期刊文献+
共找到63篇文章
< 1 2 4 >
每页显示 20 50 100
Investigation of thermal protection system by forward-facing cavity and opposing jet combinatorial configuration 被引量:12
1
作者 Lu Haibo Liu Weiqiang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第2期287-293,共7页
This paper focuses on the usage of the forward-facing cavity and opposing jet combinatorial configuration as the thermal protection system (TPS) for hypersonic vehicles. A hemispherecone nose-tip with the combinator... This paper focuses on the usage of the forward-facing cavity and opposing jet combinatorial configuration as the thermal protection system (TPS) for hypersonic vehicles. A hemispherecone nose-tip with the combinatorial configuration is investigated numerically in hypersonic free stream. Some numerical results are validated by experiments. The flow field parameters, aerodynamic force and surface heat flux distribution are obtained. The influence of the opposing jet stagnation pressure on cooling efficiency of the combinatorial TPS is discussed. The detailed numerical results show that the aerodynamic heating is reduced remarkably by the combinatorial system. The recirculation region plays a pivotal role for the reduction of heat flux. The larger the stagnation pressure of opposing jet is, the more the heating reduction is. This kind of combinatorial system is suitable to be the TPS for the high-speed vehicles which need long-range and long time flight. 展开更多
关键词 Aerodynamic heating Forward-facing cavity Hypersonic flow Opposing jet thermal protection system
原文传递
Multi-scale strength analysis of bolted connections used in integral thermal protection system 被引量:12
2
作者 Heng LIANG Yuqing WANG +1 位作者 Mingbo TONG Junhua ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第8期1728-1740,共13页
Efficient and accurate strength analysis of bolted connections is essential in analyzing the integral thermal protection system(ITPS) of hypersonic vehicles, since the system bears severe loads and structural failur... Efficient and accurate strength analysis of bolted connections is essential in analyzing the integral thermal protection system(ITPS) of hypersonic vehicles, since the system bears severe loads and structural failures usually occur at the connections. Investigations of composite mechanical properties used in ITPS are still in progress as the architecture of the composites is complex. A new method is proposed in this paper for strength analysis of bolted connections by investigating the elastic behavior and failure strength of three-dimensional C/C orthogonal composites used in ITPS. In this method a multi-scale finite element method incorporating the global–local method is established to ensure high efficiency in macro-scale and precision in meso-scale in analysis.Simulation results reveal that predictions of material properties show reasonable accuracy compared with test results. And the multi-scale method can analyze the strength of connections efficiently and accurately. 展开更多
关键词 Bolted connection COMPOSITE Multi-scale method Strength analysis thermal protection system
原文传递
Numerical investigation on properties of attack angle for an opposing jet thermal protection system 被引量:10
3
作者 陆海波 刘伟强 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第8期289-294,共6页
The three-dimensional Navier Stokes equation and the k-ε viscous model are used to simulate the attack angle characteristics of a hemisphere nose-tip with an opposing jet thermal protection system in supersonic flow ... The three-dimensional Navier Stokes equation and the k-ε viscous model are used to simulate the attack angle characteristics of a hemisphere nose-tip with an opposing jet thermal protection system in supersonic flow conditions. The numerical method is validated by the relevant experiment. The flow field parameters, aerodynamic forces, and surface heat flux distributions for attack angles of 0°, 2°, 5°, 7°, and 10° are obtained. The detailed numerical results show that the cruise attack angle has a great influence on the flow field parameters, aerodynamic force, and surface heat flux distribution of the supersonic vehicle nose-tip with an opposing jet thermal protection system. When the attack angle reaches 10°, the heat flux on the windward generatrix is close to the maximal heat flux on the wall surface of the nose-tip without thermal protection system, thus the thermal protection has failed. 展开更多
关键词 properties of attack angle opposing jet thermal protection system supersonic vehicle computer simulation
原文传递
Innovative Design and Additive Manufacturing of Regenerative Cooling Thermal Protection System Based on the Triply Periodic Minimal Surface Porous Structure 被引量:4
4
