The efficiency of energy conversion from mechanical to electrical in AC generators is not entirely optimal,as power losses are converted into heat.Accurate thermal modeling and temperature measurement of advanced elec...The efficiency of energy conversion from mechanical to electrical in AC generators is not entirely optimal,as power losses are converted into heat.Accurate thermal modeling and temperature measurement of advanced electric machines with complex structures are mandatory to confirm their reliability and safe operation.In a unique axial transverse flux switching permanent magnet(ATFSPM)generator,due to its high power density,large stray loss from leakage flux,compact topology,and totally enclosed structure,thermal analysis is of paramount significance.In this paper,thermal modeling and analysis of ATFSPM are carried out in detail using a three-dimensional(3D)finite element analysis(FEA)to evaluate the thermal condition for a precise performance improvement.To begin,all loss sources are accurately derived using 3-D FEA and analytical methods,taking into account the temperature dependence of material properties,and then losses are coupled to the thermal model as heat sources.Afterward,aiming for realistic thermal modelling,the convection heat transfer in the different regions of internal and external areas as well as thin layers of interface gaps between components are all considered.In addition,the prototype of ATFSPM is supplied to validate the accuracy of 3-D FEA temperature prediction.Furthermore,a novel technique is carried out to effectively improve thermal performance,enhance the efficiency,and limit hot-spot temperatures.The steady-state and transient temperature results demonstrate the high accuracy of the thermal modeling,enhance the secure operation of the ATFSPM,and facilitate increased loading utilizing the proposed technique.(1)展开更多
Thermal analysis plays a key role in the online inspection of molten iron quality.Different solidification process of molten iron can be reflected by thermal analysis curves,and silicon is one of important elements af...Thermal analysis plays a key role in the online inspection of molten iron quality.Different solidification process of molten iron can be reflected by thermal analysis curves,and silicon is one of important elements affecting the solidification of molten iron.In this study,FeSi75 was added in one chamber of the dual-chamber sample cup,and the influences of FeSi75 additive on the characteristic values of thermal analysis curves and vermiculating rate were investigated.The results show that with the increase of FeSi75,the start temperature of austenite formation TALfirstly decreases and then increases,but the start temperature of eutectic growth TSEF,the lowest eutectic temperature TEU,temperature at maximum eutectic reaction rate TEM,and highest eutectic temperature TERkeep always an increase.The temperature at final solidification point TEShas little change.The FeSi75 additive has different influences on the vermiculating rate of molten iron with different vermiculation,and the vermiculating rate increases for lower vermiculation molten iron while decreases for higher one.According to the thermal analysis curves obtained by a dual-chamber sample cup with 0.30wt.%FeSi75 additive in one chamber,the vermiculating rate of molten iron can be evaluated by comparing the characteristic values of these curves.The time differenceΔtERcorresponding to the highest eutectic temperature TERhas a closer relationship with the vermiculating rate,and a parabolic regression curve between the time differenceΔtERand vermiculating rateηhas been obtained within the range of 65%to 95%,which is suitable for the qualified melt.展开更多
The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Aut...The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Autodesk Inventor 2017 software. The modelled piston was then imported into Ansys for further analysis. Static structural and thermal analysis were carried out on the pistons of the four different materials namely: Al 413 alloy, Al 384 alloy, Al 390 alloy and Al332 alloy to determine the total deformation, equivalent Von Mises stress, maximum shear stress, and the safety factor. The results of the study revealed that, aluminium 332 alloy piston deformed less compared to the deformations of aluminium 390 alloy piston, aluminium 384 alloy piston and aluminium 413 alloy piston. The induced Von Mises stresses in the pistons of the four different materials were found to be far lower than the yield strengths of all the materials. Hence, all the selected materials including the implementing material have equal properties to withstand the maximum gas load. All the selected materials were observed to have high thermal conductivity enough to be able to withstand the operating temperature in the engine cylinders.展开更多
