To improve the accuracy of thermal response estimation and overcome the limitations of the linear regression model and Artificial Neural Network(ANN)model,this study introduces a deep learning estimation method specif...To improve the accuracy of thermal response estimation and overcome the limitations of the linear regression model and Artificial Neural Network(ANN)model,this study introduces a deep learning estimation method specifically based on the Long Short-Term Memory(LSTM)network,to predict temperature-induced girder end displacements of the Dasha Waterway Bridge,a suspension bridge in China.First,to enhance data quality and select target sensors,preprocessing based on the sigma rule and nearest neighbor interpolation is applied to the raw data.Furthermore,to eliminate the high-frequency components from the displacement signal,the wavelet transform is conducted.Subsequently,the linear regression model and ANN model are established,whose results do not meet the requirements and fail to address the time lag effect between temperature and displacements.The study proceeds to develop the LSTM network model and determine the optimal parameters through hyperparameter sensitivity analysis.Finally,the results of the LSTM network model are discussed by a comparative analysis against the linear regression model and ANN model,which indicates a higher accuracy in predicting temperatureinduced girder end displacements and the ability to mitigate the time-lag effect.To be more specific,in comparison between the linear regression model and LSTM network,the mean square error decreases from 6.5937 to 1.6808 and R^(2) increases from 0.683 to 0.930,which corresponds to a 74.51%decrease in MSE and a 36.14%improvement in R^(2).Compared to ANN,with an MSE of 4.6371 and an R^(2) of 0.807,LSTM shows a decrease in MSE of 63.75%and an increase in R^(2) of 13.23%,demonstrating a significant enhancement in predictive performance.展开更多
Microneedle(MN)patches could be a promising treatment for diabetic foot ulcers that plague thousands of people worldwide.While reducing skin resistance or increasing driving force can accelerate the efficiency of tran...Microneedle(MN)patches could be a promising treatment for diabetic foot ulcers that plague thousands of people worldwide.While reducing skin resistance or increasing driving force can accelerate the efficiency of transdermal drug delivery with conventional MN patches,it can create toxic chemical residues or require the help of additional devices.Herein,a thermo-responsive microneedles patch(TMN)with high biocompatibility without additional equipment is proposed.The TMN consisted of a bilayer microneedles composed of sodium alginate(SA)-g-poly(N-isopropylacrylamide)layer(SA-g-PNIPAM)loaded with sucrose octasulfate sodium salt(SOS)and hyaluronic acid layer and a polycaprolactone/chitosan nanofiber membrane loading with tetracycline hydrochloride(TH)and SOS.PNIPAM accelerates drug release by extruding the drug through a volumetric phase transition in response to temperature changes,and TH and SOS promote wound healing by inhibiting bacterial growth and promoting vascular regeneration and epithelial formation.The results showed that the drug release of TMN was significantly faster,with the drug release rate of more than 80% in the 10th h,and the antibacterial rate of TMN could reach 800%.In addition,TMN had good biocompatibility and good healing effects in vivo,which may be helpful for the design of multifunctional dressings in the future.展开更多
Various thermal protection materials exhibit obviously different and complicated thermal response,oxidation and ablation behavior,which are very important for the appropriate design and selection.However,the relative ...Various thermal protection materials exhibit obviously different and complicated thermal response,oxidation and ablation behavior,which are very important for the appropriate design and selection.However,the relative researches are very few currently.In this work,the thermal response,oxidation and ablation behavior of representative thermal protection materials including ultra-high temperature ceramics,C/SiC,C/C, graphite and graphite-ceramic were investigated systematically in strong heat flux,high enthalpy and low-pressure environments.Thermal response of these materials was analyzed based on experimental results and thermal energy balance that accounts for all of the heat transfer processes transporting energy into and out of the surface.Many factors were playing important roles in the thermal response including thermal conductivity,volumetric heat capacity,catalytic efficiency,emissivity and oxidation characteristics of the materials.The importance of each factor not only depends on the material characteristics such as material composition and phase content but also environment parameters including heat flux,enthalpy,pressure and testing time.The comparisons and relationships of oxidation and ablation behaviors for these materials under extreme environments were also illustrated in detail.Furthermore,thermal response and ablation behaviors of pre-oxidized material or repeated tests were also performed to evaluate the effect of pre-treatment on the performance and reusability of thermal protection materials.This work offers guiding significance for the appropriate design and selection of thermal protection materials.展开更多
Global warming threatens food security.Rice(Oryza sativa L.),a vital food crop,is vulnerable to heat stress,especially at the reproductive stage.Here we summarize putative mechanisms of high-temperature perception(via...Global warming threatens food security.Rice(Oryza sativa L.),a vital food crop,is vulnerable to heat stress,especially at the reproductive stage.Here we summarize putative mechanisms of high-temperature perception(via RNA secondary structure,the phyB gene,and phase separation)and response(membrane fluidity,heat shock factors,heat shock proteins,and ROS(reactive oxygen species)scavenging)in plants.We describe how rice responds to heat stress at different cell-component levels(membrane,endoplasmic reticulum,chloroplasts,and mitochondria)and functional levels(denatured protein elimination,ROS scavenging,stabilization of DNA and RNA,translation,and metabolic flux changes).We list temperature-sensitive genetic male sterility loci available for use in rice hybrid breeding and explain the regulatory mechanisms associated with some of them.Breeding thermotolerant rice species without yield penalties via natural alleles mining and transgenic editing should be the focus of future work.展开更多
