Key Research and Development Program of Jiangsu Province(Grant Nos.BE2022069,BE2022069-1)Fundamental Research Funds for the Central Universities(Grant No.NI2024003)National Natural Science Foundation of China for Creative Research Groups(Grant No.51921003)the 15th Batch of“Six Talents Peaks”Innovative Talents Team Program(Grant No.TD-GDZB-001).
文摘After millions of years of natural evolution,horsetails have evolved unique stem structures that enable survival in harsh environments.Inspired by the cross-sectional characteristics of horsetail stems,a series of bioinspired sandwich structures were designed and fabricated using the laser powder bed fusion(LPBF)process.By combining experimental and finite element simulation methods,the formability,mechanical properties,deformation behavior,and thermal conduction performance of these structures were determined.Results show that the surface morphology of the bioinspired sandwich structures was smooth,with no cracks observed.The bioinspired sandwich structure with an inner tube diameter of 1.9 mm(D_(1.9))exhibited optimal comprehensive mechanical properties,with a specific strength of 64.2 MPa/(g/cm^(3)),and specific energy absorption of 3.3 J/g.Stress distribution results revealed that the D_(1.9)structures had the most uniform stress distribution.Furthermore,increasing the internal conduction paths improved heat transfer;therefore,the thermal conductivities of the D_(1.4),D_(1.9),and D_(2.4)structures were higher than that of the D0 structure.This study demonstrates that a bioinspired design approach,combined with additive manufacturing technology,enables the development of high-performance structures with both load-bearing and thermally insulating capabilities.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LQ22E030016)the National Natural Science Foundation of China(No.52275137)+1 种基金the China Postdoctoral Science Foundation(No.2022M722831)the Postdoctoral Research Selected Funding Project of Zhejiang Province,China(No.ZJ2022063).
文摘The development of high-performance functional composites has become a research hotspot in response to the hazards of over-heating and electromagnetic radiation in modern electronic devices.Herein,we grew magnetic Fe_(3)O_(4)particles in situ on the MXene layer to obtain an MXene@Fe_(3)O_(4)composite with rich heterogeneous interfaces.Owing to the unique heterostructure and the synergistic effects of multiple electromagnetic wave absorption mechanisms,the composite achieved a minimum reflection loss of-27.14 dB and an effect-ive absorption bandwidth of 2.05 GHz at an absorption thickness of 2 mm.Moreover,the MXene@Fe_(3)O_(4)composite could be encapsu-lated in thermoplastic polyurethane(TPU)via thermal curing.The obtained composite elastomer exhibited a strong tensile strength,and its thermal diffusivity was 113%higher than that of pure TPU.Such additional mechanical properties and thermal conduction features render this composite elastomer an advanced electromagnetic absorber to adapt to the ever-changing environment for expanding practical applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.12102150)the Natural Science Foundation of Jiangsu Province+3 种基金China(Grant Nos.BK20200884 and BK20201414)the Natural Science Foundation of Colleges and Universities in Jiangsu Province,China(Grant No.20KJB130004)China Postdoctoral Science Foundation(Grant No.2021M702444)the Jiangsu’s Mass Entrepreneurship and Innovation Program of Jiangsu Province。
文摘A rotary-concentrating device for thermal conduction is constructed to control and guide thermal energy transmitting in elastic plates.The designed device has the ability of concentrating for thermal conduction and controlling the processes of thermal diffusion in a plate.The multilayered isotropic material properties of the rotary-concentrating device are derived based on the transformation and rotary medium method and a rotation parameter to control the thermal diffusion process is introduced.The efficiency of the rotary-concentrating device for thermal conduction is verified.Stability of temperature fields in a plate with the rotary-concentrating device is analyzed to study the performance of rotary-concentrating.Numerical examples show that the constructed rotary-concentrating device for thermal conduction can effectively rotate and focus on the thermal energy into the device for a wide range of diffusion temperatures,which can enhance the thermal conduction.Therefore,this study can provide a theoretical support for potential applications in fields of energy harvesting and thermal conduction control.