The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk dur...The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk during emergency braking at a speed of 300 km/h considering airflow cooling were investigated using finite element (FE) and computational fluid dynamics (CFD) methods. All three modes of heat transfer (conduction, convection and radiation) were analyzed along with the design features of the brake assembly and their interfaces. The results suggested that the higher convection coefficients achieved with airflow cooling will not only reduce the maximum temperature in the braking but also reduce the thermal gradients, since heat will be removed faster from hotter parts of the disk. Airflow cooling should be effective to reduce the risk of hot spot formation and disc thermal distortion. The highest temperature after emergency braking was 461 °C and 359 °C without and with considering airflow cooling, respectively. The equivalent stress could reach 269 MPa and 164 MPa without and with considering airflow cooling, respectively. However, the maximum surface stress may exceed the material yield strength during an emergency braking, which may cause a plastic damage accumulation in a brake disk without cooling. The simulation results are consistent with the experimental results well.展开更多
Micro-thermal analysis (μ-TA), with a miniaturized thermo-resistive probe, allows topographic and thermal imaging of surfaces to be carried out and permits localized thermal analysis of materials. In order to estimat...Micro-thermal analysis (μ-TA), with a miniaturized thermo-resistive probe, allows topographic and thermal imaging of surfaces to be carried out and permits localized thermal analysis of materials. In order to estimate the effective volume of material thermally affected during this localized measurement, simulations, using finite element method were used. Several parameters and conditions were considered. So, thermal conductivity was found to be the driving physical parameter in thermal exchanges. Indeed, the evolution of the heat affected zone (HAZ) versus thermal conductivity can well be described by a linear interpolation. Therefore it is possible to estimate the HAZ before experimental measurements. This result is an important progress especially for accurate interphase characterization in heterogeneous materials.展开更多
Thermal analysis technique has been used for a long time,in both ferrous and nonferrous industries for evaluating the metallurgical quality of the liquid metal before casting.However,obtaining a proper microstructure ...Thermal analysis technique has been used for a long time,in both ferrous and nonferrous industries for evaluating the metallurgical quality of the liquid metal before casting.However,obtaining a proper microstructure in a standard cup does not ensure that the microstructure is correct in real parts which may solidify at very different cooling rates.For this study,alloy A356 with different metal quality in terms of modification and grain refinement was tested.Different cooling rates were obtained by using cylindrical test samples with various diameters cast in sand and metallic moulds.The correlation between microstructure features such as grain size,modification rate and secondary dendrite arm spacing (SDAS) measured in the standard thermal analysis cup with those obtained in the cylindrical test parts has been investigated.Thus,knowing the thermal modulus and the mould type it is possible to establish the required grain size and modification rate in the standard cup in order to get a desired structure in a real part.Corrective actions can then be taken in order to improve the metallurgical quality before casting the part.展开更多
Multi-frictional disks are employed to transmit the torque in speeding wetclutch, and the oil thickness within frictional disks could be adjusted for practical outputspeeding. As oil combined with alpha-hydrocarbon or...Multi-frictional disks are employed to transmit the torque in speeding wetclutch, and the oil thickness within frictional disks could be adjusted for practical outputspeeding. As oil combined with alpha-hydrocarbon or polyester is getting widely used as lubricantand the speeding wet clutch works within hydrodynamic lubrication, mixture lubrication, boundarylubrication and contact situation, established the thermal analysis model for investigating thebehavior of frictional disks in speeding wet clutch, which covers the power-law fluid model,Patir-Cheng average flow model, GT asperity contact model, oil film inertia and heat effects, meanenergy equation, and heat conduction equation. The formulas in the model are deduced. The numeralcalculation and analysis for hydrodynamic lubrication and mixture lubrication are executed.Relationships and variations among transmitting torque, mean push pressure, output speed, and loadare presented. Thermal effect should be considered during the hydrodynamic lubrication and largertransmitting torque makes earlier entrance to mixture lubrication.展开更多
With the scale of integration and operation speed of modern ICs increasing,a series of thermo-related problems arise.Hot spots,which are due to the uneven distribution of heat,invalidate some functions of the chip.An ...With the scale of integration and operation speed of modern ICs increasing,a series of thermo-related problems arise.Hot spots,which are due to the uneven distribution of heat,invalidate some functions of the chip.An algorithm is presented to calculate the profile.With the boundary element method,3D problems are converted into 2D ones,so the temperatures of both the chip surface and inner points can be calculated quickly.This algorithm can be used to evaluate the thermal quality of a definite chip.展开更多