作者 Xinglong Wang Cheng Wang +3 位作者 Xin Zhou Mingkang Zhang Peiyu Zhang Lei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第5期495-508,共14页
The new regenerative cooling thermal protection system exhibits the multifunctional characteristics of load-carrying and heat exchange cooling,which are fundamental for the lightweight design and thermal protection of... The new regenerative cooling thermal protection system exhibits the multifunctional characteristics of load-carrying and heat exchange cooling,which are fundamental for the lightweight design and thermal protection of hypersonic vehicles.Triply periodic minimal surface(TPMS)is especially suitable for the structural design of the internal cavity of regenerative cooling structures owing to its excellent structural characteristics.In this study,test pieces were manufactured using Ti6Al4V lightweight material.We designed three types of porous test pieces,and the interior was filled with a TPMS lattice(Gyroid,Primitive,I-WP)with a porosity of 30%.All porous test pieces were manufactured via selective laser melting technology.A combination of experiments and finite element simulations were performed to study the selection of the internal cavity structure of the regenerative cooling thermal protection system.Hence,the relationship between the geometry and mechanical properties of a unit cell is established,and the deformation mechanism of the porous unit cell is clarified.Among the three types of porous test pieces,the weight of the test piece filled with the Gyroid unit cell was reduced by 8.21%,the average tensile strength was reduced by 17.7%compared to the solid test piece,while the average tensile strength of the Primitive and I-WP porous test pieces were decreased by 30.5%and 33.3%,respectively.Compared with the other two types of unit cells,Gyroid exhibited better mechanical conductivity characteristics.Its deformation process was characterised by stretching,shearing,and twisting,while the Primitive and I-WP unit cells underwent tensile deformation and tensile and shear deformation,respectively.The finite element predictions in the study agree well with the experimental results.The results can provide a basis for the design of regenerative cooling thermal protection system. 展开更多
关键词 Triply periodic minimal surface(TPMS) regenerative cooling thermal protection system selective laser melting mechanical properties fracture analysis
在线阅读 下载PDF
Analytic estimation and numerical modeling of actively cooled thermal protection systems with nickel alloys 被引量:5
5
作者 Wang Xinzhi He Yurong +2 位作者 Zheng Yan Ma Junjun H. Inaki Schlaberg 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1401-1412,共12页
Actively cooled thermal protection system has great influence on the engine of a hypersonic vehicle, and it is significant to obtain the thermal and stress distribution in the system. So an analytic estimation and num... Actively cooled thermal protection system has great influence on the engine of a hypersonic vehicle, and it is significant to obtain the thermal and stress distribution in the system. So an analytic estimation and numerical modeling are performed in this paper to investigate the behavior of an actively cooled thermal protection system. The analytic estimation is based on the electric analogy method and finite element analysis(FEA) is applied to the numerical simulation. Temperature and stress distributions are obtained for the actively cooled channel walls with three kinds of nickel alloys with or with no thermal barrier coating(TBC). The temperature of the channel wall with coating has no obvious difference from the one with no coating, but the stress with coating on the channel wall is much smaller than that with no coating. Inconel X-750 has the best characteristics among the three Ni-based materials due to its higher thermal conductivity, lower elasticity module and greater allowable stress. Analytic estimation and numerical modeling results are compared with each other and a reasonable agreement is obtained. 展开更多
关键词 Active cooling Electric analogy method Nickel alloys thermal barrier coatings thermal protection systems
原文传递
Porous Ultra-high Temperature Ceramics for Ultra-high Temperature Thermal Protection System
6
作者 LI Fei LIU Jixuan ZHANG Guojun 《China's Refractories》 CAS 2020年第4期23-28,共6页