To explore the thermal responses under the non-thermal equilibrium cold environmental conditions,a laboratory study was conducted in climate chamber.The local skin temperatures and thermal sensation of 20 subjects wer...To explore the thermal responses under the non-thermal equilibrium cold environmental conditions,a laboratory study was conducted in climate chamber.The local skin temperatures and thermal sensation of 20 subjects were recorded at 10 min intervals for 90 min under air temperatures of 7.4,9.1,11 and 15 °C.The results show that both local skin temperatures and mean skin temperature decrease not only with the drop of ambient air temperature but also with the exposure time.Local thermal sensation and overall the thermal sensation have the similar temperature-varying and time-varying characteristics.Predicted mean vote(PMV) model cannot correctly predict the thermal sensation under non-thermal equilibrium cold environment.The correlation between local thermal sensation and local skin temperatures shows that thermal sensation is closely related to skin temperature.Skin temperature is an effective indicator of thermal sensation.A linear relationship model between overall thermal sensation and mean skin temperature,considering both ambient temperature and exposure time,was established in the non-thermal equilibrium cold environment,which makes the evaluation of thermal sensation more objective.展开更多
Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the...Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the soil thermal conductivity had been known in the simulation of thermal response test.The thermal response curve was firstly obtained through numerical calculation.Then,the accuracy of the numerical model was verified with measured data obtained through a thermal response test.Based on the numerical and experimental thermal response curves,the thermal conductivity of the soil was calculated by different parameter identification methods.The calculated results were compared with the assumed value and then the accuracy of these methods was evaluated.Furthermore,the effects of test time,variable data quality,borehole radius,initial ground temperature,and heat injection rate were analyzed.The results show that the method based on cylinder-source model has a low precision and the identified thermal conductivity decreases with an increase in borehole radius.For parameter estimation,the measuring accuracy of the initial temperature of the deep ground soil has greater effect on identified thermal conductivity.展开更多
This paper describes a mathematical model developed to study the behavior of liquefied petroleum gas (LPG) tanks when subjected to jet fire. The model consists of a number of field and zone sub-models which are used t...This paper describes a mathematical model developed to study the behavior of liquefied petroleum gas (LPG) tanks when subjected to jet fire. The model consists of a number of field and zone sub-models which are used to simulate the various physical phenomena taking place during the tank engulfment period. The model can be used to predict the pressure and temperature of the LPG in the tank, the temperature of the wall of tank, and the time of tank explosion. The comparisons between the model predicted results and the test data show good agreement. The results show that the jet fire partially impinging on tank wall led to higher wall temperature and the time to failure was shorter than that in engulfing pool fire. And the exposure of the upper wall in the vapor zone to the fire is more dangerous than that of the LPG contacted wall.展开更多
We investigated the ring opening polymerization (ROP) of di- and tri-ethylene glycol monomethyl ether functionalized L-glutamate N-carboxyanhydrides (NCAs) using hexamethyldisilazane (HMDS) as primary initiator ...We investigated the ring opening polymerization (ROP) of di- and tri-ethylene glycol monomethyl ether functionalized L-glutamate N-carboxyanhydrides (NCAs) using hexamethyldisilazane (HMDS) as primary initiator and 1,5,7-triazabicyclo-[4.4.0]dec-5-ene (TBD) as co-initiator. The binary initiator system afforded a living ROP for these pegylated NCAs, and a series of homopolypeptides with controlled molecular weight (MW) and low polydispersity were obtained. We then systematically studied the helical content and clouding point (CP) dependence on polypeptide MW using circular dichroism (CD) spectroscopy and turbidity measurements, respectively. We found that the helical content of both homopolypeptides increased with MW, but the triethylene glycol functionalized poly-L-glutamate (poly-L-EG3Glu) intended to form more stable or-helical structure than diethylene glycol functionalized counterpart (poly-L-EG2Glu) at similar MW. Accordingly, the CP of poly-L-EG2Glu with known end group has strong dependence on its helical content, which is essentially determined by MW. Our results suggested that the thermal responsive properties of these unique pegylated poly- L-glutamates not only rely on their chemical structure but also on their secondary structures, wh^ch is different from conventional thermal responsive polymers.展开更多
Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configurat...Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configuration type and borehole size of geothermal heat exchanger. These eventually determined the operation and cost efficiency of the geothermal heat exchanger system. The main purpose of this work was to assess the thermal performance of geother^nal heat exchanger with variation of borehole sizes and numbers of U-tubes inside a borehole. For this, a thermal response test rig was established with line-source theory. The thermal response test was performed with in-line variable input heat source. Effective thermal conductivity and thermal resistance were obtained from the measured data. From the measurement, the effective thermal conductivity is found to have similar values for two- pair type (4 U-tubes) and three-pair type (6 U-tubes) borehole heat exchanger systems indicating similar heat transfer ability. Meanwhile, the thermal resistance shows lower value for the three-pair type compared to the two-pair type. Measured data based resistance have lower value compared to computed result from design programs. Overall comparison finds better thermal performance for the three-pair type, however, fluctuating temperature variation indicates complex flow behavior inside the borehole and requires further study on flow characteristics.展开更多
Different types of polymer films were used in the combined in-mold decoration and microcellular injection molding(IMD/MIM)process.The multiphase fluid-solid coupled heat transfer model was established to study the the...Different types of polymer films were used in the combined in-mold decoration and microcellular injection molding(IMD/MIM)process.The multiphase fluid-solid coupled heat transfer model was established to study the thermal response at the melt filling stage in the IMD/MIM process.It was found that the temperature distributed asymmetrically along the thickness direction due to the changed heat transfer coefficient of the melt on the film side.When polyethylene terephthalate(PET)films were applied,the temperature of the melt-film interface increased faster and to be higher at the end of melt filling stage in comparison with the application of polycarbonate(PC)and thermoplastic polyurethane(TPU)films.And the effects of film types on the cellular structure,forming defects and mechanical properties of IMD/MIM parts were also studied experimentally.The results showed that the film types had no obvious effect on the cells size in the transition layer and the mechanical properties of the parts.Under certain film thickness,the offset distance of core layer was the largest with PET film used,while the offset distance was the smallest with TPU film used.And similar results were found for the warpage of the parts.However,an exactly opposite change occurred for the thickness of film-side transition layer and the bubble marks on the surface of the parts.展开更多