The key factor in semi-solid metal processing is the solid fraction at the forming temperature because it affects the microstructure and mechanical properties of the thixoformed components. Though an enormous amount o...The key factor in semi-solid metal processing is the solid fraction at the forming temperature because it affects the microstructure and mechanical properties of the thixoformed components. Though an enormous amount of data exists on the solid fraction-temperature re- lationship in A356 alloy, information regarding the solid fraction evolution characteristics of A356-TiB2 composites is scarce. The present article establishes the temperature-solid fraction correlation in A356 alloy and A356-xTiB2 (x = 2.5wt% and 5wt%) composites using dif- ferential thermal analysis (DTA). The DTA results indicate that the solidification characteristics of the composites exhibited a variation of 2℃ and 3℃ in liquidus temperatures and a variation of 3℃ and 5℃ in solidus temperatures with respect to the base alloy. Moreover, the eutectic growth temperature and the solid fraction(fs) vs. temperature characteristics of the composites were found to be higher than those of the base alloy. The investigation revealed that in-situ formed TiB2 particles in the molten metal introduced more nucleation sites and reduced undercooling.展开更多
The effect of addition of 0.05wt.% to 0.25 wt.% Ca,Zr,Al-FeSi alloy on in-ladle and in-mould inoculation of grey cast irons was investigated.In the present paper,the conclusions drawn are based on thermal analysis.For...The effect of addition of 0.05wt.% to 0.25 wt.% Ca,Zr,Al-FeSi alloy on in-ladle and in-mould inoculation of grey cast irons was investigated.In the present paper,the conclusions drawn are based on thermal analysis.For the solidification pattern,some specific cooling curves characteristics,such as the degree of undercooling at the beginning of eutectic solidif ication and at the end of solidifi cation,as well as the recalescence level,are identif ied to be more influenced by the inoculation technique.The degree of eutectic undercooling of the electrically melted base iron having 0.025% S,0.003% Al and 3.5% Ce is excessively high(39-40℃),generating a relatively high need for inoculation.Under these conditions,the in-mould inoculation has a more signif icant effect compared to ladle inoculation,especially at lower inoculant usage(less than 0.20 wt.%).Generally,the eff iciency of 0.05wt.% -0.15wt.% of alloy for in-mould inoculation is comparable to,or better than,that of 0.15wt.% -0.25wt.% addition in ladle inoculation procedures.In order to secure stable and controlled processes,representative thermal analysis parameters could be used,especially in thin wall grey iron castings production.展开更多
Simultaneous thermal analysis was used to study the influence of Vitamin C as possible chemical additive inhibiting coal oxidation process at low temperature. Some oxidation characteristics of Vitamin C affecting the ...Simultaneous thermal analysis was used to study the influence of Vitamin C as possible chemical additive inhibiting coal oxidation process at low temperature. Some oxidation characteristics of Vitamin C affecting the coal oxidation were investigated at different heating rates. The TG-DSC data show that the impact of Vitamin C on coal oxidation process can be directly evaluated using ignition temperature and critical temperature. Comparison with the effect of water on coal oxidation shows that Vitamin C is more efficient than water. However, the blank experiment conducted with inert a-Al2O3 also suggests that Vitamin C can decompose at about 200 ℃, which limits the usage of Vitamin C on inhibiting coal oxidation.展开更多
In general, during the production of compacted graphite iron (CGI), the active residual magnesium reduces and the effect of inoculation fades after magnesium treatment. In this paper, characteristics of the thermal an...In general, during the production of compacted graphite iron (CGI), the active residual magnesium reduces and the effect of inoculation fades after magnesium treatment. In this paper, characteristics of the thermal analysis curve of CGI are compared with those of ductile iron and grey cast iron. The fading effect on the compacted graphite percentage and thermal analysis curve were also studied. Results indicate that the undercooling of CGI is as low as that of ductile iron, but CGI shows evident recalescence. In fading process, the magnesium element acts with oxygen. For a decrease in magnesium content, both the compacted graphite percentage and the austenitic liquidus temperature increase. The temperature of eutectic undercooling (TEU) decreases before the flake graphite appears. After that, TEU increases quickly, up to as high as 20℃, and then gradually decreases. The evolution of recalescence degree is opposite to that of TEU.展开更多
On the basis of previous research achievements of measuring the solid state nuclear track in apatite by thermal analysis method, the author further proposes the research program to measure the energy deposited by the ...On the basis of previous research achievements of measuring the solid state nuclear track in apatite by thermal analysis method, the author further proposes the research program to measure the energy deposited by the solid state nuclear track contained in zircon, sphene, epidote, apatite and other samples, in order to study the geological age and geothermal history. Compared with the measurement of nuclear track density by etching method, this one does not need to conduct so many processing programs for samples, but can improve the measurement accuracy.展开更多