基金the National Natural Science Foundation of China(Grants Nos.10925525 and 10805036)
文摘We study the thermal conduction behaviors of one-dimensional lattice models with asymmetric harmonic interparticle interactions. Normal thermal conductivity that is independent of system size is observed when the lattice chains are long enough. Because only the harmonic interactions are involved, the result confirms, without ambiguity, that asymmetry plays a key role in normal thermal conduction in one-dimensional momentum conserving lattices. Both equilibrium and nonequilibrium simulations are performed to support the conclusion.
基金supported by the Foundation of Education Research for Youth Scholar of CAAC(No.1998303).
文摘In this paper, using computer simulation and mathematic experiment method to solve the simplified one dimensional thermal conduction equation and to obtain the temperature distribution in a metal bar when its one end was heated. According to principle of hot expansion, a holograph of temperature distribution in the bar by laser holo-technique was taken. The results of numerical simulation and experiments are in good agreement and a new method for study on thermal conduction by laser holo-technique was found.
文摘In this study,three computational approaches for the optimization of a thermal conduction problem are critically compared.These include a Direct Method(DM),a Genetic Algorithm(GA),and a Pattern Search(PS)technique.The optimization aims to minimize the maximum temperature of a hot medium(a medium with uniform heat generation)using a constant amount of high conductivity materials(playing the role of fixed factor constraining the considered problem).The principal goal of this paper is to determine the most efficient and fastest option among the considered ones.It is shown that the examined three methods approximately lead to the same result in terms of maximum tem-perature.However,when the number of optimization variables is low,the DM is the fastest one.An increment in the complexity of the design and the number of degrees of freedom(DOF)can make the DM impractical.Results also show that the PS algorithm becomes faster than the GA as the number of variables for the optimization rises.
基金the National Natural Science Foundation of China(Grant No.11704242)the Natural Science Foundation of Shanghai,China(Grant No.17ZR1447200).
文摘The electrocaloric effect of ferroelectric ceramics has been studied extensively for solid-state caloric cooling.Generally,most ferroelectric ceramics are poor thermal conductors.In this work,the possibility of enhancing the thermal conduction of ferroelectric ceramics through the electrocaloric effect is studied.A multilayer ceramic structure is proposed and the proper sequential electric field is applied to each ceramic layer.The result shows that the thermal conduction of the multilayer structure is significantly enhanced because of the electrocaloric effect of the ferroelectric ceramics.As a result,the work finds an alternatively way of applying the electrocaloric effect,prompting thermal conduction.
文摘We have explored the structure of a hot flow bathed in a general large-scale magnetic field. The importance of outflow and thermal conduction on the self-similar structure of a hot accretion flow has been investigated. We consider the additional 2 2 2 magnetic parameters are the Alfv6n sound speeds in three directions of cylindrical coordinates. In comparison to the accretion disk without winds, our results show that the radial and rotational velocities of the disk become faster, but the disk becomes cooler because of the angular momentum and energy flux which are taken away by the winds. Moreover, thermal conduction opposes the effect of winds and not only decreases the rotational velocity but also in- creases the radial velocity as well as the sound speed of the disk. In addition, we study the effect of the global magnetic field on the structure of the disk. Our numerical re- suits show that all the components of a magnetic field can be important and they have a considerable effect on velocities and vertical structure of the disk.
基金financially supported by the National Natural Science Foundation of China(Nos.52071117 and 51771063)the Heilongjiang Provincial Science Fund for Distinguished Young Scholars(No.JQ2021E002)。
文摘Diamond/metal composites are widely used in aerospace and electronic packaging fields due to their outstanding high thermal conductivity and low expansion.However,the difference in chemical properties leads to interface incompatibility between diamond and metal,which has a considerable impact on the performance of the composites.To improve the interface compatibility between diamond and metal,it is necessary to modify the interface of composites.This paper reviews the experimental research on interface modification and the application of computational simulation in diamond/metal composites.Combining computational simulation with experimental methods is a promising way to promote diamond/metal composite interface modification research.