Ultra-high temperature ceramics(UHTCs)are a family of borides,carbides and nitrides of transition elements such as hafnium,zirconium,tantalum and niobium.They exhibit the highest known melting points,good mechanical s... Ultra-high temperature ceramics(UHTCs)are a family of borides,carbides and nitrides of transition elements such as hafnium,zirconium,tantalum and niobium.They exhibit the highest known melting points,good mechanical strength,good chemical and thermal stability under certain conditions.In last decade,researchers dedicated to characterize porous UHTCs aiming to develop novel thermal insulating materials that could withstand temperatures over 2000℃.In this article,the preparation and characteristics of porous UHTCs were reviewed.Dry processing,colloidal processing and solution processing routes have been used to prepare porous UHTCs with porosities ranging from 5%to 97%and pore sizes ranging from hundreds of nanometers to hundreds of micrometers.The obtained porous UHTCs are chemically and dimensionally stable at temperatures up to 2000℃ during static state high-temperature thermal aging. 展开更多
关键词 ultra-high temperature ceramics porous ceramics thermal protection system extreme environments
在线阅读 下载PDF
Novel insights into flow mechanics in ablative thermal protection systems
7
作者 Hu REN 《Chinese Journal of Aeronautics》 2025年第10期288-289,共2页
1.Introduction to ablative TPS The Mars 2020 mission underscored the critical role of ablative Thermal Protection Systems(TPS)during atmospheric entry,where spacecraft encounter extreme aerodynamic heating.Established... 1.Introduction to ablative TPS The Mars 2020 mission underscored the critical role of ablative Thermal Protection Systems(TPS)during atmospheric entry,where spacecraft encounter extreme aerodynamic heating.Established in the mid-20th century,blunt body theories led to the creation of ablative heat shields that effectively manage thermal loads through thermo-chemo-mechanical decomposition.This paper revisits the development and application of ablative TPS materials,which are single-mission solutions capable of withstanding entry velocities surpassing 10 km/s. 展开更多
关键词 ablative thermal protection systems tps extreme aerodynamic heatingestablished body theories ablative tps Mars mission manage thermal loads atmospheric entrywhere ablative thermal protection systems
原文传递
Enhancing Thermal Protection in Lithium Batteries with Power Bank‑Inspired Multi‑Network Aerogel and Thermally Induced Flexible Composite Phase Change Material
8
作者 Zaichao Li Feng Cao +2 位作者 Yuang Zhang Shufen Zhang Bingtao Tang 《Nano-Micro Letters》 2025年第7期285-304,共20页
Thermal runaway(TR)is considered a significant safety hazard for lithium batteries,and thermal protection materials are crucial in mitigating this risk.However,current thermal protection materials generally suffer fro... Thermal runaway(TR)is considered a significant safety hazard for lithium batteries,and thermal protection materials are crucial in mitigating this risk.However,current thermal protection materials generally suffer from poor mechanical properties,flammability,leakage,and rigid crystallization,and they struggle to continuously block excess heat transfer and propagation once thermal saturation occurs.This study proposes a novel type of thermal protection material:an aerogel coupled composite phase change material(CPCM).The composite material consists of gelatin/sodium alginate(Ge/SA)composite biomass aerogel as an insulating component and a thermally induced flexible CPCM made from thermoplastic polyester elastomer as a heat-absorbing component.Inspired by power bank,we coupled the aerogel with CPCM through the binder,so that CPCM can continue to‘charge and store energy’for the aerogel,effectively absorbing heat,delaying the heat saturation phenomenon,and maximizing the duration of thermal insulation.The results demonstrate that the Ge/SA aerogel exhibits excellent thermal insulation(with a temperature difference of approximately 120℃ across a 1 cm thickness)and flame retardancy(achieving a V-0 flame retardant rating).The CPCM exhibits high heat storage density(811.9 J g^(−1)),good thermally induced flexibility(bendable above 40℃),and thermal stability.Furthermore,the Ge/SA-CPCM coupled composite material shows even more outstanding thermal insulation performance,with the top surface temperature remaining at 89℃ after 100 min of exposure to a high temperature of 230℃.This study provides a new direction for the development of TR protection materials for lithium batteries. 展开更多
关键词 Lithium-ion battery thermal runaway thermal protection material Multinetwork aerogel Flexible composite phase change material
在线阅读 下载PDF
Thermal Control Design for Enhancing Tolerance of Large-Aperture Reflective Camera“Sun Transit”on Geostationary Earth Orbit
9
作者 LIAN Xinhao XIA Chenhui GAO Chao 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第4期452-463,共12页