Practices of IC package reliability testing are reviewed briefly, and the application of transient thermal analysis is examined in great depth. For the design of light sources based on light emitting diode (LED) eff...Practices of IC package reliability testing are reviewed briefly, and the application of transient thermal analysis is examined in great depth. For the design of light sources based on light emitting diode (LED) efficient and accurate reliability testing is required to realize the potential lifetimes of 105 h. Transient thermal analysis is a standard method to determine the transient thermal impedance of semiconductor devices, e.g. power electronics and LEDs. The temperature of the semiconductor junctions is assessed by time-resolved measurement of their forward voltage (Vf). The thermal path in the IC package is resolved by the transient technique in the time domain. This enables analyzing the structural integrity of the semiconductor package. However, to evaluate thermal resistance, one must also measure the dissipated energy of the device (i.e., the thermal load) and the k-factor. This is time consuming, and measurement errors reduce the accuracy. To overcome these limitations, an innovative approach, the relative thermal resistance method, was developed to reduce the measurement effort, increase accuracy and enable automatic data evaluation. This new way of evaluating data simplifies the thermal transient analysis by eliminating measurement of the k-factor and thermal load, i.e. measurement of the lumen flux for LEDs, by normalizing the transient Vf data. This is especially advantageous for reliability testing where changes in the thermal path, like cracks and delaminations, can be determined without measuring the k-factor and thermal load. Different failure modes can be separated in the time domain. The sensitivity of the method is demonstrated by its application to high- power white InGaN LEDs. For detailed analysis and identification of the failure mode of the LED packages, the transient signals are simulated by time-resolved finite element (FE) simulations. Using the new approach, the transient thermal analysis is enhanced to a powerful tool for reliability investigation of semiconductor packages in accelerated lifetime tests and for inline inspection. This enables automatic data analysis of the transient thermal data required for processing a large amount of data in production and reliability testing. Based on the method, the integrity of LED packages can be tested by inline, outgoing inspection and the lifetime prediction of the products is improved.展开更多
A dinuclear complex Cd2(dnba)4(pyridine)4 (dnba = 3,5-dinitrobenzoate) has been synthesized by hydrothermal method and characterized by X-ray single-crystal diffraction, elemental analysis, FT-IR spectroscopy, D...A dinuclear complex Cd2(dnba)4(pyridine)4 (dnba = 3,5-dinitrobenzoate) has been synthesized by hydrothermal method and characterized by X-ray single-crystal diffraction, elemental analysis, FT-IR spectroscopy, DSC and TG-DTG techniques. The complex with empirical formula C48H32Cd2NI2024 (Mr = 692.83) crystallizes in monoclinic, space group P21/n with a - 12.0344(14), b = 10.5752(13), c = 21.578(3) A, β = 104.150(2)°, V = 2662.8(6) A^3, Z = 2, D, = 1.728 g/cm^3,μ(MoKa) = 0.897 mm^-1, F(000) = 1384, S = 1.016 and (△/σ)max = 0.001. R = 0.0638 and wR = 0.0737 for all data; the final R = 0.0337 and wR = 0.0644. In this complex, four carboxylates are bidentate-or chelate-coordinated with the Cd(Ⅱ) centers to give the dinuclear structure. The other coordination positions of Cd(Ⅱ) are occupied by the lone pair electrons from N of four pyridines. Thermal analyses DSC and TG-DTG have been used to determine the thermal decomposition mechanism of the title complex.展开更多
Quantitative prediction of phase content is of great importance to control and optimize the heat treat-ment process of steels.In this work,a model for predicting the phase content of tempered high carbon steels was pr...Quantitative prediction of phase content is of great importance to control and optimize the heat treat-ment process of steels.In this work,a model for predicting the phase content of tempered high carbon steels was proposed by taking a martensitic 100Cr6 bearing steel as a model case.The microstructural transformations during tempering were studied using thermal analysis,transmission electron microscopy(TEM),and X-ray diffraction(XRD).Kinetics analysis of thermal evolution by employing the isoconver-sional method,and assisted by TEM and XRD characterization,were performed to quantitatively estimate the volume fractions of different phases after tempering.A series of isothermal tempering experiments were designed to verify the model.The predicted results were in good agreement with the experimental results of XRD and electrolytic extraction measurements.展开更多
The Mg-A1 hydrogen storage alloy was suc- cessfully prepared by combustion synthesis (CS) method. The formation of alloy phases during the CS process was studied using X-ray diffraction (XRD), scanning electron mi...The Mg-A1 hydrogen storage alloy was suc- cessfully prepared by combustion synthesis (CS) method. The formation of alloy phases during the CS process was studied using X-ray diffraction (XRD), scanning electron microscope (SEM), and differential scanning calorimetry (DSC). When the time increases from 0, 0.5, 1.0 to 2.0 h at 733 K, the products are Mg and A1; Mg2A13, Mg and A1; Mgl7All2, Mg2A13; and Mg; and eventually only MgI7A112, respectively. Combined with three peaks in the DSC traces, it is concluded that the formation of MglyAll2 during the CS includes three processes, namely, the formation of MgzA13 first; then the unsaturated solid solution, MglvAla2; and finally the complete MglvA112 alloy. The formation of MgzA13 prior to MglvA112 in this work is different from those prepared by mechanical alloying. This is thought to be related to the instant high temperature during the ther- mal explosion of CS.展开更多