A combined survey including infrared thermography(IRT)and field-laboratory tests were conducted to analyze the thermal responses and thermal properties of loess on a landslide-prone loess slope in the Heifangtai terra...A combined survey including infrared thermography(IRT)and field-laboratory tests were conducted to analyze the thermal responses and thermal properties of loess on a landslide-prone loess slope in the Heifangtai terrace in Northwest China aiming at preliminarily demonstrating the potential of IRT as a complementary technique to the investigation of irrigation-induced loess landslides.Multitemporal thermographic surveys corresponding to various solar radiation intensities during the afternoon were carried out on the landslide-prone loess slope.Accordingly,the spatiotemporal distribution of the thermal responses within the observed slope surface was analyzed qualitatively and quantitatively.Meanwhile,field and laboratory investigations were also performed on the thermal properties of different landslide materials.The results indicate that loess,a landslide-prone deposit that usually has a relatively high water content,exhibits different thermal properties and anomalies,including a lower surface temperature and greater thermal inertia,compared to surrounding zones without landslides.The groundwater table and corresponding seepage line could also be obtained by determining the potential boundary between the thermal response distribution of landslide scarps and that of saturated deposits in the presence of landslides.The results of these investigations are expected to provide insight for future endeavors combining infrared thermography with other efficient survey methodologies(e.g.,InSAR,which can monitor the active displacement of a loess slope)to evaluate the activity of this kind of excessive irrigation-induced loess landslide.展开更多
An improved test rig providing both the heat and cold source was used to perform thermal response test (TRT), and the line source model was used for data analysis. The principle of determining the temperature differ...An improved test rig providing both the heat and cold source was used to perform thermal response test (TRT), and the line source model was used for data analysis. The principle of determining the temperature difference between the inlet and outlet of test well can keep the heating or cooling rate constant, along with a reduced size of test rig. Among the influencial factors of the line source model, the temperature difference was determined as the most important, which agreed with the test results. When the gravel was taken as the backfill material, the soil thermal conductivities of heating and cooling at the test place were 1.883 W/(m·K) and 1.754 W/(m·K), respectively, and the deviation of TRT between heating and cooling soil was 6.8%. In the case of fine sand, the thermal conductivities of heating and cooling were 1.541 W/(m·K) and 1.486 W/(m·K), respectively, and the corresponding deviation was 6%. It was also concluded that different velocities of water had less influence on TRT than the temperature difference.展开更多
The transient thermal response of a thick orthotropic hollow cylinder with finite length is studied by a high order shell theory. The radial and axial displacements are assumed to have quadratic and cubic variations t...The transient thermal response of a thick orthotropic hollow cylinder with finite length is studied by a high order shell theory. The radial and axial displacements are assumed to have quadratic and cubic variations through the thickness, respectively. It is important that the radial stress is approximated by a cubic expansion satisfying the boundary conditions at the inner and outer surfaces, and the corresponding strain should be least-squares compatible with the strain derived from the strain-displacement relation. The equations of motion are derived from the integration of the equilibrium equations of stresses, which are solved by precise integration method (PIM). Numerical results are.obtained, and compared with FE simulations and dynamic thermo-elasticity solutions, which indicates that the high order shell theory is capable of predicting the transient thermal response of an orthotropic (or isotropic) thick hollow cylinder efficiently, and for the detonation tube of actual pulse detonation engines (PDE) heated continuously, the thermal stresses will become too large to be neglected, which are not like those in the one time experiments with very short time.展开更多
For improving the evaluative accuracy of thermal protective clothing performance,the estimated methods of thermal response of skin and the human body were comprehensively described and analyzed.This study reviewed the...For improving the evaluative accuracy of thermal protective clothing performance,the estimated methods of thermal response of skin and the human body were comprehensively described and analyzed.This study reviewed the one-dimensional(1D)and multi-dimensional heat transfer models of the skin heat transfer model,including the corresponding heat and moisture transfer.Further,it investigated the influence of moisture transfer in vivo heat transfer.Moreover,the thermo-physiological model with active regulation was analyzed,especially in the local extremes,such as fingers and toes.Additionally,future research trends are discussed in estimating thermal protective performance.In developing the thermal protective model,it is essential to consider the geometric structure,local heat thermoregulation of extremities,and mass transfer inside the skin.展开更多
Thermal performance is the most important factor in the development of a borehole heat exchanger utilizing geothermal energy.The thermal performance is affected by many different design parameters and different operat...Thermal performance is the most important factor in the development of a borehole heat exchanger utilizing geothermal energy.The thermal performance is affected by many different design parameters and different operating conditions such as bleeding.This eventually determines the operation and cost efficiency of the borehole heat exchanger system.The thermal performance of an open standing column well (SCW) type geothermal heat exchanger was assessed under the influence of bleeding.For this,a thermal response test rig was established with line-source theory.The test rig also had a bleeding function by releasing fluid while taking additional underground water through the heat exchanger.The thermal response test was performed with an additional constant input heat source.Effective thermal conductivity and thermal resistance were obtained from the measured data.From the measurement,the effective thermal conductivity is found to have 1.47 times higher value when bleeding is applied.The thermal resistance also increases by 1.58 times compared to a non-bleeding case.This trend indicates enhanced heat transfer in the SCW type heat exchanger with a bleeding function.Bleeding,therefore,could be an effective method of achieving a high heat transfer rate in the SCW type heat exchanger with sufficient underground water supply.展开更多