The large-aperture reflective cameras on the geostationary orbit are susceptible to significant temperature fluctuations due to the“Sun transit”effect.To address the shortcomings of existing thermal control measures... The large-aperture reflective cameras on the geostationary orbit are susceptible to significant temperature fluctuations due to the“Sun transit”effect.To address the shortcomings of existing thermal control measures using camera sunshades to suppress the“Sun transit”and the issue of excessively large solar avoidance angles determined solely by geometric relationships,a thermal control design method is proposed that involves adding multi-layer thermal protection at the secondary mirror position of the camera.The goal is to optimize the avoidance angle and enhance the camera’s tolerance to“Sun transit”.A heat balance and motion relationship between the avoidance angle and duration is established.Then,the minimum solar avoidance angle after adopting the multi-layer thermal protection design is calculated.This angle is compared with the one determined by geometric relationships,leading to the conclusion that this method can effectively enhance the camera’s tolerance to“Sun transit”.A heat dissipation scheme is proposed that involves a coupled north-south heat spreader design with low-temperature compensation for the internal heat source.The calculation results of the two avoidance angles are applied to the calculation of the heat dissipation area and low-temperature compensation power,achieving a closed-loop heat dissipation scheme.Puls,the superiority of the multi-layer thermal protection design method is demonstrated from the perspectives of heat dissipation area and low-temperature compensation power requirements.A comparative analysis of simulation analysis,thermal balance tests,and in-orbit temperature data further validates the effectiveness of this method. 展开更多
关键词 geostationary earth orbit Sun transit solar avoidance thermal control design thermal protection
在线阅读 下载PDF
A new surface catalytic model for silica-based thermal protection material for hypersonic vehicles 被引量:6
10
作者 Li Kai Liu Jun Liu Weiqiang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第5期1355-1361,共7页
Silica-based materials are widely employed in the thermal protection system for hypersonic vehicles, and the investigation of their catalytic characteristics is crucially important for accurate aerothermal heating pre... Silica-based materials are widely employed in the thermal protection system for hypersonic vehicles, and the investigation of their catalytic characteristics is crucially important for accurate aerothermal heating prediction. By analyzing the disadvantages of Norman's high and low temperature models, this paper combines the two models and proposes an eight-reaction combined surface catalytic model to describe the catalysis between oxygen and silica surface. Given proper evaluation of the parameters according to many references, the recombination coefficient obtained shows good agreement with experimental data. The catalytic mechanisms between oxygen and silica surface are then analyzed. Results show that with the increase of the wall temperature, the dominant reaction contributing to catalytic coefficient varies from Langmuir Hinshelwood (LH) recombination (Tw 〈 620 K) to Eley Rideal (ER) replacement (620 K 〈 Tw 〈 1350 K), and then to 02 desorption (Tw 〉 1350 K). The surface coverage of chemisorption areas varies evidently with the dominant reactions in the high temperature (HT) range, while the surface coverage of physisorption areas varies within quite low temperature (LT) range (Tw 〈 250 K). Recommended evaluation of partial parameters is also given. 展开更多
关键词 Aerothermal heating Catalytic efficiency Hypersonic vehicle Silica-based material Surface catalytic thermal protection system
原文传递
Comparison of Thermo-Structural Responses for Integrated Thermal Protection Panels with Different Corrugated Core Configurations 被引量:1
11
作者 Shu-Yuan Zhao Jian-Jun Li Xiao-Dong He 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第6期21-28,共8页
To explore new light-weight integrated thermal protection system panel configuration and gain good insight into the responses mechanism,heat transfer and structural field analysis for one single-layer and four double-... To explore new light-weight integrated thermal protection system panel configuration and gain good insight into the responses mechanism,heat transfer and structural field analysis for one single-layer and four double-layer corrugated core panels were performed. The obtained the temperature,buckling,stress and deflection responses were compared,and the deflection and stress distributions as well as thermal buckling mode at the time were discussed for the considered configurations when the temperature difference between the top and bottom face sheet was maximum. The results demonstrated that the non-orthogonal and hat-stiffened double-layer structures provide superior performance to resist thermal buckling deformation in comparison with other configurations. The useful information is provided for the forthcoming optimization in which thermal buckling is considered as critical design driver. 展开更多