The liquidus temperature of the Fe-C-Mn-Si-Al alloy was investigated by using an improved differential thermal analysis method, which effectively tackles down the manganese evaporation in the course of differential th...The liquidus temperature of the Fe-C-Mn-Si-Al alloy was investigated by using an improved differential thermal analysis method, which effectively tackles down the manganese evaporation in the course of differential thermal analysis experiments for high-manganese twinning-induced plasticity (TWIP) steels at high temperature. It was found that the liquidus temperature is more strongly dependent on the silicon content than expected. By considering the high manganese content in the Fe-C-Mn-Si-Al TWIP steels, the effect of carbon content on the depression coefficient of manganese should not be ignored, which has considerable impact on the liquidus temperature. An equation was summarized to effectively predict the liquidus temperature for a wide range of high-manganese steels. Meanwhile, the prediction results of the equation are consistent with the experimental results, as well as those results acquired from ThermoCalc.展开更多
An innovative flat heat pipe radiator was put forward, and it has the features of high efficiency of heat dissipation, compact construction, low thermal resistance, light weight, low cost, and anti-dust-deposition. Th...An innovative flat heat pipe radiator was put forward, and it has the features of high efficiency of heat dissipation, compact construction, low thermal resistance, light weight, low cost, and anti-dust-deposition. The thermal analysis of the flat heat pipe radiator for cooling high-power light emitting diode (LED) array was conducted. The thermal characteristics of the flat heat pipe radiator under the different heat loads and incline angles were investigated experimentally in natural convection. An electro-thermal conversion method was used to measure the junction temperature of the LED chips. It is found that the integral temperature distribution of the flat heat pipe radiator is reasonable and uniform. The total thermal resistance of the flat heat pipe radiator varies in the range of 0.38-0.45 K/W. The junction temperatures of LED chips with the flat heat pipe radiator and with the aluminum board at the same forward current of 0.35 A are 52.5 and 75.2 ℃, respectively.展开更多
Two sets of neutral beam injectors(NBI-1 and NBI-2) have been mounted on the EAST tokamak since 2014. NBI-1 and NBI-2 are co-direction and counter-direction, respectively. As with indepth physics and engineering study...Two sets of neutral beam injectors(NBI-1 and NBI-2) have been mounted on the EAST tokamak since 2014. NBI-1 and NBI-2 are co-direction and counter-direction, respectively. As with indepth physics and engineering study of EAST, the ability of long pulse beam injection should be required in the NBI system. For NBIs, the most important and difficult thing that should be overcome is heat removal capacity of heat loaded components for long-pulse beam extraction. In this article, the thermal state of the components of EAST NBI is investigated using water flow calorimetry and thermocouple temperatures. Results show that(1) operation parameters have an obvious influence on the heat deposited on the inner components of the beamline,(2) a suitable operation parameter can decrease the heat loading effectively and obtain longer beam pulse length, and(3) under the cooling water pressure of 0.25 MPa, the predicted maximum beam pulse length will be up to 260 s with 50 keV beam energy by a duty factor of 0.5. The results present that, in this regard, the EAST NBI-1 system has the ability of long-pulse beam injection.展开更多
基金supported by research grants of the Iran National Science Foundation(INSF)under grant No.98002866。
文摘The efficiency of energy conversion from mechanical to electrical in AC generators is not entirely optimal,as power losses are converted into heat.Accurate thermal modeling and temperature measurement of advanced electric machines with complex structures are mandatory to confirm their reliability and safe operation.In a unique axial transverse flux switching permanent magnet(ATFSPM)generator,due to its high power density,large stray loss from leakage flux,compact topology,and totally enclosed structure,thermal analysis is of paramount significance.In this paper,thermal modeling and analysis of ATFSPM are carried out in detail using a three-dimensional(3D)finite element analysis(FEA)to evaluate the thermal condition for a precise performance improvement.To begin,all loss sources are accurately derived using 3-D FEA and analytical methods,taking into account the temperature dependence of material properties,and then losses are coupled to the thermal model as heat sources.Afterward,aiming for realistic thermal modelling,the convection heat transfer in the different regions of internal and external areas as well as thin layers of interface gaps between components are all considered.In addition,the prototype of ATFSPM is supplied to validate the accuracy of 3-D FEA temperature prediction.Furthermore,a novel technique is carried out to effectively improve thermal performance,enhance the efficiency,and limit hot-spot temperatures.The steady-state and transient temperature results demonstrate the high accuracy of the thermal modeling,enhance the secure operation of the ATFSPM,and facilitate increased loading utilizing the proposed technique.(1)
