This study presents a simplified numerical approach for evaluating the thermal performance of louvered fin and flat tube heat exchangers(LFFTHXs),which are critical in many thermal management applications but difficul...This study presents a simplified numerical approach for evaluating the thermal performance of louvered fin and flat tube heat exchangers(LFFTHXs),which are critical in many thermal management applications but difficult to model due to their complex geometries.The proposed method uses an equivalent convective heat transfer coefficient to represent the fins,significantly reducing the computational requirements of the simulations.Validation against the effectiveness-number of transfer units method showed average deviations of 4.4%for the novel louvered fin with two combined holes and 9.5%for conventional configurations,confirming the accuracy of the method.Further application to two-phase refrigerant scenarios using experimental data demonstrated the robustness of the method and its suitability for practical design and optimization of LFFTHXs.The approach not only improves the feasibility of thermal analysis in industrial applications but also provides a foundation for future research into more efficient heat exchanger designs.展开更多
This study involved numerical simulations of a double tube heat exchanger using the ANSYS FLUENT programversion 22.The study aims to examine methods for minimizing pressure loss and consequently enhancing the thermal ...This study involved numerical simulations of a double tube heat exchanger using the ANSYS FLUENT programversion 22.The study aims to examine methods for minimizing pressure loss and consequently enhancing the thermal performance index(TPI)of a heat exchanger fitted with wavy edge tape that is a heat recovery system(the hot air in simulation instead of t heat from the exhaust gases of the brick factory furnaces and return it to warm the heavy fuel oil by substituting the electrical heater with a heat exchanger to recuperate waste heat from the flue gases,so elevating the temperature of Heavy fuel oil(HFO)to inject from the roof nozzles of combustion chamber of the furnace furthermore reducing cost(by finding the optimal design of wavy edge tape))and energy consumption.Air was selected as the hot gas in the inner pipe instead of furnace exhaust gases due to their similar thermal characteristics.A numerical analysis was conducted to create a novel wavy edge tape with varying widths(50%Di,75%Di,and 95%Di),lengths(1000,1200,1400)mm,amplitudes(5,10,15)mm,and periods of wavy length(5,10,15)mm.The flow rate of the outer pipe fluid(oil)ranges from(0.06 to 0.1)kg/s,while the velocity of the hot fluid(air)varies from(1 to 27)m/s,Re_(air)(6957 to 187,837).The entrance temperature of the hot fluid can be either(200,225,and 250)℃.The study finds that wavy edge tape tubes are more effective than smooth tubes in terms of oil outlet temperature;results revealed that an increase in the oil mass flow rate leads to a decrease in the oil outlet temperature and an increase in the heat transfer rate,at the air temperature 250℃.Additionally,the results indicate that increasing the width,length,and amplitude also leads to an increase in the oil outlet temperature of(94-94.12)℃,the pressure drop of(568.3)Pa,and the Nusselt number(65.7-66.5)respectively on the oil side.Finally,the heat exchanger’s best thermal performance index was found by investigating temperature contour at amplitude(A=5),period(p=15),width(w=75%Di),and length(L=1200 mm).The values for these parameters are,in order(1.02,1.025,1.02,and 1.0077).展开更多
Al-Si alloy,a high temperature phase change material,has great potential in thermal management due to its advantages of high heat storage density and thermal conductivity.Microencapsulation of Al-Si alloy is one of th...Al-Si alloy,a high temperature phase change material,has great potential in thermal management due to its advantages of high heat storage density and thermal conductivity.Microencapsulation of Al-Si alloy is one of the effective techniques to solve high temperature leakage and corrosion.In this paper,commercial Al-10Si alloy micro powders were encapsulated with flexible ceramic shells whose total thickness is below 1μm by hydrothermal treatment and heat treatment in N_(2) atmosphere.The compositions and microstructures were characterized by XRD,SEM and TEM.The shell was composed of AlN fibers network structure embedded withα-Al_(2)O_(3)/AlN which prevented the alloy from leaking and oxidizing,as well as had excellent thermal stability.The latent heat of microcapsules was 351.8 J g^(-1)for absorption and 372.7 J g^(-1)for exothermic.The microcapsules showed near zero thermal performance loss with latent heat storage(LHS)/release(LHR)was 353.2/403.7 J g^(-1)after 3000 cycles.Compared with the published Al-Si alloy microcapsules,both high heat storage density and super thermal cycle stability were achieved,showing promising development prospects in high temperature thermal management.展开更多
During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing cap...During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing capacity of the pile is quite small before the full freeze-back,the quick refreezing of the native soils surrounding the cast-in-place pile has become the focus of the infrastructure construction in permafrost.To solve this problem,this paper innovatively puts forward the application of the artificial ground freezing(AGF)method at the end of the curing period of cast-in-place piles in permafrost.A field test on the AGF was conducted at the Beiluhe Observation and Research Station of Frozen Soil Engineering and Environment(34°51.2'N,92°56.4'E)in the Qinghai Tibet Plateau(QTP),and then a 3-D numerical model was established to investigate the thermal performance of piles using AGF under different engineering conditions.Additionally,the long-term thermal performance of piles after the completion of AGF under different conditions was estimated.Field experiment results demonstrate that AGF is an effective method to reduce the refreezing time of the soil surrounding the piles constructed in permafrost terrain,with the ability to reduce the pile-soil interface temperatures to below the natural ground temperature within 3 days.Numerical results further prove that AGF still has a good cooling effect even under unfavorable engineering conditions such as high pouring temperature,large pile diameter,and large pile length.Consequently,the application of this method is meaningful to save the subsequent latency time and solve the problem of thermal disturbance in pile construction in permafrost.The research results are highly relevant for the spread of AGF technology and the rapid building of pile foundations in permafrost.展开更多
This study investigates the potential for enhancing the thermal performance of external walls insulation in warmer climates through the combination of phase change materials(PCMs)and bio-based materials,specifically h...This study investigates the potential for enhancing the thermal performance of external walls insulation in warmer climates through the combination of phase change materials(PCMs)and bio-based materials,specifically hemp wool and wood wool.Experimental tests using the heat flow method(HFM),and numerical simulations with ANSYS Fluent software were conducted to assess the dynamic thermal distribution and fluid-mechanical aspects of phase change materials(PCMs)within composite walls.The results demonstrate a notable reduction in peak indoor temperatures,achieving a 58%reduction with hemp wool with a close 40%reduction with wood wool when combined with PCMs.Fluid-mechanical analysis indicates that PCMs act as efficient indoor temperature regulators by storing excess heat during hot periods and releasing it later during phase transitions.Furthermore,the homogeneous distribution of the liquid fraction and natural convection during phase change contribute significantly to the improvement in heat transfer rates,resulting in a 96%reduction compared to hemp wool and wood wool without PCMs.展开更多