基金financially supported by the Liaoning Revitalization Talents Program(No.XLYC1807122)the National Natural Science Foundation of China(Nos.11804346,12005243,and 51771197)+1 种基金the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(No.ZDBS-LY-JSC002)the Ministry of Science and Technology of China(No.2020YFA0406002)
文摘High-entropy alloys are characteristic of extensive atomic occupational disorder on high-symmetric lattices,differing from traditional alloys.Here,we investigate the magnetic and thermal transport properties of the prototype face-centered-cubic high-entropy alloy CrMnFeCoNi by combining physical properties measurements and neutron scattering.Direct-current and alternating-current magnetizations measurements indicate a mictomagnetic behavior with coexisting antiferromagnetic and ferromagnetic interactions below room temperature and three anomalies are found at about 80,40,and 20 K,which are related to the paramagnetic to antiferromagnetic transition,the antiferromagnetic to ferromagnetic transition,and the spin freezing,respectively.The electrical and thermal conductivities are significantly reduced compared to Ni,and the temperature dependence of lattice thermal conductivity exhibits a glasslike plateau.Inelastic neutron scattering measurements suggest weak anharmonicity so that the thermal transport is expected to be dominated by the defect scattering.
基金Support by the National Natural Science Foundation of China under Grant No.11725521the Science and Technology Commission of Shanghai Municipality under Grant No.16ZR1445100
文摘Manipulating thermal conductivities are fundamentally important for controlling the conduction of heat at will. Thermal cloaks and concentrators, which have been extensively studied recently, are actually graded materials designed according to coordinate transformation approaches, and their effective thermal conductivity is equal to that of the host medium outside the cloak or concentrator. Here we attempt to investigate a more general problem: what is the effective thermal conductivity of graded materials? In particular, we perform a first-principles approach to the analytic exact results of effective thermal conductivities of materials possessing either power-law or linear gradation profiles. On the other hand, by solving Laplace's equation, we derive a differential equation for calculating the effective thermal conductivity of a material whose thermal conductivity varies along the radius with arbitrary gradation profiles.The two methods agree with each other for both external and internal heat sources, as confirmed by simulation and experiment. This work provides different methods for designing new thermal metamaterials(including thermal cloaks and concentrators), in order to control or manipulate the transfer of heat.
基金support for this study, provided by the National Natural Science Foundation of China (Nos50534040 and 50974117)the Research Fund of the State Key Laboratory of Coal Resources & Mine Safety, CUMT (No07KF10)
文摘For deep mining engineering, heat transfer of coal mass is a vital factor in the thermal environment of coal mines. In order to study the thermal conduction mechanism, we obtained gray images of coal mass microstructure by scanning samples with a digital microscope. With the use of Matlab, these gray images were transformed into binary images, which were then transformed into a corresponding matrix consisting only of the values 0 and 1. According to the calculation method of box-counting dimension, we calculated the fractal dimension of the loose coal to be approximately 1.86. The thermal conductivity expressions of loose coal were derived based on the simulation method of thermal resistance. We calculated the thermal conductivity of loose coal by using a fractal model and compared the calculated values with our experimental data. The results show that the test data show an encourag-ing agreement with the calculated values. Hence fractal theory is a feasible method for studying thermal conductivity of loose coal.
基金supported by the National Natural Science Foundation of China under grants Nos. 50906073 and 50973018
文摘The relationship between thermal conductivity and properties of mixing particles is required for quantitative study of heat transfer processes in asphalt-based materials. In this paper, we measured the e?ective ther- mal conductivity of asphalt-based materials with thermal conduction (graphite) and insulation (cenosphere) powders modification. By taking account of the particle shape, volume fraction, the thermal conductivity of filling particles and base asphalt, we present a new differential effective medium formula to predict the thermal conductivity modification in asphalt-based composite. Our theoretical predications are in good agreement with the experiment data. The new model can be applied for predicting the thermal properties of asphalt-based mixture, which is available for most of thermal modification in two-phase composites.