基金the financial support of the State Key Laboratory of Engine Reliability(skler-202105)。
文摘Thermal analysis plays a key role in the online inspection of molten iron quality.Different solidification process of molten iron can be reflected by thermal analysis curves,and silicon is one of important elements affecting the solidification of molten iron.In this study,FeSi75 was added in one chamber of the dual-chamber sample cup,and the influences of FeSi75 additive on the characteristic values of thermal analysis curves and vermiculating rate were investigated.The results show that with the increase of FeSi75,the start temperature of austenite formation TALfirstly decreases and then increases,but the start temperature of eutectic growth TSEF,the lowest eutectic temperature TEU,temperature at maximum eutectic reaction rate TEM,and highest eutectic temperature TERkeep always an increase.The temperature at final solidification point TEShas little change.The FeSi75 additive has different influences on the vermiculating rate of molten iron with different vermiculation,and the vermiculating rate increases for lower vermiculation molten iron while decreases for higher one.According to the thermal analysis curves obtained by a dual-chamber sample cup with 0.30wt.%FeSi75 additive in one chamber,the vermiculating rate of molten iron can be evaluated by comparing the characteristic values of these curves.The time differenceΔtERcorresponding to the highest eutectic temperature TERhas a closer relationship with the vermiculating rate,and a parabolic regression curve between the time differenceΔtERand vermiculating rateηhas been obtained within the range of 65%to 95%,which is suitable for the qualified melt.
文摘The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Autodesk Inventor 2017 software. The modelled piston was then imported into Ansys for further analysis. Static structural and thermal analysis were carried out on the pistons of the four different materials namely: Al 413 alloy, Al 384 alloy, Al 390 alloy and Al332 alloy to determine the total deformation, equivalent Von Mises stress, maximum shear stress, and the safety factor. The results of the study revealed that, aluminium 332 alloy piston deformed less compared to the deformations of aluminium 390 alloy piston, aluminium 384 alloy piston and aluminium 413 alloy piston. The induced Von Mises stresses in the pistons of the four different materials were found to be far lower than the yield strengths of all the materials. Hence, all the selected materials including the implementing material have equal properties to withstand the maximum gas load. All the selected materials were observed to have high thermal conductivity enough to be able to withstand the operating temperature in the engine cylinders.
基金Projects (50872018, 50902018) supported by the National Natural Science Foundation of ChinaProject (1099043) supported by the Science and Technology in Guangxi Province, ChinaProject (090302005) supported by the Basic Research Fund for Northeastern University, China
文摘The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk during emergency braking at a speed of 300 km/h considering airflow cooling were investigated using finite element (FE) and computational fluid dynamics (CFD) methods. All three modes of heat transfer (conduction, convection and radiation) were analyzed along with the design features of the brake assembly and their interfaces. The results suggested that the higher convection coefficients achieved with airflow cooling will not only reduce the maximum temperature in the braking but also reduce the thermal gradients, since heat will be removed faster from hotter parts of the disk. Airflow cooling should be effective to reduce the risk of hot spot formation and disc thermal distortion. The highest temperature after emergency braking was 461 °C and 359 °C without and with considering airflow cooling, respectively. The equivalent stress could reach 269 MPa and 164 MPa without and with considering airflow cooling, respectively. However, the maximum surface stress may exceed the material yield strength during an emergency braking, which may cause a plastic damage accumulation in a brake disk without cooling. The simulation results are consistent with the experimental results well.
文摘Micro-thermal analysis (μ-TA), with a miniaturized thermo-resistive probe, allows topographic and thermal imaging of surfaces to be carried out and permits localized thermal analysis of materials. In order to estimate the effective volume of material thermally affected during this localized measurement, simulations, using finite element method were used. Several parameters and conditions were considered. So, thermal conductivity was found to be the driving physical parameter in thermal exchanges. Indeed, the evolution of the heat affected zone (HAZ) versus thermal conductivity can well be described by a linear interpolation. Therefore it is possible to estimate the HAZ before experimental measurements. This result is an important progress especially for accurate interphase characterization in heterogeneous materials.