This paper presents the thermodynamic performance analysis and comparison of four kinds of advanced pressurized fluidized bed combustion combined cycle (APFBC-CC) system schemes, two based on pressurized fluidized bed...This paper presents the thermodynamic performance analysis and comparison of four kinds of advanced pressurized fluidized bed combustion combined cycle (APFBC-CC) system schemes, two based on pressurized fluidized bed (PFB) combustion and the other two based on atmospheric circulating fluidized bed (CFB) combustion. The results show that the first scheme avoids high temperature gas filter, but has the lower cycle efficiency and syngas heating value. The second scheme can gain the highest cycle efficiency, however it is better to now lower the filter operating temperature. The third and fourth schemes, based on CFB, have lower efficiencies than the second one. But the fourth one, with preheating air/steam for gasification, can obtain the highest heating value of syngas and gain higher efficiency than the third one.展开更多
Thermal performance of envelopes and indoor thermal environment were technologically improved for traditional wooden vernacular dwellings of Tujia Minority in Western Hunan, China, on the premise of protecting their c...Thermal performance of envelopes and indoor thermal environment were technologically improved for traditional wooden vernacular dwellings of Tujia Minority in Western Hunan, China, on the premise of protecting their conventional styles. Thermal insulation boards and wooden boards were added to the interior side of external walls of vernacular dwellings to form two layers of air cavities, so as to gain excellent thermal performance. The indoor temperature of such dwellings after reconstruction was apparently improved compared with the data before reconstruction both in winter and summer, which verified the feasibility and the effectiveness of the reconstruction technologies proposed.展开更多
The multiple jets impingement heat transfer is widely applied in the wing anti-icing system.It is challenging to apply the similarity criterion to carry out the anti-icing experiments due to the complex flow and heat ...The multiple jets impingement heat transfer is widely applied in the wing anti-icing system.It is challenging to apply the similarity criterion to carry out the anti-icing experiments due to the complex flow and heat transfer behavior.In the present study,the full-scale slat model is used to carry out anti-icing experimental researches in a 2 m×3 m icing wind tunnel of China Aerodynamics Research and Development Center.The effects of icing parameters Liquid Water Content(LWC)and Median Volume Diameter(MVD)and hot air parameters(mass flow rate and temperature)on the thermal performance of an inner-liner anti-icing system with jets impingement heat transfer are studied.The effects of the experimental parameters are analyzed in detail by combining impingement and evaporation heat transfer mechanisms.The impingement hot air mass flow rate dramatically affects the heat transfer performance of the impingement stagnation region within the range of the experimental parameters.The temperature of impingement hot air and that of wing skin are approximately linear correlated.The experimental results show the effects of LWC and MVD on water film formation and runback ice accretion.The formation of water film is analyzed by an analytical method based on the wing skin temperature difference of dry and wet air conditions.展开更多
Solar water heaters(SWH) are widely used in urban areas because of their advantages in reducing energy consumption and mitigating greenhouse gas emissions. However, the performance of SWH subjected to obstructions is ...Solar water heaters(SWH) are widely used in urban areas because of their advantages in reducing energy consumption and mitigating greenhouse gas emissions. However, the performance of SWH subjected to obstructions is unclear yet. In this study, we present a numerical evaluation on thermal performance of fa?ade-installed SWH under three typical obstructed scenarios, based on various levels of sunshine duration. This study is carried out for four locations with various latitudes across China. Thermal performance is measured by solar fraction for annual and monthly evaluation. The results show that the obstruction can seriously degrade annual solar fraction of SWH, even in the 4-hour sunshine duration scenario, for all the studied locations. Interestingly, only lengthening sunshine duration in the standard day(e.g., from 2 h to 4 h) may not result in increasing annual solar fraction markedly. In terms of the monthly performance, solar fraction in January and December decreases significantly, while from May to August it just declines slightly, except for Guangzhou having a swift reduction. This study can provide insights into the behavior and promote the appropriate application of SWH in urban areas.展开更多
The paper presents an experimental investigation on enhanced heat transfer and pressure loss characteristics by using single, double, triple, and quadruple twisted-tape inserts in a round tube having a uniform heat-fl...The paper presents an experimental investigation on enhanced heat transfer and pressure loss characteristics by using single, double, triple, and quadruple twisted-tape inserts in a round tube having a uniform heat-fluxed wall. The investigation has been conducted in the heat exchanger tube inserted with various twisted-tape numbers for co- and counter-twist arrangements for the turbulent air flow, Reynolds number (Re) from 5300 to 24000. The typical single twisted-tape inserts at two twist ratios, y/w = 4 and 5, are used as the base case, while the other multiple twisted-tape inserts are aty/w = 4 only. The experimental results of heat transfer and pressure drop in terms of Nusselt number (Nu) and friction factor 00, respectively, reveal that Nu increases with the increment of Re and of twisted-tape number. The values of Nu for the inserted tube are in a range of 1.15-2.12 times that for the plain tube while f is 1.9-4.1 times. The thermal enhancement factor of the inserted tube under similar pumping power is evaluated and found to be above unity except for the single and the double co-twisted tapes. The quadruple counter-twisted tape insert provides the maximum thermal performance.展开更多
In this paper,the influence of thermal performance of cathode-heater assembly of Traveling Wave Tube(TWT),which has different contact form between inner heat shield and supporting cylinder,is analyzed using the simula...In this paper,the influence of thermal performance of cathode-heater assembly of Traveling Wave Tube(TWT),which has different contact form between inner heat shield and supporting cylinder,is analyzed using the simulation software ANSYS.With both thermal radiation and heat conduction are considered,the temperature and heat flux distribution of structures with different contact form are calculated,and also starting time which is needed before temperature come into steady status.The result of analysis suggests that changing the contact form between inner heat shield and support cylinder can influence the thermal performance of cathode-heater assembly and improve assembly's temperature distribution and promote heater's heating efficiency.The result of this paper provides theoretical guidance in the design of cathode-heater assembly.展开更多