The influence of temperature-dependent properties on thermal stresses response and optimum design of newly developed ceramic-metal functionally graded materials under cyclic thermal loaning and high temperature gradie...The influence of temperature-dependent properties on thermal stresses response and optimum design of newly developed ceramic-metal functionally graded materials under cyclic thermal loaning and high temperature gradient environment is studied. The thermal conductivity of material is considered to be dependent on the temperature. In this paper, the thermal stresses response of the material is calculated rising a nonlinear finite element method. Emphasis is placed on the influence of temperature-dependent properties on the thermal stresses response characteristics, the thermal stresses relaxation property and the thermal stresses history under the different graded compositional distributions and different heat flux magnitudes. Through tile analysis. it is suggested that the influence of temperature-dependent properties can not be neglected In the thermal stresses response analysis and the optimum design process of the material must be based on the temperature-dependent thermo-elastic-plastic theory.展开更多
This paper presents an experimental study on the evaluation of thermal response of a spiral coil type GHE (ground heat exchanger). This GHE was installed on partially saturated landfill ground that was composed of s...This paper presents an experimental study on the evaluation of thermal response of a spiral coil type GHE (ground heat exchanger). This GHE was installed on partially saturated landfill ground that was composed of silt and clay in the runway area of Incheon International airport. TRT (thermal response test) was conducted for more than 65 hours under continuous operation conditions. Ground thermal conductivity was derived based on line source theory, which has usually been found to be appropriate for line type GHEs such as U, W and 2U types. A reasonable method to derive ground thermal conductivity using the infinite line source theory for a spiral coil type GHE was introduced. Ground thermal conductivity from the TRT using spiral coil type GHE was compared with those from the analytical equivalent model of ground thermal conductivity.展开更多
This paper presents an extensive experimental investigation campaign concerning the thermal fire reaction of firebrands,as they accumulate on the exterior walls of dwellings,a common occurrence in southern Europe.Thre...This paper presents an extensive experimental investigation campaign concerning the thermal fire reaction of firebrands,as they accumulate on the exterior walls of dwellings,a common occurrence in southern Europe.Three types of wall core layers were studied:bricks,designed according to the Exterior Thermal Insulation Composite Systems(ETICS)methodology,cross-laminated timber(CLT)and normal wood(NW),both utilizing the sandwich methodology.The wall specimens are made of a combination of materials such as three types of mortar(Tria,Sika,and Weber),and various thermal insulation materials,such as agglomerates of composite cork,impermeable membranes,rigid rock wool,fireproof paint,and extruded polystyrene rigid foam(XPS),which are recommended for their good performance against fire and high temperatures.Firebrands are then deposited on the localized surfaces of the wall specimens,and the temperature is recorded in each layer.This study aims to precisely verify the firebrand reaction to fire,including the type of ignition,smoke and droplet production.The insulation capabilities of each insulation and wall system will also be analyzed.展开更多
Smart windows with tunable optical properties that respond to external environments are being developed to reduce energy consumption in buildings.In the present study,we introduce a new type of 3D printed hydrogel wit...Smart windows with tunable optical properties that respond to external environments are being developed to reduce energy consumption in buildings.In the present study,we introduce a new type of 3D printed hydrogel with amazing flexibility and stretchability(as large as 1500%),as well as tunable optical performance controlled by surrounding temperatures.The hydrogel on a PDMS substrate shows transparent-opaque transition with high solar modulation(ΔT_(sol))up to 79.332% around its lower critical solution temperature(L_(CST))while maintaining a high luminous transmittance(T_(lum))of 85.847% at 20℃.In addition,selective transparent-opaque transition above LCST can be achieved by patterned hydrogels which are precisely fabricated via a projection micro-stereolithography based 3D printing technique.Our hydrogel promises great potential applications for the next generation of soft smart windows.展开更多
A process-oriented methodology to conduct precise evaluation temporally and spatially on temperature suitability for potato growth was applied in China. Arable lands in China were gridded with 1 km×1 km geographi...A process-oriented methodology to conduct precise evaluation temporally and spatially on temperature suitability for potato growth was applied in China. Arable lands in China were gridded with 1 km×1 km geographic units, and potential potato phenology in each unit was automatically identified in terms of the potato planting initial temperature and effective accu- mulated temperature. A temperature thermal response coefficient model was used to compute a temperature suitability value for each day of potato phenology in each geographic unit. In addition, five temperature suitability ranking methods were applied to define suitable areas: (1) upper fourth quantile, (2) median, (3) expected value+1/4 standard deviation, (4) expected value+1/2 standard deviation, (5) expected value+1 standard deviation. A validation indicator was innovated to test the effectiveness of the five ranking methods. The results showed that from a strict degree point of view, the five methods sequence was as follows: 1=3〉4〉2〉5, with a and c determined as the two best ranking methods. For methods 1 and 3, the suitable potato growing area was 1 of 57.76× 10^4 km2. In addition, the suitable, areas were spatially coincident with the main potato producing counties. The study output technically supports the proposal from China's government that there is a large potential area to grow winter-ploughed potato in South China because the potential suitable area for growing potato is approximately 2×10^7 ha. In southeast Heilongjiang and east Jilin, where it is hilly and mountainous, there are still some potentially suitable areas for potato growing accounting for nearly 2.32×10^6 ha. The authors suggest to optimize the agricultural regionalization and layout in China and to adjust the cropping pattern structure.展开更多
基金The National Key Research and Development Program of China grant No.2022YFB3706704 received by Yuan Renthe National Natural and Science Foundation of China grant No.52308150 received by Xiang Xu.