基金supported by the Basque Government (Project:Manufacturing 0.0 Etortek 2008)Spanish Government (Singular Strategic Project,PSE integrAuto)
文摘Thermal analysis technique has been used for a long time,in both ferrous and nonferrous industries for evaluating the metallurgical quality of the liquid metal before casting.However,obtaining a proper microstructure in a standard cup does not ensure that the microstructure is correct in real parts which may solidify at very different cooling rates.For this study,alloy A356 with different metal quality in terms of modification and grain refinement was tested.Different cooling rates were obtained by using cylindrical test samples with various diameters cast in sand and metallic moulds.The correlation between microstructure features such as grain size,modification rate and secondary dendrite arm spacing (SDAS) measured in the standard thermal analysis cup with those obtained in the cylindrical test parts has been investigated.Thus,knowing the thermal modulus and the mould type it is possible to establish the required grain size and modification rate in the standard cup in order to get a desired structure in a real part.Corrective actions can then be taken in order to improve the metallurgical quality before casting the part.
文摘Multi-frictional disks are employed to transmit the torque in speeding wetclutch, and the oil thickness within frictional disks could be adjusted for practical outputspeeding. As oil combined with alpha-hydrocarbon or polyester is getting widely used as lubricantand the speeding wet clutch works within hydrodynamic lubrication, mixture lubrication, boundarylubrication and contact situation, established the thermal analysis model for investigating thebehavior of frictional disks in speeding wet clutch, which covers the power-law fluid model,Patir-Cheng average flow model, GT asperity contact model, oil film inertia and heat effects, meanenergy equation, and heat conduction equation. The formulas in the model are deduced. The numeralcalculation and analysis for hydrodynamic lubrication and mixture lubrication are executed.Relationships and variations among transmitting torque, mean push pressure, output speed, and loadare presented. Thermal effect should be considered during the hydrodynamic lubrication and largertransmitting torque makes earlier entrance to mixture lubrication.
文摘With the scale of integration and operation speed of modern ICs increasing,a series of thermo-related problems arise.Hot spots,which are due to the uneven distribution of heat,invalidate some functions of the chip.An algorithm is presented to calculate the profile.With the boundary element method,3D problems are converted into 2D ones,so the temperatures of both the chip surface and inner points can be calculated quickly.This algorithm can be used to evaluate the thermal quality of a definite chip.
基金financial support from the Indian Institute of Technology Bhubaneswar under the SEED project grant for fabricating the "cooling slope casting" experimental setupthe support extended by Central Research Facility (CRF), Indian Institute of Technology Kharagpur, toward the facility for conducting DTA experiments
文摘The key factor in semi-solid metal processing is the solid fraction at the forming temperature because it affects the microstructure and mechanical properties of the thixoformed components. Though an enormous amount of data exists on the solid fraction-temperature re- lationship in A356 alloy, information regarding the solid fraction evolution characteristics of A356-TiB2 composites is scarce. The present article establishes the temperature-solid fraction correlation in A356 alloy and A356-xTiB2 (x = 2.5wt% and 5wt%) composites using dif- ferential thermal analysis (DTA). The DTA results indicate that the solidification characteristics of the composites exhibited a variation of 2℃ and 3℃ in liquidus temperatures and a variation of 3℃ and 5℃ in solidus temperatures with respect to the base alloy. Moreover, the eutectic growth temperature and the solid fraction(fs) vs. temperature characteristics of the composites were found to be higher than those of the base alloy. The investigation revealed that in-situ formed TiB2 particles in the molten metal introduced more nucleation sites and reduced undercooling.
文摘The effect of addition of 0.05wt.% to 0.25 wt.% Ca,Zr,Al-FeSi alloy on in-ladle and in-mould inoculation of grey cast irons was investigated.In the present paper,the conclusions drawn are based on thermal analysis.For the solidification pattern,some specific cooling curves characteristics,such as the degree of undercooling at the beginning of eutectic solidif ication and at the end of solidifi cation,as well as the recalescence level,are identif ied to be more influenced by the inoculation technique.The degree of eutectic undercooling of the electrically melted base iron having 0.025% S,0.003% Al and 3.5% Ce is excessively high(39-40℃),generating a relatively high need for inoculation.Under these conditions,the in-mould inoculation has a more signif icant effect compared to ladle inoculation,especially at lower inoculant usage(less than 0.20 wt.%).Generally,the eff iciency of 0.05wt.% -0.15wt.% of alloy for in-mould inoculation is comparable to,or better than,that of 0.15wt.% -0.25wt.% addition in ladle inoculation procedures.In order to secure stable and controlled processes,representative thermal analysis parameters could be used,especially in thin wall grey iron castings production.