Thermal transport investigation in colloidal suspensions is taking a significant research direction.The applications of these fluids are found in various industries,engineering,aerodynamics,mechanical engineering and ...Thermal transport investigation in colloidal suspensions is taking a significant research direction.The applications of these fluids are found in various industries,engineering,aerodynamics,mechanical engineering and medical sciences etc.A huge amount of thermal transport is essential in the operation of various industrial production processes.It is a fact that conventional liquids have lower thermal transport characteristics as compared to colloidal suspensions.The colloidal suspensions have high thermal performance due to the thermophysical attributes of the nanoparticles and the host liquid.Therefore,researchers focused on the analysis of the heat transport in nanofluids under diverse circumstances.As such,the colloidal analysis of H_(2)O composed byγAl_(2)O_(3)and Al_(2)O_(3)is conducted over an elastic cylinder.The governing flow models ofγAl_(2)O_(3)/H_(2)O and Al_(2)O_(3)/H_(2)O is reduced in the dimensionless form by adopting the described similarity transforms.The colloidal models are handled by implementing the suitable numerical technique and provided the results for the velocity,temperature and local thermal performance rate against the multiple flow parameters.From the presented results,it is shown that the velocity of Al_(2)O_(3)–H_(2)O increases promptly against a high Reynolds number and it decreases for high-volume fraction.The significant contribution of the volumetric fraction is examined for thermal enhancement of nanofluids.The temperature of Al_(2)O_(3)–H_(2)O andγAl_(2)O_(3)–H_(2)O significantly increases against a higherϕ.Most importantly,the analysis shows thatγAl_(2)O_(3)–H_(2)O has a high local thermal performance rate compared to Al_(2)O_(3)–H_(2)O.Therefore,it is concluded thatγAl_(2)O_(3)–H_(2)O is a better heat transfer fluid and is suitable for industrial and technological uses.展开更多
Advanced civil aero-engines tend to adopt lean burn combustors to meet emission requirements.The exit of a lean burn combustor experiences highly non-uniformities in both temperature(Hot Streak,HS)and flow(swirl).This...Advanced civil aero-engines tend to adopt lean burn combustors to meet emission requirements.The exit of a lean burn combustor experiences highly non-uniformities in both temperature(Hot Streak,HS)and flow(swirl).This paper presents a numerical investigation on the behaviors of a High-Pressure(HP)turbine under a combined effect of swirl and hot streak.The investigation was conducted on a GE-E3 HP turbine with unsteady numerical simulations,which considered the realistic clocking position of the HP Nozzle Guide Vane(NGV)relative to the combustor.The influences of swirl orientations on the HS migration and thermal performances on the blade surface were examined.Results indicate that,inside the NGV passage,the swirl’s induced incidence angle effect dominates the HS radial migration.The transversal movement of HS follows the cross flow and thus makes itself approach the Suction Side(SS)and keep away from the Pressure Side(PS)as passing through the NGV,so that HS near the SS is more influenced by the incidence angle effect than that near the PS.As for the heat transfer,swirl affects the Heat Transfer Coefficient(HTC)on the NGV’s PS and SS mainly through the incidence angle effect.Different from the NGV,the inlet swirl and HS have limited effect on the HTC on the rotor blade’s PS,while on the rotor blade’s SS,the original vortex system dominates;therefore,the inlet non-uniformities merely enhance the HTC on the SS rather than alter its distribution characteristics.展开更多
In view of the practical importance of the heat transfer devices in various thermal engineering fields including chemical and nuclear engineering,this study aims at developing an effective method of heat transfer enha...In view of the practical importance of the heat transfer devices in various thermal engineering fields including chemical and nuclear engineering,this study aims at developing an effective method of heat transfer enhancement by using selfrotating twisted tapes(SRTTs)and Al_(2)O_(3) nanoparticles.The effect of the selfrotating twisted tapes and Al2O3 nanoparticles on the thermal performance was comprehensively investigated in a circular pipe.The experimental results indicated the heat transfer rate was effectively improved by SRTTs in comparison of plain tube.In addition,the heat transfer multiplier with SRTTs decreased from 1.38 to 1.08 with the Reynolds number increasing from 19,322 to 64,407,while the friction factor multiplier decreased from 1.61 to 1.32.Besides,the results indicated that the employment of Al_(2)O_(3) nanoparticles and SRTTs demonstrated superior thermal performance to the single SRTTs.As Reynolds number increases from 19,322 to 64,407,the heat transfer multiplier decreased from 2.08 to 1.18 in the mass concentration of 3.0%and from 1.38 to 1.08 in mass concentration of 0.0%.Finally,the new heat transfer and friction factor correlations considering the combined effect of Al2O3 nanoparticle and SRTTs were developed within 10%deviation of experimental values.展开更多
The temperature control in electronic packaging is the key in numerous applications,to avoid overheating and hardware failure.Due to high capability of heat transfer,good temperature uniformity,and no power consumptio...The temperature control in electronic packaging is the key in numerous applications,to avoid overheating and hardware failure.Due to high capability of heat transfer,good temperature uniformity,and no power consumption,heat pipes can be widely used for heat dissipation of electronic components.This paper reports an experimental thermal analysis of different capillary structures for heat pipes.The wicks considered are metal screens,axial microgrooves,and sintered metal powder.The heat pipes are made of copper,a 200 mm length tube and a 9.45 mm external diameter.Working fluid used was distilled water.The devices are investigated in three positions:0,90,and 270°to the horizontal under powers of 5 up to 45 W.The results show that in horizontal(0°)and with the evaporator under the condenser(270°),the heat pipes showed similar results.Nevertheless,in the reverse condition(the position against the gravity with the evaporator above the condenser,90°),the heat pipe with sintered wick presented the best thermal performance,as it has the lowest thermal resistance and supported a higher power.Besides that,the sintered powder capillary structure demonstrates the most homogeneous thermal behavior for every position,making the most suitable for applications susceptible to diverse inclinations.展开更多