基金Project supported by Australian Research Council(ARC)Discovery Project DP170102861
文摘This review summarizes the current studies of the thermal transport properties of one-dimensional(1D)carbon nano-materials and nanoarchitectures.Considering different hybridization states of carbon,emphases are laid on a variety of 1D carbon nanomaterials,such as diamond nanothreads,penta-graphene nanotubes,supernanotnbes,and carbyne.Based on experimental measurements and simulation/calculation results,we discuss the dependence of the thermal conductivity of these 1D carbon nanomaterials on a wide range of factors,including the size effect,temperature influence,strain effect,and others.This review provides an overall understanding of the thermal transport properties of 1D carbon nanomaterials and nanoarchitectures,which paves the way for effective thermal management at nanoscale.
文摘In this work thermal conduction in one-dimensional (1D) chains of anharmonic oscillators are studied using computer simulation. The temperature profile, heat flux and thermal conductivity are investigated for chain length N = 100, 200, 400, 800 and 1600. In the computer simulation anharmonicity is introduced due to Fermi-Pasta- U1am-β (FPU-β) model For substrate interaction, an onsite potential due to Frenkel-Kontorova (FK) model has been used. Numerical simulations demonstrate that temperature gradient scales behave as N-1 linearly with the relation J = 0.1765/N. For the thermal conductivity K, KN to N obey the linear relation of the type KN = 0.8805N. It is shown that thermal transport is dependent on phonon-phonon interaction as web as phonon-lattice interaction. The thermal conductivity increases linearly with increase inanharmonicity and predicts relation κ =0.133 + 0.804β. It is also concluded that for higher value of the strength of the onsite potential system tends to a thermal insulator.
基金supported by University Grants Commission(UGC),India。
文摘Lattice thermal conductivity(LTC)of cadmium arsenide(Cd_(3)As_(2))is studied over a wide temperature range(1–400 K)by employing the Callaway model.The acoustic phonons are considered to be the major carriers of heat and to be scattered by the sample boundaries,disorder,impurities,and other phonons via both Umklapp and normal phonon processes.Numerical calculations of LTC of Cd_(3)As_(2)bring out the relative importance of the scattering mechanisms.Our systematic analysis of recent experimental data on thermal conductivity(TC)of Cd_(3)As_(2)samples of different groups,presented in terms of LTC,κL,using a nonlinear regression method,reveals good fits to the TC data of the samples considered for T<~50 K,and suggests a value of 0.2 for the Gruneisen parameter.It is,however,found that for T>100 K the inclusion of the electronic component of TC,κe,incorporating contributions from relevant electron scattering mechanisms,is needed to obtain good agreement with the TC data over the wide temperature range.More detailed investigations of TC of Cd_(3)As_(2)are required to better understand its suitability in thermoelectric and thermal management devices.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFB1714600)the National Natural Science Foundation of China(Grant No.52175095)the Young Top-Notch Talent Cultivation Program of Hubei Province of China.
文摘This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural features of cellular structures,which stems from the degree of porosity and the distri-bution of the pores.Unlike the phonon-driven surface effect at the nanoscale,the macro-scale surface mechanism in thermal cellular structures is found to be the microstructure-induced changes in the heat conduction path based on fully resolved 3D numerical simulations.The surface region is determined by the microstructure,characterized by the intrinsic length.With the coupling between extrinsic and intrinsic length scales under the surface mechanism,a surface-enriched multiscale method was devel-oped to accurately capture the complex size-dependent thermal conductivity.The principle of scale separation required by classical multiscale methods is not necessary to be satisfied by the proposed multiscale method.The significant potential of the surface-enriched multiscale method was demon-strated through simulations of the effective thermal conductivity of a thin-walled metamaterial struc-ture.The surface-enriched multiscale method offers higher accuracy compared with the classical multiscale method and superior efficiency over high-fidelity finite element methods.
基金financial support from the National Key Research and Development Program of China-National Quality Infra-structure System(Grant No.:2023YFF0615001)the Postdoctoral Fellowship Program of CPSF(Grant No.:GZC20241346).