文摘To improve the accuracy of thermal response estimation and overcome the limitations of the linear regression model and Artificial Neural Network(ANN)model,this study introduces a deep learning estimation method specifically based on the Long Short-Term Memory(LSTM)network,to predict temperature-induced girder end displacements of the Dasha Waterway Bridge,a suspension bridge in China.First,to enhance data quality and select target sensors,preprocessing based on the sigma rule and nearest neighbor interpolation is applied to the raw data.Furthermore,to eliminate the high-frequency components from the displacement signal,the wavelet transform is conducted.Subsequently,the linear regression model and ANN model are established,whose results do not meet the requirements and fail to address the time lag effect between temperature and displacements.The study proceeds to develop the LSTM network model and determine the optimal parameters through hyperparameter sensitivity analysis.Finally,the results of the LSTM network model are discussed by a comparative analysis against the linear regression model and ANN model,which indicates a higher accuracy in predicting temperatureinduced girder end displacements and the ability to mitigate the time-lag effect.To be more specific,in comparison between the linear regression model and LSTM network,the mean square error decreases from 6.5937 to 1.6808 and R^(2) increases from 0.683 to 0.930,which corresponds to a 74.51%decrease in MSE and a 36.14%improvement in R^(2).Compared to ANN,with an MSE of 4.6371 and an R^(2) of 0.807,LSTM shows a decrease in MSE of 63.75%and an increase in R^(2) of 13.23%,demonstrating a significant enhancement in predictive performance.
基金supported by the Joint Funds of National Natural Science Foundation of China(No.U22A20162)the Natural Science Foundation of Hebei Province of China(No.C2021202002)+1 种基金the National Natural Science Foundation of China(No.52271245),the Natural Science Foundation of Tianjin(No.21JCQNJC01280)the financial support from the Danish Council for Independent Research(9040-00219B),European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement ENSIGN(Project ID:101086226),L4DNANO(Project ID:101086227).
文摘Microneedle(MN)patches could be a promising treatment for diabetic foot ulcers that plague thousands of people worldwide.While reducing skin resistance or increasing driving force can accelerate the efficiency of transdermal drug delivery with conventional MN patches,it can create toxic chemical residues or require the help of additional devices.Herein,a thermo-responsive microneedles patch(TMN)with high biocompatibility without additional equipment is proposed.The TMN consisted of a bilayer microneedles composed of sodium alginate(SA)-g-poly(N-isopropylacrylamide)layer(SA-g-PNIPAM)loaded with sucrose octasulfate sodium salt(SOS)and hyaluronic acid layer and a polycaprolactone/chitosan nanofiber membrane loading with tetracycline hydrochloride(TH)and SOS.PNIPAM accelerates drug release by extruding the drug through a volumetric phase transition in response to temperature changes,and TH and SOS promote wound healing by inhibiting bacterial growth and promoting vascular regeneration and epithelial formation.The results showed that the drug release of TMN was significantly faster,with the drug release rate of more than 80% in the 10th h,and the antibacterial rate of TMN could reach 800%.In addition,TMN had good biocompatibility and good healing effects in vivo,which may be helpful for the design of multifunctional dressings in the future.
基金supported by Key Program of National Natural Science Foundation of China (No. 52032003)National Natural Science for Youth Foundation of China (No. 52102093)+2 种基金National Natural Science Foundation of China (No. 51872059),National Natural Science Foundation of China (No. 51772061)China Postdoctoral Science Foundation (No. 2021M690817)Heilongjiang Provincial Postdoctoral Science Foundation (No. LBH-Z20144)。
文摘Various thermal protection materials exhibit obviously different and complicated thermal response,oxidation and ablation behavior,which are very important for the appropriate design and selection.However,the relative researches are very few currently.In this work,the thermal response,oxidation and ablation behavior of representative thermal protection materials including ultra-high temperature ceramics,C/SiC,C/C, graphite and graphite-ceramic were investigated systematically in strong heat flux,high enthalpy and low-pressure environments.Thermal response of these materials was analyzed based on experimental results and thermal energy balance that accounts for all of the heat transfer processes transporting energy into and out of the surface.Many factors were playing important roles in the thermal response including thermal conductivity,volumetric heat capacity,catalytic efficiency,emissivity and oxidation characteristics of the materials.The importance of each factor not only depends on the material characteristics such as material composition and phase content but also environment parameters including heat flux,enthalpy,pressure and testing time.The comparisons and relationships of oxidation and ablation behaviors for these materials under extreme environments were also illustrated in detail.Furthermore,thermal response and ablation behaviors of pre-oxidized material or repeated tests were also performed to evaluate the effect of pre-treatment on the performance and reusability of thermal protection materials.This work offers guiding significance for the appropriate design and selection of thermal protection materials.
基金supported by the National Natural Science Foundation of China(31630052,31788103)Chinese Academy of Sciences(XDB27010104,QYZDYSSW-SMC023,159231KYSB20200008)+1 种基金the National Key Research and Development Program of China(2016YFD0100604)the Shanghai Science and Technology Development(18JC1415000)。
文摘Global warming threatens food security.Rice(Oryza sativa L.),a vital food crop,is vulnerable to heat stress,especially at the reproductive stage.Here we summarize putative mechanisms of high-temperature perception(via RNA secondary structure,the phyB gene,and phase separation)and response(membrane fluidity,heat shock factors,heat shock proteins,and ROS(reactive oxygen species)scavenging)in plants.We describe how rice responds to heat stress at different cell-component levels(membrane,endoplasmic reticulum,chloroplasts,and mitochondria)and functional levels(denatured protein elimination,ROS scavenging,stabilization of DNA and RNA,translation,and metabolic flux changes).We list temperature-sensitive genetic male sterility loci available for use in rice hybrid breeding and explain the regulatory mechanisms associated with some of them.Breeding thermotolerant rice species without yield penalties via natural alleles mining and transgenic editing should be the focus of future work.