Riyadh city is the fastest growing city in Saudi Arabia. The rapid urban growth that happened recently in Riyadh was not based on the traditional urban planning principles, which have been established and applied for ...Riyadh city is the fastest growing city in Saudi Arabia. The rapid urban growth that happened recently in Riyadh was not based on the traditional urban planning principles, which have been established and applied for the city development process. The imported building regulations have created a new urban structures and street patterns. The contemporary urban form in Riyadh city is based mainly on traffic and economic consideration with the neglect of environmental dimensions. This research aims to examine the impacts of building regulations on the thermal performance of residential buildings in Riyadh city, with the ultimate goal of establishing planning guidelines that consider the environmental conditions of the city. The methodology adopted for achieving the aim of this study consists of two phases. First, the literature related to building regulations development in Riyadh, as of 2018, was reviewed. Second, buildings energy simulation was conducted to examine the thermal performance of the typical current status of residential building blocks in Riyadh city, and then several changes to building regulations were made to investigate their impacts on the thermal performance of buildings. The results showed that the impacts of Riyadh building regulations on the thermal performance of residential buildings differ across the evaluated cases. The ratio of building height to street width, urban block street orientation, and building orientation are the main factors affecting thermal performance of buildings within urban block. The study also concludes that adjusting the ratio of building height to the distance between buildings could have a significant impact in reducing cooling loads. This study will help policy makers, planners and designers to investigate the shortcoming in the current building regulations.展开更多
Ectotherms generally demonstrate nonlinear changes in performance (e.g., movement speed, indi- vidual growth, population growth) as a function of temperature that are characterized by thermal performance curves (TP...Ectotherms generally demonstrate nonlinear changes in performance (e.g., movement speed, indi- vidual growth, population growth) as a function of temperature that are characterized by thermal performance curves (TPC). Predation risk elicits phenotypic and behavioral changes that likewise impact performance measures. We tested whether exposure to predation Orthocyclops modestus impacts the maximum population growth rate (rmax) TPC of the protist Paramecium aurelia. We fit predator and non-predator exposed P. aurelia population growth rates to a function previously shown to best describe Paramecium population growth rate TPC's (Lactin-2) and compared subse- quent parameter estimates between curves. For Paramecium exposed to predation risk, maximum population growth increased more rapidly as temperatures rose and decreased more rapidly as temperatures fell compared to the initial temperature. The area under each TPC curve remained ap- proximately the same, consistent with the idea of a trade-off in performance across temperatures. Our results indicate TPCs are flexible given variation in food web context and that trophic inter- actions may play an important role in shaping TPCs. Furthermore, this and other studies illustrate the need for a mechanistic model of TPCs with parameters tied to biologically meaningful properties.展开更多
Heat pipes are most frequently used for thermal management solutions.Selection of right type of heat pipe for a specific scenario is utmost necessary for best outcomes.The purpose of this research is comparison of the...Heat pipes are most frequently used for thermal management solutions.Selection of right type of heat pipe for a specific scenario is utmost necessary for best outcomes.The purpose of this research is comparison of thermal performance characteristics of sintered copper wicked and grooved heat pipes,which are mostly used types of heat pipes.Distilled water filled heat pipes were tested through experimentation in gravity assisted position.Experimental outcomes have been compiled in terms of capillary pressure,operating temperature,thermal resistance and heat transfer coefficient.Capillary pressure is high in sintered heat pipes compared to grooved heat pipes irrespective of groove dimensions.Grooved heat pipes have lower operating temperature compared to sintered heat pipes at the same heat load.At 8 W,compared to sintered heat pipes,grooved heat pipes have 8.24% lower condenser surface temperature,4.41% lower evaporator surface temperature and 7.79% lower saturation temperature.Thermal resistance of sintered heat pipe is much lower than grooved heat pipe.The maximum relative difference of 63.8% was observed at 8 W.Heat transfer coefficient of sintered heat pipe was observed double compared to grooved heat pipe at 8 W heat load.Thermal resistance and hence heat transfer coefficient of sintered heat pipe change almost in a linear manner with respect to heat load but unexpectedly turning point is observed in thermal resistance and heat transfer coefficient of grooved heat pipe.Grooved heat pipes attain equilibrium much earlier compared to sintered ones.Varying heat loads from 4 to 20 W causes variation in equilibrium establishment time from 7 to 4 min for grooved and from 10 to 7 min for sintered heat pipes.展开更多
The investigation of local thermal transport rate in the nanolubricants is significant.These lubricants are broadly used in environmental pollution,mechanical engineering and in the paint industry due to high thermal ...The investigation of local thermal transport rate in the nanolubricants is significant.These lubricants are broadly used in environmental pollution,mechanical engineering and in the paint industry due to high thermal performance rate.Therefore,thermal transport in ZnO-SAE50 nanolubricant under the impacts of heat generation/absorption is conducted.The colloidal suspension is flowing between parallel stretching disks in which the lower disk is positioned at z=0 and upper disk apart from distance d.The problem is transformed in dimensionless version via described similarity transforms.In the next stage,an analytical technique(VPM)is implemented for the solution purpose.The graphical results against multiple flow parameters were furnished over the region of interest and explained comprehensively.It is imperative to mention that the results are plotted for ZnO-SAE50 and conventional liquid as well.Further,rapid motion of the fluid is perceived against high Reynolds andγparameters.The wall shear stresses at the upper end rises for multiple Reynolds andγwhile;decrement is detected at the lower end.The significant contribution of an internal heat source is noted for thermal performance rate at the upper end.Foremost,the local heat transport rate declines at the lower disk.By altering Reynolds number,prompt heat transfer rate is gained at the upper disk and increasing behavior of the local heat transport rate is slow at the lower disk.From the study,it is concluded that the nanolubricants have high thermal characteristics.Therefore,such fluids are reliable to use in above stated areas.展开更多
This paper investigates the thermal performance of prefabricated exterior walls using the Computational Fluid Dynamics method to reduce energy consumption.The thermal performance of the prefabricated exterior wall was...This paper investigates the thermal performance of prefabricated exterior walls using the Computational Fluid Dynamics method to reduce energy consumption.The thermal performance of the prefabricated exterior wall was numerically simulated using the software ANSYS Fluent.The composite wall containing the cavity is taken as the research object in this paper after analysis.The simulation suggests that when the cavity thickness is 20 mm and 30 mm,the heat transfer coefficient of the air-sandwich wall is 1.3 and 1.29,respectively.Therefore,the optimal width of the cavity is 20 mm,and the most suitable material is the aerated concrete block.In addition,a comparative analysis is conducted on the cavity temperature in the wall under different conditions.It is proven that an intelligent environment control system can significantly improve thermal efficiency and provide a solid theoretical basis for further research in the external insulation of prefabricated buildings.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12272345).