关键词 Integrated thermal protection system corrugated heat transfer thermal bucklingCLC number:V214.4 Document code:AArticle ID:1005-9113(2013)06-0021-08
在线阅读 下载PDF
Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles 被引量:71
12
作者 Yinhai ZHU Wei PENG +1 位作者 Ruina XU Peixue JIANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第10期1929-1953,共25页
Hypersonic vehicles with turbojet, ramjet, and scramjet engines are expected to be widely applied to future transportation systems. Due to high-speed flight in the atmosphere, body outer surfaces suffer strong aerodyn... Hypersonic vehicles with turbojet, ramjet, and scramjet engines are expected to be widely applied to future transportation systems. Due to high-speed flight in the atmosphere, body outer surfaces suffer strong aerodynamic heating, and on the other hand, combustion chamber inter walls are under extremely high temperature and heat flux. Therefore, more efficient and stable active cooling technologies are required in hypersonic vehicles, such as regenerative cooling, film cooling, and transpiration cooling, as well as their combinations. This paper presents a comprehensive literature review on three active cooling methods, i.e., regenerative cooling, film cooling, and transpiration cooling, and deeply analyzes the mechanism of each cooling method, including the fluids flow, heat transfer, and thermal cracking characteristics of different hydrocarbon fuels in regenerative cooling,the heat transfer and flow mechanism of film cooling under supersonic mainstream conditions, and the heat transfer and flow mechanism of transpiration cooling. 展开更多
关键词 Film cooling Hypersonic vehicle Regenerative cooling thermal protection Transpiration cooling
原文传递
Experimental demonstration of a new concept of drag reduction and thermal protection for hypersonic vehicles 被引量:18
13
作者 Zonglin Jiang Yunfeng Liu Guilai Han Wei Zhao Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第3期417-419,共3页
A new idea of drag reduction and thermal protection for hypersonic vehicles is proposed based on the combination of a physical spike and lateral jets for shockreconstruction. The spike recasts the bow shock in front o... A new idea of drag reduction and thermal protection for hypersonic vehicles is proposed based on the combination of a physical spike and lateral jets for shockreconstruction. The spike recasts the bow shock in front of a blunt body into a conical shock, and the lateral jets work to protect the spike tip from overheating and to push the conical shock away from the blunt body when a pitching angle exists during flight. Experiments are conducted in a hypersonic wind tunnel at a nominal Mach number of 6. It is demonstrated that the shock/shock interaction on the blunt body is avoided due to injection and the peak pressure at the reattachment point is reduced by 70% under a 4° attack angle. 展开更多
关键词 Hypersonic vehicle Shock-reconstruction. Drag reduction thermal protection Spike and lateral jets
在线阅读 下载PDF
Application of high temperature heat pipe in hypersonic vehicles thermal protection 被引量:10
14
作者 白穜 张红 许辉 《Journal of Central South University》 SCIE EI CAS 2011年第4期1278-1284,共7页
In order to develop further the application of high temperature heat pipe in hypersonic vehicles thermal protection, the principles and characteristics of high temperature heat pipe used in hypersonic vehicles thermal... In order to develop further the application of high temperature heat pipe in hypersonic vehicles thermal protection, the principles and characteristics of high temperature heat pipe used in hypersonic vehicles thermal protection were introduced. The methods of numerical simulation, theory analysis and experiment research were utilized to analyze the frozen start-up and steady state characteristic of the heat pipe as well as the machining improvement for fabricating irregularly shaped heat pipe which is suitable for leading edge of hypersonic vehicles. The results indicate that the frozen start-up time of heat pipe is long (10 min) and there exists large temperature difference along the heat pipe (47 ℃/cm), but the heat pipe can reduce the temperature in stagnation area of hypersonic vehicles from 1 926 to 982 ℃ and work normally during 1 000-1 200℃. How to improve the maximum heat transfer capability and reduce the time needed for start-up from frozen state of the heat pipe by optimizing thermostructure such as designing of a novel wick with high performance is the key point in hypersonic vehicles thermal protection of heat pipe. 展开更多