基金Project(50838009) supported by the National Natural Science Foundation of China
文摘To explore the thermal responses under the non-thermal equilibrium cold environmental conditions,a laboratory study was conducted in climate chamber.The local skin temperatures and thermal sensation of 20 subjects were recorded at 10 min intervals for 90 min under air temperatures of 7.4,9.1,11 and 15 °C.The results show that both local skin temperatures and mean skin temperature decrease not only with the drop of ambient air temperature but also with the exposure time.Local thermal sensation and overall the thermal sensation have the similar temperature-varying and time-varying characteristics.Predicted mean vote(PMV) model cannot correctly predict the thermal sensation under non-thermal equilibrium cold environment.The correlation between local thermal sensation and local skin temperatures shows that thermal sensation is closely related to skin temperature.Skin temperature is an effective indicator of thermal sensation.A linear relationship model between overall thermal sensation and mean skin temperature,considering both ambient temperature and exposure time,was established in the non-thermal equilibrium cold environment,which makes the evaluation of thermal sensation more objective.
基金Project(xjj20100078) supported by the Fundamental Research Funds for the Central Universities in China
文摘Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the soil thermal conductivity had been known in the simulation of thermal response test.The thermal response curve was firstly obtained through numerical calculation.Then,the accuracy of the numerical model was verified with measured data obtained through a thermal response test.Based on the numerical and experimental thermal response curves,the thermal conductivity of the soil was calculated by different parameter identification methods.The calculated results were compared with the assumed value and then the accuracy of these methods was evaluated.Furthermore,the effects of test time,variable data quality,borehole radius,initial ground temperature,and heat injection rate were analyzed.The results show that the method based on cylinder-source model has a low precision and the identified thermal conductivity decreases with an increase in borehole radius.For parameter estimation,the measuring accuracy of the initial temperature of the deep ground soil has greater effect on identified thermal conductivity.
文摘This paper describes a mathematical model developed to study the behavior of liquefied petroleum gas (LPG) tanks when subjected to jet fire. The model consists of a number of field and zone sub-models which are used to simulate the various physical phenomena taking place during the tank engulfment period. The model can be used to predict the pressure and temperature of the LPG in the tank, the temperature of the wall of tank, and the time of tank explosion. The comparisons between the model predicted results and the test data show good agreement. The results show that the jet fire partially impinging on tank wall led to higher wall temperature and the time to failure was shorter than that in engulfing pool fire. And the exposure of the upper wall in the vapor zone to the fire is more dangerous than that of the LPG contacted wall.
基金financially supported by the National Natural Science Foundation of China (Nos. 20974112 and 51225306)
文摘We investigated the ring opening polymerization (ROP) of di- and tri-ethylene glycol monomethyl ether functionalized L-glutamate N-carboxyanhydrides (NCAs) using hexamethyldisilazane (HMDS) as primary initiator and 1,5,7-triazabicyclo-[4.4.0]dec-5-ene (TBD) as co-initiator. The binary initiator system afforded a living ROP for these pegylated NCAs, and a series of homopolypeptides with controlled molecular weight (MW) and low polydispersity were obtained. We then systematically studied the helical content and clouding point (CP) dependence on polypeptide MW using circular dichroism (CD) spectroscopy and turbidity measurements, respectively. We found that the helical content of both homopolypeptides increased with MW, but the triethylene glycol functionalized poly-L-glutamate (poly-L-EG3Glu) intended to form more stable or-helical structure than diethylene glycol functionalized counterpart (poly-L-EG2Glu) at similar MW. Accordingly, the CP of poly-L-EG2Glu with known end group has strong dependence on its helical content, which is essentially determined by MW. Our results suggested that the thermal responsive properties of these unique pegylated poly- L-glutamates not only rely on their chemical structure but also on their secondary structures, wh^ch is different from conventional thermal responsive polymers.
基金Project financially supported by the Second Stage of Brain Korea 21 Projects and Changwon National University,Korea
文摘Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configuration type and borehole size of geothermal heat exchanger. These eventually determined the operation and cost efficiency of the geothermal heat exchanger system. The main purpose of this work was to assess the thermal performance of geother^nal heat exchanger with variation of borehole sizes and numbers of U-tubes inside a borehole. For this, a thermal response test rig was established with line-source theory. The thermal response test was performed with in-line variable input heat source. Effective thermal conductivity and thermal resistance were obtained from the measured data. From the measurement, the effective thermal conductivity is found to have similar values for two- pair type (4 U-tubes) and three-pair type (6 U-tubes) borehole heat exchanger systems indicating similar heat transfer ability. Meanwhile, the thermal resistance shows lower value for the three-pair type compared to the two-pair type. Measured data based resistance have lower value compared to computed result from design programs. Overall comparison finds better thermal performance for the three-pair type, however, fluctuating temperature variation indicates complex flow behavior inside the borehole and requires further study on flow characteristics.
基金financially supported by the National Natural Science Foundation of China(Nos.51801141 and 51605356)the 111 Project(No.B17034)+1 种基金the Innovative Research Team Development Program of Ministry of Education of China(No.IRT17R83)the Fundamental Research Funds for the Central Universities(No.WUT:2017IVB035)。
文摘Different types of polymer films were used in the combined in-mold decoration and microcellular injection molding(IMD/MIM)process.The multiphase fluid-solid coupled heat transfer model was established to study the thermal response at the melt filling stage in the IMD/MIM process.It was found that the temperature distributed asymmetrically along the thickness direction due to the changed heat transfer coefficient of the melt on the film side.When polyethylene terephthalate(PET)films were applied,the temperature of the melt-film interface increased faster and to be higher at the end of melt filling stage in comparison with the application of polycarbonate(PC)and thermoplastic polyurethane(TPU)films.And the effects of film types on the cellular structure,forming defects and mechanical properties of IMD/MIM parts were also studied experimentally.The results showed that the film types had no obvious effect on the cells size in the transition layer and the mechanical properties of the parts.Under certain film thickness,the offset distance of core layer was the largest with PET film used,while the offset distance was the smallest with TPU film used.And similar results were found for the warpage of the parts.However,an exactly opposite change occurred for the thickness of film-side transition layer and the bubble marks on the surface of the parts.