文摘This study presents a simplified numerical approach for evaluating the thermal performance of louvered fin and flat tube heat exchangers(LFFTHXs),which are critical in many thermal management applications but difficult to model due to their complex geometries.The proposed method uses an equivalent convective heat transfer coefficient to represent the fins,significantly reducing the computational requirements of the simulations.Validation against the effectiveness-number of transfer units method showed average deviations of 4.4%for the novel louvered fin with two combined holes and 9.5%for conventional configurations,confirming the accuracy of the method.Further application to two-phase refrigerant scenarios using experimental data demonstrated the robustness of the method and its suitability for practical design and optimization of LFFTHXs.The approach not only improves the feasibility of thermal analysis in industrial applications but also provides a foundation for future research into more efficient heat exchanger designs.
文摘This study involved numerical simulations of a double tube heat exchanger using the ANSYS FLUENT programversion 22.The study aims to examine methods for minimizing pressure loss and consequently enhancing the thermal performance index(TPI)of a heat exchanger fitted with wavy edge tape that is a heat recovery system(the hot air in simulation instead of t heat from the exhaust gases of the brick factory furnaces and return it to warm the heavy fuel oil by substituting the electrical heater with a heat exchanger to recuperate waste heat from the flue gases,so elevating the temperature of Heavy fuel oil(HFO)to inject from the roof nozzles of combustion chamber of the furnace furthermore reducing cost(by finding the optimal design of wavy edge tape))and energy consumption.Air was selected as the hot gas in the inner pipe instead of furnace exhaust gases due to their similar thermal characteristics.A numerical analysis was conducted to create a novel wavy edge tape with varying widths(50%Di,75%Di,and 95%Di),lengths(1000,1200,1400)mm,amplitudes(5,10,15)mm,and periods of wavy length(5,10,15)mm.The flow rate of the outer pipe fluid(oil)ranges from(0.06 to 0.1)kg/s,while the velocity of the hot fluid(air)varies from(1 to 27)m/s,Re_(air)(6957 to 187,837).The entrance temperature of the hot fluid can be either(200,225,and 250)℃.The study finds that wavy edge tape tubes are more effective than smooth tubes in terms of oil outlet temperature;results revealed that an increase in the oil mass flow rate leads to a decrease in the oil outlet temperature and an increase in the heat transfer rate,at the air temperature 250℃.Additionally,the results indicate that increasing the width,length,and amplitude also leads to an increase in the oil outlet temperature of(94-94.12)℃,the pressure drop of(568.3)Pa,and the Nusselt number(65.7-66.5)respectively on the oil side.Finally,the heat exchanger’s best thermal performance index was found by investigating temperature contour at amplitude(A=5),period(p=15),width(w=75%Di),and length(L=1200 mm).The values for these parameters are,in order(1.02,1.025,1.02,and 1.0077).
基金financial support from the National Natural Science Foundation of China(No.52072276)Hubei Important Project on Science and Technology(No.2022BECO20).
文摘Al-Si alloy,a high temperature phase change material,has great potential in thermal management due to its advantages of high heat storage density and thermal conductivity.Microencapsulation of Al-Si alloy is one of the effective techniques to solve high temperature leakage and corrosion.In this paper,commercial Al-10Si alloy micro powders were encapsulated with flexible ceramic shells whose total thickness is below 1μm by hydrothermal treatment and heat treatment in N_(2) atmosphere.The compositions and microstructures were characterized by XRD,SEM and TEM.The shell was composed of AlN fibers network structure embedded withα-Al_(2)O_(3)/AlN which prevented the alloy from leaking and oxidizing,as well as had excellent thermal stability.The latent heat of microcapsules was 351.8 J g^(-1)for absorption and 372.7 J g^(-1)for exothermic.The microcapsules showed near zero thermal performance loss with latent heat storage(LHS)/release(LHR)was 353.2/403.7 J g^(-1)after 3000 cycles.Compared with the published Al-Si alloy microcapsules,both high heat storage density and super thermal cycle stability were achieved,showing promising development prospects in high temperature thermal management.
基金supported by the National Natural Science Foundation of China(Grant No.42071095)the Program of the State Key Laboratory of Frozen Soil Engineering(Grant No.SKLFSE-ZQ-59)+1 种基金the Science and Technology Project of Gansu Province(Grant No.22JR5RA086)the Science and Technology Research and Development Program of the Qinghai-Tibet Group Corporation(Grant No.QZ2022-G02).
文摘During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing capacity of the pile is quite small before the full freeze-back,the quick refreezing of the native soils surrounding the cast-in-place pile has become the focus of the infrastructure construction in permafrost.To solve this problem,this paper innovatively puts forward the application of the artificial ground freezing(AGF)method at the end of the curing period of cast-in-place piles in permafrost.A field test on the AGF was conducted at the Beiluhe Observation and Research Station of Frozen Soil Engineering and Environment(34°51.2'N,92°56.4'E)in the Qinghai Tibet Plateau(QTP),and then a 3-D numerical model was established to investigate the thermal performance of piles using AGF under different engineering conditions.Additionally,the long-term thermal performance of piles after the completion of AGF under different conditions was estimated.Field experiment results demonstrate that AGF is an effective method to reduce the refreezing time of the soil surrounding the piles constructed in permafrost terrain,with the ability to reduce the pile-soil interface temperatures to below the natural ground temperature within 3 days.Numerical results further prove that AGF still has a good cooling effect even under unfavorable engineering conditions such as high pouring temperature,large pile diameter,and large pile length.Consequently,the application of this method is meaningful to save the subsequent latency time and solve the problem of thermal disturbance in pile construction in permafrost.The research results are highly relevant for the spread of AGF technology and the rapid building of pile foundations in permafrost.