关键词 thermal protection high temperature heat pipe heat transfer limit start-up time
在线阅读 下载PDF
Research progress on thermal protection materials and structures of hypersonic vehicles 被引量:7
15
作者 杨亚政 杨嘉陵 方岱宁 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第1期51-60,共10页
Hypersonic vehicles represent future trends of military equipments and play an important role in future war. Thermal protection materials and structures, Which relate to the safety of hypersonic vehicles, are one of t... Hypersonic vehicles represent future trends of military equipments and play an important role in future war. Thermal protection materials and structures, Which relate to the safety of hypersonic vehicles, are one of the most key techniques in design and manufacture of hypersonic vehicles. Among these materials and Structures, such as metallic temperature protection structure, the temperature ceramics and carbon/carbon composites are usually adopted in design. The recent progresses of research and applica- tion of ultra-high temperature materials in preparation, oxidation resistance, mechanical and physical characterization are summarized. 展开更多
关键词 hypersonic vehicle high-temperature thermal protection
在线阅读 下载PDF
Editorial: Special subject on the mechanical behavior of thermal protection materials and structures 被引量:2
16
作者 Songhe Meng Huimin Xie 《Theoretical & Applied Mechanics Letters》 CAS 2014年第2期17-18,共2页
The thermal protection materials and structures are widely used in hypersonic vehicles for the purpose of thermal insulation, and their mechanical behavior is one of the key issues in design and manufacture of hyperso... The thermal protection materials and structures are widely used in hypersonic vehicles for the purpose of thermal insulation, and their mechanical behavior is one of the key issues in design and manufacture of hypersonic vehicles. It is our great pleasure to present the seven papers in this special subject of Theoretical & Applied Mechanics Letters (TAML) and introduce the recent progresses on the mechanical behavior of thermal protection materials and structures by the authors. 展开更多
关键词 SIC Special subject on the mechanical behavior of thermal protection materials and structures EDITORIAL
在线阅读 下载PDF
Self-actuating protection mechanisms for safer lithium-ion batteries 被引量:1
17
作者 Yang Luo Chunchun Sang +3 位作者 Kehan Le Hao Chen Hui Li Xinping Ai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期181-198,共18页
Safety issue is still a problem nowadays for the large-scale application of lithium-ion batteries(LIBs)in electric vehicles and energy storage stations.The unsafe behaviors of LIBs arise from the thermal run-away,whic... Safety issue is still a problem nowadays for the large-scale application of lithium-ion batteries(LIBs)in electric vehicles and energy storage stations.The unsafe behaviors of LIBs arise from the thermal run-away,which is intrinsically triggered by the overcharging and overheating.To improve the safety of LIBs,various protection strategies based on self-actuating reaction control mechanisms(SRCMs)have been proposed,including redox shuttle,polymerizable monomer additive,potential-sensitive separator,thermal shutdown separator,positive-temperature-coefficient electrode,thermally polymerizable addi-tive,and reversible thermal phase transition electrolyte.As build-in protection mechanisms,these meth-ods can sensitively detect either the temperature change inside battery or the potential change of the electrode,and spontaneously shut down the electrode reaction at risky conditions,thus preventing the battery from going into thermal runaway.Given their advantages in enhancing the intrinsic safety of LIBs,this paper overviews the research progresses of SRCMs after a brief introduction of thermal runaway mechanism and limitations of conventional thermal runaway mitigating measures.More importantly,the current states and issues,key challenges,and future developing trends of SRCTs are also discussed and outlined from the viewpoint of practical application,aiming at providing insights and guidance for developing more effective SRCMs for LIBs. 展开更多
关键词 Li-ion battery SAFETY thermal runaway thermal protection Overcharge protection
在线阅读 下载PDF
Multi-scale collaborative design method for macroscopic thermal optimization and mesoscopic woven structure of hypersonic vehicle's TOCMC leading edge 被引量:1
18
作者 Chenwei ZHAO Zecan TU +2 位作者 Junkui MAO Jian HUI Pingting CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第4期524-541,共18页