文摘Molten salts serve as primary heat transfer and storage media in thermal energy storage systems.Adding nanoparticles to molten salt to create nanofluids is known to significantly improve the thermal conductivity of the molten salts.However,nanoparticle agglomeration is inevitable and substantially affects the thermal con-ductivity of molten salts.Moreover,the mechanisms whereby agglomeration influences thermal conductivity remain unclear.This paper presents an innovative multiscale coupling model that combines molecular dynamics(MD)simulations with the lattice Boltzmann method(LBM)to investigate the thermal conductivity of CuO nanoparticles in ternary NaCl-KCl-LiCl molten salt-based nanofluids.Both nonaggregated and aggregated states were considered.After conducting MD simulations at the microscale to examine the thermal contact resistance at the interface between nanoparticles,we employed the LBM to determine the effective thermal conductivity of the nanofluids at the mesoscale.The findings reveal the formation of significant heat flow channels in nanofluids containing nanoparticles.However,an increase in the thermal contact resistance reduces these channels in agglomerated particles,potentially reducing the thermal conductivity compared with that in the nonaggregated nanofluids.In cluster-like structures,fewer nanoparticles are positioned within heat flow channels,in contrast to chain-like arrangements.This reduction limits the enhancement in the thermal conductivity and minimizes variations in the thermal conductivity due to differences in the aggregate particle number and orientation.Furthermore,the thermal conductivity exhibited notable variations with varying agglomerated nanoparticle diameters at identical mass fractions.Both smaller and larger particles can increase the level of contact thermal resistance,ultimately reducing the thermal conductivity.
基金financially supported by the National Natural Science Foundation of China(Nos.52272032,T2188101,and 52021006)the Beijing Nova Program of Science and Technology(No.20220484079).
文摘With the continuous advancements in electronics towards downsizing and integration,efficient thermal dissipation from chips has emerged as a critical factor affecting their lifespan and operational efficiency.The fan-less chip cooling system has two critical interfaces for thermal transport,which are the contact interface between the base and the chip dominated by thermal conduction,and the surface of the fins dominated by thermal radiation.The different thermal transfer modes of these two critical interfaces pose different requirements for thermal management materials.In the study,a novel approach was proposed by developing graphene thermal transport functional material whose morphology could be intentionally designed via reformed plasmaenhanced chemical vapor deposition(PECVD)methods to meet the diverse requirements of heat transfer properties.Specifically,graphene with multilevel branching structure of vertical graphene(BVG)was fabricated through the hydrogenassisted PECVD(H_(2)-PECVD)strategy,which contributed a high emissivity of~0.98.BVG was deposited on the fins’surface and functioned as the radiation enhanced layer to facilitate the rapid radiation of heat from the heat sinks into the surrounding air.Meanwhile,the well-oriented vertical graphene(OVG)was successfully prepared through the vertical electric field-assisted PECVD process(EF-PECVD),which showed a high directional thermal conductivity of~53.5 W·m^(-1)·K^(-1).OVG was deposited on the contact interface and functioned as the thermal conduction enhanced layer,allowing for the quick transmission of heat from the chip to the heat sink.Utilizing this design concept,the two critical interfaces in the chip cooling system can be jointly enhanced,resulting in a remarkable cooling efficiency enhancement of~30.7%,demonstrating that this novel material possessed enormous potential for enhancing the performance of cooling systems.Therefore,this research not only provided new design concepts for the cooling system of electronic devices but also opened up new avenues for the application of graphene materials in thermal management.
文摘In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to reduce heat loss in buildings.Vacuum insulation panels(VIPs),a type of high-performance insulation material,have been increasingly utilised in the construction industry and have played an increa-singly important role as their performance and manufacturing processes continue to improve.This paper provides a review of the factors affecting the thermal conductivity of VIPs and presents a detailed overview of the research progress on core materials,barrier films,and getters.The current research status of VIPs is summarised,including their thermal conductivity,service life,and thermal bridging effects,as well as their applications in the field of architecture.This review aims to provide a comprehensive understanding for relevant practitioners on the factors influencing the thermal conductivity of VIPs,and based on which,measures can be taken to produce VIPs with lower thermal conductivity and longer service life.