基金This work was supported by the National Natural Science Foundation of China(Grant No.41672348,41931286,52008246).
文摘A combined survey including infrared thermography(IRT)and field-laboratory tests were conducted to analyze the thermal responses and thermal properties of loess on a landslide-prone loess slope in the Heifangtai terrace in Northwest China aiming at preliminarily demonstrating the potential of IRT as a complementary technique to the investigation of irrigation-induced loess landslides.Multitemporal thermographic surveys corresponding to various solar radiation intensities during the afternoon were carried out on the landslide-prone loess slope.Accordingly,the spatiotemporal distribution of the thermal responses within the observed slope surface was analyzed qualitatively and quantitatively.Meanwhile,field and laboratory investigations were also performed on the thermal properties of different landslide materials.The results indicate that loess,a landslide-prone deposit that usually has a relatively high water content,exhibits different thermal properties and anomalies,including a lower surface temperature and greater thermal inertia,compared to surrounding zones without landslides.The groundwater table and corresponding seepage line could also be obtained by determining the potential boundary between the thermal response distribution of landslide scarps and that of saturated deposits in the presence of landslides.The results of these investigations are expected to provide insight for future endeavors combining infrared thermography with other efficient survey methodologies(e.g.,InSAR,which can monitor the active displacement of a loess slope)to evaluate the activity of this kind of excessive irrigation-induced loess landslide.
基金Supported by the National Natural Science Foundation of China(No.41272263)
文摘An improved test rig providing both the heat and cold source was used to perform thermal response test (TRT), and the line source model was used for data analysis. The principle of determining the temperature difference between the inlet and outlet of test well can keep the heating or cooling rate constant, along with a reduced size of test rig. Among the influencial factors of the line source model, the temperature difference was determined as the most important, which agreed with the test results. When the gravel was taken as the backfill material, the soil thermal conductivities of heating and cooling at the test place were 1.883 W/(m·K) and 1.754 W/(m·K), respectively, and the deviation of TRT between heating and cooling soil was 6.8%. In the case of fine sand, the thermal conductivities of heating and cooling were 1.541 W/(m·K) and 1.486 W/(m·K), respectively, and the corresponding deviation was 6%. It was also concluded that different velocities of water had less influence on TRT than the temperature difference.
基金supported by the National Basic Research Program of China (No.2006CB 601202)NPU Foundation for Fundamental Research, the Doctorate Foundation of Northwestern Polytechnical University (No.CX200810)the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment (No.GZ0802)
文摘The transient thermal response of a thick orthotropic hollow cylinder with finite length is studied by a high order shell theory. The radial and axial displacements are assumed to have quadratic and cubic variations through the thickness, respectively. It is important that the radial stress is approximated by a cubic expansion satisfying the boundary conditions at the inner and outer surfaces, and the corresponding strain should be least-squares compatible with the strain derived from the strain-displacement relation. The equations of motion are derived from the integration of the equilibrium equations of stresses, which are solved by precise integration method (PIM). Numerical results are.obtained, and compared with FE simulations and dynamic thermo-elasticity solutions, which indicates that the high order shell theory is capable of predicting the transient thermal response of an orthotropic (or isotropic) thick hollow cylinder efficiently, and for the detonation tube of actual pulse detonation engines (PDE) heated continuously, the thermal stresses will become too large to be neglected, which are not like those in the one time experiments with very short time.
基金Fundamental Research Funds for the Central Universities,China(No.2232022G-08)International Cooperation Fund of Science and Technology Commission of Shanghai M unicipality,China(No.21130750100)。
文摘For improving the evaluative accuracy of thermal protective clothing performance,the estimated methods of thermal response of skin and the human body were comprehensively described and analyzed.This study reviewed the one-dimensional(1D)and multi-dimensional heat transfer models of the skin heat transfer model,including the corresponding heat and moisture transfer.Further,it investigated the influence of moisture transfer in vivo heat transfer.Moreover,the thermo-physiological model with active regulation was analyzed,especially in the local extremes,such as fingers and toes.Additionally,future research trends are discussed in estimating thermal protective performance.In developing the thermal protective model,it is essential to consider the geometric structure,local heat thermoregulation of extremities,and mass transfer inside the skin.
基金Project supported by the Second Stage of Brain Korea 21 Projects and Changwon National University in2011-2012
文摘Thermal performance is the most important factor in the development of a borehole heat exchanger utilizing geothermal energy.The thermal performance is affected by many different design parameters and different operating conditions such as bleeding.This eventually determines the operation and cost efficiency of the borehole heat exchanger system.The thermal performance of an open standing column well (SCW) type geothermal heat exchanger was assessed under the influence of bleeding.For this,a thermal response test rig was established with line-source theory.The test rig also had a bleeding function by releasing fluid while taking additional underground water through the heat exchanger.The thermal response test was performed with an additional constant input heat source.Effective thermal conductivity and thermal resistance were obtained from the measured data.From the measurement,the effective thermal conductivity is found to have 1.47 times higher value when bleeding is applied.The thermal resistance also increases by 1.58 times compared to a non-bleeding case.This trend indicates enhanced heat transfer in the SCW type heat exchanger with a bleeding function.Bleeding,therefore,could be an effective method of achieving a high heat transfer rate in the SCW type heat exchanger with sufficient underground water supply.