文摘This study investigates the potential for enhancing the thermal performance of external walls insulation in warmer climates through the combination of phase change materials(PCMs)and bio-based materials,specifically hemp wool and wood wool.Experimental tests using the heat flow method(HFM),and numerical simulations with ANSYS Fluent software were conducted to assess the dynamic thermal distribution and fluid-mechanical aspects of phase change materials(PCMs)within composite walls.The results demonstrate a notable reduction in peak indoor temperatures,achieving a 58%reduction with hemp wool with a close 40%reduction with wood wool when combined with PCMs.Fluid-mechanical analysis indicates that PCMs act as efficient indoor temperature regulators by storing excess heat during hot periods and releasing it later during phase transitions.Furthermore,the homogeneous distribution of the liquid fraction and natural convection during phase change contribute significantly to the improvement in heat transfer rates,resulting in a 96%reduction compared to hemp wool and wood wool without PCMs.
文摘This paper presents the thermodynamic performance analysis and comparison of four kinds of advanced pressurized fluidized bed combustion combined cycle (APFBC-CC) system schemes, two based on pressurized fluidized bed (PFB) combustion and the other two based on atmospheric circulating fluidized bed (CFB) combustion. The results show that the first scheme avoids high temperature gas filter, but has the lower cycle efficiency and syngas heating value. The second scheme can gain the highest cycle efficiency, however it is better to now lower the filter operating temperature. The third and fourth schemes, based on CFB, have lower efficiencies than the second one. But the fourth one, with preheating air/steam for gasification, can obtain the highest heating value of syngas and gain higher efficiency than the third one.
基金Project(51308548)supported by the National Natural Science Foundation of ChinaProject(2014M552155)supported by China Postdoctoral Science FoundationProject(2013RS4054)supported by the Science and Technology Fund of Hunan Province,China
文摘Thermal performance of envelopes and indoor thermal environment were technologically improved for traditional wooden vernacular dwellings of Tujia Minority in Western Hunan, China, on the premise of protecting their conventional styles. Thermal insulation boards and wooden boards were added to the interior side of external walls of vernacular dwellings to form two layers of air cavities, so as to gain excellent thermal performance. The indoor temperature of such dwellings after reconstruction was apparently improved compared with the data before reconstruction both in winter and summer, which verified the feasibility and the effectiveness of the reconstruction technologies proposed.
基金co-supported by the National Numerical Wind Tunnel Project(No.NNW2018-ZT2B04)the “973”Program of China(No.2015CB755800)。
文摘The multiple jets impingement heat transfer is widely applied in the wing anti-icing system.It is challenging to apply the similarity criterion to carry out the anti-icing experiments due to the complex flow and heat transfer behavior.In the present study,the full-scale slat model is used to carry out anti-icing experimental researches in a 2 m×3 m icing wind tunnel of China Aerodynamics Research and Development Center.The effects of icing parameters Liquid Water Content(LWC)and Median Volume Diameter(MVD)and hot air parameters(mass flow rate and temperature)on the thermal performance of an inner-liner anti-icing system with jets impingement heat transfer are studied.The effects of the experimental parameters are analyzed in detail by combining impingement and evaporation heat transfer mechanisms.The impingement hot air mass flow rate dramatically affects the heat transfer performance of the impingement stagnation region within the range of the experimental parameters.The temperature of impingement hot air and that of wing skin are approximately linear correlated.The experimental results show the effects of LWC and MVD on water film formation and runback ice accretion.The formation of water film is analyzed by an analytical method based on the wing skin temperature difference of dry and wet air conditions.
基金Projects(2017JJ3517,2017JJ3090)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2018NK2066)supported by the Key Research and Development Program of Hunan Province,ChinaProject(QJ2017007B)supported by the Youth Scientific Research Foundation of Central South University of Forestry and Technology,China。
文摘Solar water heaters(SWH) are widely used in urban areas because of their advantages in reducing energy consumption and mitigating greenhouse gas emissions. However, the performance of SWH subjected to obstructions is unclear yet. In this study, we present a numerical evaluation on thermal performance of fa?ade-installed SWH under three typical obstructed scenarios, based on various levels of sunshine duration. This study is carried out for four locations with various latitudes across China. Thermal performance is measured by solar fraction for annual and monthly evaluation. The results show that the obstruction can seriously degrade annual solar fraction of SWH, even in the 4-hour sunshine duration scenario, for all the studied locations. Interestingly, only lengthening sunshine duration in the standard day(e.g., from 2 h to 4 h) may not result in increasing annual solar fraction markedly. In terms of the monthly performance, solar fraction in January and December decreases significantly, while from May to August it just declines slightly, except for Guangzhou having a swift reduction. This study can provide insights into the behavior and promote the appropriate application of SWH in urban areas.
基金the Thailand Research Fund(TRF)(Grant No.Ph D/0143/2552)
文摘The paper presents an experimental investigation on enhanced heat transfer and pressure loss characteristics by using single, double, triple, and quadruple twisted-tape inserts in a round tube having a uniform heat-fluxed wall. The investigation has been conducted in the heat exchanger tube inserted with various twisted-tape numbers for co- and counter-twist arrangements for the turbulent air flow, Reynolds number (Re) from 5300 to 24000. The typical single twisted-tape inserts at two twist ratios, y/w = 4 and 5, are used as the base case, while the other multiple twisted-tape inserts are aty/w = 4 only. The experimental results of heat transfer and pressure drop in terms of Nusselt number (Nu) and friction factor 00, respectively, reveal that Nu increases with the increment of Re and of twisted-tape number. The values of Nu for the inserted tube are in a range of 1.15-2.12 times that for the plain tube while f is 1.9-4.1 times. The thermal enhancement factor of the inserted tube under similar pumping power is evaluated and found to be above unity except for the single and the double co-twisted tapes. The quadruple counter-twisted tape insert provides the maximum thermal performance.