A new thermal protection design method for hypersonic vehicle's leading edge is proposed, which can effectively reduce temperature of the leading edge without additional cooling measures. This method reduces the l... A new thermal protection design method for hypersonic vehicle's leading edge is proposed, which can effectively reduce temperature of the leading edge without additional cooling measures. This method reduces the leading-edge's temperature by the multi-scale collaborative design of the macroscopic thermal optimization and the mesoscopic woven structures of Three-dimensional Orthogonal Woven Ceramic Matrix Composites(TOCMC). The macroscopic thermal optimization is achieved by designing different mesoscopic woven structures in different regions to create combined heat transfer channels to dredge the heat. The combined heat transfer channel is macroscopically represented by the anisotropic thermal conductivity of TOCMC. The thermal optimization multiple linear regression model is established to optimize the heat transport channel, which predicts Theoretical Optimal Thermal Conductivity Configuration(TOTCC) in different regions to achieve the lowest leading-edge temperature. The function-oriented mesostructure design method is invented to design the corresponding mesostructure of TOCMC according to the TOTCC, which consists of universal thermal conductivity prediction formulas for TOCMC. These universal formulas are firstly derived based on the thermal resistance network method, which is verified by experiments with an error of 6.25%. The results show that the collaborative design method can effectively reduce the leading edge temperature by about 12.8% without adding cooling measures. 展开更多
关键词 Multi-scale collaborative design thermal optimization Ceramic matrix composite Hypersonic vehicle thermal protection Intelligent optimization
原文传递
Multi-phase flow effect on SRM nozzle flow field and thermal protection materials
19
作者 SHAFQAT Wahab 《航空动力学报》 EI CAS CSCD 北大核心 2009年第10期2372-2378,共7页
Multi-phase flow effect generated from the combustion of aluminum based composite propellant was performed on the thermal protection material of solid rocket motor(SRM) nozzle.Injection of alumina(Al2O3) particles fro... Multi-phase flow effect generated from the combustion of aluminum based composite propellant was performed on the thermal protection material of solid rocket motor(SRM) nozzle.Injection of alumina(Al2O3) particles from 5% to 10% was tried on SRM nozzle flow field to see the influence of multiphase flow on heat transfer computations.A coupled,time resolved CFD(computational fluid dynamics) approach was adopted to solve the conjugate problem of multi-phase fluid flow and heat transfer in the solid rocket motor nozzle.The governing equations are discretized by using the finite volume method.Spalart-Allmaras(S-A) turbulence model was employed.The computation was executed on the different models selected for the analysis to validate the temperature variation in the throat inserts and baking material of SRM nozzle.Comparison for temperatures variations were also carried out at different expansion ratios of nozzle.This paper also characterized the advanced SRM nozzle composites material for their high thermo stability and their high thermo mechanical capabilities to make it more reliable simpler and lighter. 展开更多
关键词 solid rocket motor nozzle multiphase flow thermal protection material temperature distribution finite volume method
原文传递
Establishment and Optimization of Ablation Surrogate Model for Thermal Protection Material
20
作者 Weizhen Pan Bo Gao 《Journal of Beijing Institute of Technology》 EI CAS 2023年第4期477-493,共17页
The temperature response calculation of thermal protection materials,especially ablative thermal protection materials,usually adopts the ablation model,which is complicated in process and requires a large amount of ca... The temperature response calculation of thermal protection materials,especially ablative thermal protection materials,usually adopts the ablation model,which is complicated in process and requires a large amount of calculation.Especially in the process of optimization calculation and parameter identification,the ablation model needs to be called many times,so it is necessary to construct an ablation surrogate model to improve the computational efficiency under the premise of ensuring the accuracy.In this paper,the Gaussian process model method is used to construct a thermal protection material ablation surrogate model,and the prediction accuracy of the surrogate model is improved through optimization. 展开更多
关键词 ablation surrogate model thermal protection material
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部