基金This work was supported by the National Science Foundation of China
文摘The influence of temperature-dependent properties on thermal stresses response and optimum design of newly developed ceramic-metal functionally graded materials under cyclic thermal loaning and high temperature gradient environment is studied. The thermal conductivity of material is considered to be dependent on the temperature. In this paper, the thermal stresses response of the material is calculated rising a nonlinear finite element method. Emphasis is placed on the influence of temperature-dependent properties on the thermal stresses response characteristics, the thermal stresses relaxation property and the thermal stresses history under the different graded compositional distributions and different heat flux magnitudes. Through tile analysis. it is suggested that the influence of temperature-dependent properties can not be neglected In the thermal stresses response analysis and the optimum design process of the material must be based on the temperature-dependent thermo-elastic-plastic theory.
文摘This paper presents an experimental study on the evaluation of thermal response of a spiral coil type GHE (ground heat exchanger). This GHE was installed on partially saturated landfill ground that was composed of silt and clay in the runway area of Incheon International airport. TRT (thermal response test) was conducted for more than 65 hours under continuous operation conditions. Ground thermal conductivity was derived based on line source theory, which has usually been found to be appropriate for line type GHEs such as U, W and 2U types. A reasonable method to derive ground thermal conductivity using the infinite line source theory for a spiral coil type GHE was introduced. Ground thermal conductivity from the TRT using spiral coil type GHE was compared with those from the analytical equivalent model of ground thermal conductivity.
基金the Foundation for Science and Technology(FCT),Portugal,for the Project“New Fireproof Dwellings for Wildfire PTDC/ECI-CON/2240/2020″(DOI:10.54499/PTDC/ECI-CON/2240/2020)the Foundation for Science and Technology's support through funding UIDB/04625/2020 from the research unit CERIS(DOI:10.54499/UIDB/04625/2020)the financing of the doctoral grants SFRH/BD/03935/2023(DOI:10.54499/2023.03935.BD)and SFRH/BD/04011/2023(DOI:10.54499/2023.04011.BD).
文摘This paper presents an extensive experimental investigation campaign concerning the thermal fire reaction of firebrands,as they accumulate on the exterior walls of dwellings,a common occurrence in southern Europe.Three types of wall core layers were studied:bricks,designed according to the Exterior Thermal Insulation Composite Systems(ETICS)methodology,cross-laminated timber(CLT)and normal wood(NW),both utilizing the sandwich methodology.The wall specimens are made of a combination of materials such as three types of mortar(Tria,Sika,and Weber),and various thermal insulation materials,such as agglomerates of composite cork,impermeable membranes,rigid rock wool,fireproof paint,and extruded polystyrene rigid foam(XPS),which are recommended for their good performance against fire and high temperatures.Firebrands are then deposited on the localized surfaces of the wall specimens,and the temperature is recorded in each layer.This study aims to precisely verify the firebrand reaction to fire,including the type of ignition,smoke and droplet production.The insulation capabilities of each insulation and wall system will also be analyzed.
基金supported by the National Natural Science Foundation of China (52006056)Key-Area Research and Development Program of Guangdong Province (2020B090923003)+1 种基金Civil Aerospace Technology Research Project (B0108)Natural Science Foundation of Hunan through Grant No. 2020JJ3012
文摘Smart windows with tunable optical properties that respond to external environments are being developed to reduce energy consumption in buildings.In the present study,we introduce a new type of 3D printed hydrogel with amazing flexibility and stretchability(as large as 1500%),as well as tunable optical performance controlled by surrounding temperatures.The hydrogel on a PDMS substrate shows transparent-opaque transition with high solar modulation(ΔT_(sol))up to 79.332% around its lower critical solution temperature(L_(CST))while maintaining a high luminous transmittance(T_(lum))of 85.847% at 20℃.In addition,selective transparent-opaque transition above LCST can be achieved by patterned hydrogels which are precisely fabricated via a projection micro-stereolithography based 3D printing technique.Our hydrogel promises great potential applications for the next generation of soft smart windows.
基金funded by the Innovation Project Special Funding of the Chinese Academy of Agricultural Sciences(CAAS-IARRP,2017-727-1)the National Natural Science Foundation of China(41001049)
文摘A process-oriented methodology to conduct precise evaluation temporally and spatially on temperature suitability for potato growth was applied in China. Arable lands in China were gridded with 1 km×1 km geographic units, and potential potato phenology in each unit was automatically identified in terms of the potato planting initial temperature and effective accu- mulated temperature. A temperature thermal response coefficient model was used to compute a temperature suitability value for each day of potato phenology in each geographic unit. In addition, five temperature suitability ranking methods were applied to define suitable areas: (1) upper fourth quantile, (2) median, (3) expected value+1/4 standard deviation, (4) expected value+1/2 standard deviation, (5) expected value+1 standard deviation. A validation indicator was innovated to test the effectiveness of the five ranking methods. The results showed that from a strict degree point of view, the five methods sequence was as follows: 1=3〉4〉2〉5, with a and c determined as the two best ranking methods. For methods 1 and 3, the suitable potato growing area was 1 of 57.76× 10^4 km2. In addition, the suitable, areas were spatially coincident with the main potato producing counties. The study output technically supports the proposal from China's government that there is a large potential area to grow winter-ploughed potato in South China because the potential suitable area for growing potato is approximately 2×10^7 ha. In southeast Heilongjiang and east Jilin, where it is hilly and mountainous, there are still some potentially suitable areas for potato growing accounting for nearly 2.32×10^6 ha. The authors suggest to optimize the agricultural regionalization and layout in China and to adjust the cropping pattern structure.