文摘In this paper,the influence of thermal performance of cathode-heater assembly of Traveling Wave Tube(TWT),which has different contact form between inner heat shield and supporting cylinder,is analyzed using the simulation software ANSYS.With both thermal radiation and heat conduction are considered,the temperature and heat flux distribution of structures with different contact form are calculated,and also starting time which is needed before temperature come into steady status.The result of analysis suggests that changing the contact form between inner heat shield and support cylinder can influence the thermal performance of cathode-heater assembly and improve assembly's temperature distribution and promote heater's heating efficiency.The result of this paper provides theoretical guidance in the design of cathode-heater assembly.
文摘Thermal transport investigation in colloidal suspensions is taking a significant research direction.The applications of these fluids are found in various industries,engineering,aerodynamics,mechanical engineering and medical sciences etc.A huge amount of thermal transport is essential in the operation of various industrial production processes.It is a fact that conventional liquids have lower thermal transport characteristics as compared to colloidal suspensions.The colloidal suspensions have high thermal performance due to the thermophysical attributes of the nanoparticles and the host liquid.Therefore,researchers focused on the analysis of the heat transport in nanofluids under diverse circumstances.As such,the colloidal analysis of H_(2)O composed byγAl_(2)O_(3)and Al_(2)O_(3)is conducted over an elastic cylinder.The governing flow models ofγAl_(2)O_(3)/H_(2)O and Al_(2)O_(3)/H_(2)O is reduced in the dimensionless form by adopting the described similarity transforms.The colloidal models are handled by implementing the suitable numerical technique and provided the results for the velocity,temperature and local thermal performance rate against the multiple flow parameters.From the presented results,it is shown that the velocity of Al_(2)O_(3)–H_(2)O increases promptly against a high Reynolds number and it decreases for high-volume fraction.The significant contribution of the volumetric fraction is examined for thermal enhancement of nanofluids.The temperature of Al_(2)O_(3)–H_(2)O andγAl_(2)O_(3)–H_(2)O significantly increases against a higherϕ.Most importantly,the analysis shows thatγAl_(2)O_(3)–H_(2)O has a high local thermal performance rate compared to Al_(2)O_(3)–H_(2)O.Therefore,it is concluded thatγAl_(2)O_(3)–H_(2)O is a better heat transfer fluid and is suitable for industrial and technological uses.
基金funded by the National Science Foundation of China(No.61890923)the National Science and Technology Major Project,China(No.J2019-VIII-0001-0162).
文摘Advanced civil aero-engines tend to adopt lean burn combustors to meet emission requirements.The exit of a lean burn combustor experiences highly non-uniformities in both temperature(Hot Streak,HS)and flow(swirl).This paper presents a numerical investigation on the behaviors of a High-Pressure(HP)turbine under a combined effect of swirl and hot streak.The investigation was conducted on a GE-E3 HP turbine with unsteady numerical simulations,which considered the realistic clocking position of the HP Nozzle Guide Vane(NGV)relative to the combustor.The influences of swirl orientations on the HS migration and thermal performances on the blade surface were examined.Results indicate that,inside the NGV passage,the swirl’s induced incidence angle effect dominates the HS radial migration.The transversal movement of HS follows the cross flow and thus makes itself approach the Suction Side(SS)and keep away from the Pressure Side(PS)as passing through the NGV,so that HS near the SS is more influenced by the incidence angle effect than that near the PS.As for the heat transfer,swirl affects the Heat Transfer Coefficient(HTC)on the NGV’s PS and SS mainly through the incidence angle effect.Different from the NGV,the inlet swirl and HS have limited effect on the HTC on the rotor blade’s PS,while on the rotor blade’s SS,the original vortex system dominates;therefore,the inlet non-uniformities merely enhance the HTC on the SS rather than alter its distribution characteristics.
文摘In view of the practical importance of the heat transfer devices in various thermal engineering fields including chemical and nuclear engineering,this study aims at developing an effective method of heat transfer enhancement by using selfrotating twisted tapes(SRTTs)and Al_(2)O_(3) nanoparticles.The effect of the selfrotating twisted tapes and Al2O3 nanoparticles on the thermal performance was comprehensively investigated in a circular pipe.The experimental results indicated the heat transfer rate was effectively improved by SRTTs in comparison of plain tube.In addition,the heat transfer multiplier with SRTTs decreased from 1.38 to 1.08 with the Reynolds number increasing from 19,322 to 64,407,while the friction factor multiplier decreased from 1.61 to 1.32.Besides,the results indicated that the employment of Al_(2)O_(3) nanoparticles and SRTTs demonstrated superior thermal performance to the single SRTTs.As Reynolds number increases from 19,322 to 64,407,the heat transfer multiplier decreased from 2.08 to 1.18 in the mass concentration of 3.0%and from 1.38 to 1.08 in mass concentration of 0.0%.Finally,the new heat transfer and friction factor correlations considering the combined effect of Al2O3 nanoparticle and SRTTs were developed within 10%deviation of experimental values.
文摘The temperature control in electronic packaging is the key in numerous applications,to avoid overheating and hardware failure.Due to high capability of heat transfer,good temperature uniformity,and no power consumption,heat pipes can be widely used for heat dissipation of electronic components.This paper reports an experimental thermal analysis of different capillary structures for heat pipes.The wicks considered are metal screens,axial microgrooves,and sintered metal powder.The heat pipes are made of copper,a 200 mm length tube and a 9.45 mm external diameter.Working fluid used was distilled water.The devices are investigated in three positions:0,90,and 270°to the horizontal under powers of 5 up to 45 W.The results show that in horizontal(0°)and with the evaporator under the condenser(270°),the heat pipes showed similar results.Nevertheless,in the reverse condition(the position against the gravity with the evaporator above the condenser,90°),the heat pipe with sintered wick presented the best thermal performance,as it has the lowest thermal resistance and supported a higher power.Besides that,the sintered powder capillary structure demonstrates the most homogeneous thermal behavior for every position,making the most suitable for applications susceptible to diverse inclinations.
文摘Riyadh city is the fastest growing city in Saudi Arabia. The rapid urban growth that happened recently in Riyadh was not based on the traditional urban planning principles, which have been established and applied for the city development process. The imported building regulations have created a new urban structures and street patterns. The contemporary urban form in Riyadh city is based mainly on traffic and economic consideration with the neglect of environmental dimensions. This research aims to examine the impacts of building regulations on the thermal performance of residential buildings in Riyadh city, with the ultimate goal of establishing planning guidelines that consider the environmental conditions of the city. The methodology adopted for achieving the aim of this study consists of two phases. First, the literature related to building regulations development in Riyadh, as of 2018, was reviewed. Second, buildings energy simulation was conducted to examine the thermal performance of the typical current status of residential building blocks in Riyadh city, and then several changes to building regulations were made to investigate their impacts on the thermal performance of buildings. The results showed that the impacts of Riyadh building regulations on the thermal performance of residential buildings differ across the evaluated cases. The ratio of building height to street width, urban block street orientation, and building orientation are the main factors affecting thermal performance of buildings within urban block. The study also concludes that adjusting the ratio of building height to the distance between buildings could have a significant impact in reducing cooling loads. This study will help policy makers, planners and designers to investigate the shortcoming in the current building regulations.
文摘Ectotherms generally demonstrate nonlinear changes in performance (e.g., movement speed, indi- vidual growth, population growth) as a function of temperature that are characterized by thermal performance curves (TPC). Predation risk elicits phenotypic and behavioral changes that likewise impact performance measures. We tested whether exposure to predation Orthocyclops modestus impacts the maximum population growth rate (rmax) TPC of the protist Paramecium aurelia. We fit predator and non-predator exposed P. aurelia population growth rates to a function previously shown to best describe Paramecium population growth rate TPC's (Lactin-2) and compared subse- quent parameter estimates between curves. For Paramecium exposed to predation risk, maximum population growth increased more rapidly as temperatures rose and decreased more rapidly as temperatures fell compared to the initial temperature. The area under each TPC curve remained ap- proximately the same, consistent with the idea of a trade-off in performance across temperatures. Our results indicate TPCs are flexible given variation in food web context and that trophic inter- actions may play an important role in shaping TPCs. Furthermore, this and other studies illustrate the need for a mechanistic model of TPCs with parameters tied to biologically meaningful properties.
文摘Heat pipes are most frequently used for thermal management solutions.Selection of right type of heat pipe for a specific scenario is utmost necessary for best outcomes.The purpose of this research is comparison of thermal performance characteristics of sintered copper wicked and grooved heat pipes,which are mostly used types of heat pipes.Distilled water filled heat pipes were tested through experimentation in gravity assisted position.Experimental outcomes have been compiled in terms of capillary pressure,operating temperature,thermal resistance and heat transfer coefficient.Capillary pressure is high in sintered heat pipes compared to grooved heat pipes irrespective of groove dimensions.Grooved heat pipes have lower operating temperature compared to sintered heat pipes at the same heat load.At 8 W,compared to sintered heat pipes,grooved heat pipes have 8.24% lower condenser surface temperature,4.41% lower evaporator surface temperature and 7.79% lower saturation temperature.Thermal resistance of sintered heat pipe is much lower than grooved heat pipe.The maximum relative difference of 63.8% was observed at 8 W.Heat transfer coefficient of sintered heat pipe was observed double compared to grooved heat pipe at 8 W heat load.Thermal resistance and hence heat transfer coefficient of sintered heat pipe change almost in a linear manner with respect to heat load but unexpectedly turning point is observed in thermal resistance and heat transfer coefficient of grooved heat pipe.Grooved heat pipes attain equilibrium much earlier compared to sintered ones.Varying heat loads from 4 to 20 W causes variation in equilibrium establishment time from 7 to 4 min for grooved and from 10 to 7 min for sintered heat pipes.
基金Researchers supporting Project number(RSP-2020/33),King Saud University,Riyadh,Saudi Arabia。
文摘The investigation of local thermal transport rate in the nanolubricants is significant.These lubricants are broadly used in environmental pollution,mechanical engineering and in the paint industry due to high thermal performance rate.Therefore,thermal transport in ZnO-SAE50 nanolubricant under the impacts of heat generation/absorption is conducted.The colloidal suspension is flowing between parallel stretching disks in which the lower disk is positioned at z=0 and upper disk apart from distance d.The problem is transformed in dimensionless version via described similarity transforms.In the next stage,an analytical technique(VPM)is implemented for the solution purpose.The graphical results against multiple flow parameters were furnished over the region of interest and explained comprehensively.It is imperative to mention that the results are plotted for ZnO-SAE50 and conventional liquid as well.Further,rapid motion of the fluid is perceived against high Reynolds andγparameters.The wall shear stresses at the upper end rises for multiple Reynolds andγwhile;decrement is detected at the lower end.The significant contribution of an internal heat source is noted for thermal performance rate at the upper end.Foremost,the local heat transport rate declines at the lower disk.By altering Reynolds number,prompt heat transfer rate is gained at the upper disk and increasing behavior of the local heat transport rate is slow at the lower disk.From the study,it is concluded that the nanolubricants have high thermal characteristics.Therefore,such fluids are reliable to use in above stated areas.
基金This study was sponsored by the“Civil Engineering,Brand Major Construction Site of Private Universities of Education Department of Henan Province 2017”(Henan Finance and Education:[2016]119).
文摘This paper investigates the thermal performance of prefabricated exterior walls using the Computational Fluid Dynamics method to reduce energy consumption.The thermal performance of the prefabricated exterior wall was numerically simulated using the software ANSYS Fluent.The composite wall containing the cavity is taken as the research object in this paper after analysis.The simulation suggests that when the cavity thickness is 20 mm and 30 mm,the heat transfer coefficient of the air-sandwich wall is 1.3 and 1.29,respectively.Therefore,the optimal width of the cavity is 20 mm,and the most suitable material is the aerated concrete block.In addition,a comparative analysis is conducted on the cavity temperature in the wall under different conditions.It is proven that an intelligent environment control system can significantly improve thermal efficiency and provide a solid theoretical basis for further research in the external insulation of prefabricated buildings.