基金Funded by the National Natural Science Foundation of China(No.51134020)the Shenhua Group Corporation Limited(No.U1361213)+2 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Natural Science Foundation of Jiangsu(No.BK20141132)the Fundamental Research Funds for the Central Universities(No.2014QNB01)
文摘Simultaneous thermal analysis was used to study the influence of Vitamin C as possible chemical additive inhibiting coal oxidation process at low temperature. Some oxidation characteristics of Vitamin C affecting the coal oxidation were investigated at different heating rates. The TG-DSC data show that the impact of Vitamin C on coal oxidation process can be directly evaluated using ignition temperature and critical temperature. Comparison with the effect of water on coal oxidation shows that Vitamin C is more efficient than water. However, the blank experiment conducted with inert a-Al2O3 also suggests that Vitamin C can decompose at about 200 ℃, which limits the usage of Vitamin C on inhibiting coal oxidation.
文摘In general, during the production of compacted graphite iron (CGI), the active residual magnesium reduces and the effect of inoculation fades after magnesium treatment. In this paper, characteristics of the thermal analysis curve of CGI are compared with those of ductile iron and grey cast iron. The fading effect on the compacted graphite percentage and thermal analysis curve were also studied. Results indicate that the undercooling of CGI is as low as that of ductile iron, but CGI shows evident recalescence. In fading process, the magnesium element acts with oxygen. For a decrease in magnesium content, both the compacted graphite percentage and the austenitic liquidus temperature increase. The temperature of eutectic undercooling (TEU) decreases before the flake graphite appears. After that, TEU increases quickly, up to as high as 20℃, and then gradually decreases. The evolution of recalescence degree is opposite to that of TEU.
基金supported by the National Natural Science Foundation of China(No.11275237)Natural Science Foundation of Shaanxi Province,China(No.SJ08-A26)
文摘On the basis of previous research achievements of measuring the solid state nuclear track in apatite by thermal analysis method, the author further proposes the research program to measure the energy deposited by the solid state nuclear track contained in zircon, sphene, epidote, apatite and other samples, in order to study the geological age and geothermal history. Compared with the measurement of nuclear track density by etching method, this one does not need to conduct so many processing programs for samples, but can improve the measurement accuracy.
文摘Practices of IC package reliability testing are reviewed briefly, and the application of transient thermal analysis is examined in great depth. For the design of light sources based on light emitting diode (LED) efficient and accurate reliability testing is required to realize the potential lifetimes of 105 h. Transient thermal analysis is a standard method to determine the transient thermal impedance of semiconductor devices, e.g. power electronics and LEDs. The temperature of the semiconductor junctions is assessed by time-resolved measurement of their forward voltage (Vf). The thermal path in the IC package is resolved by the transient technique in the time domain. This enables analyzing the structural integrity of the semiconductor package. However, to evaluate thermal resistance, one must also measure the dissipated energy of the device (i.e., the thermal load) and the k-factor. This is time consuming, and measurement errors reduce the accuracy. To overcome these limitations, an innovative approach, the relative thermal resistance method, was developed to reduce the measurement effort, increase accuracy and enable automatic data evaluation. This new way of evaluating data simplifies the thermal transient analysis by eliminating measurement of the k-factor and thermal load, i.e. measurement of the lumen flux for LEDs, by normalizing the transient Vf data. This is especially advantageous for reliability testing where changes in the thermal path, like cracks and delaminations, can be determined without measuring the k-factor and thermal load. Different failure modes can be separated in the time domain. The sensitivity of the method is demonstrated by its application to high- power white InGaN LEDs. For detailed analysis and identification of the failure mode of the LED packages, the transient signals are simulated by time-resolved finite element (FE) simulations. Using the new approach, the transient thermal analysis is enhanced to a powerful tool for reliability investigation of semiconductor packages in accelerated lifetime tests and for inline inspection. This enables automatic data analysis of the transient thermal data required for processing a large amount of data in production and reliability testing. Based on the method, the integrity of LED packages can be tested by inline, outgoing inspection and the lifetime prediction of the products is improved.
基金The project was supported by the National Natural Science Foundation of China (20471008) and the Fundamental Research Foundation of Beijing Institute of Technology (BIT-UBF-200302B01&BIT-UBF-200502B4221)
文摘A dinuclear complex Cd2(dnba)4(pyridine)4 (dnba = 3,5-dinitrobenzoate) has been synthesized by hydrothermal method and characterized by X-ray single-crystal diffraction, elemental analysis, FT-IR spectroscopy, DSC and TG-DTG techniques. The complex with empirical formula C48H32Cd2NI2024 (Mr = 692.83) crystallizes in monoclinic, space group P21/n with a - 12.0344(14), b = 10.5752(13), c = 21.578(3) A, β = 104.150(2)°, V = 2662.8(6) A^3, Z = 2, D, = 1.728 g/cm^3,μ(MoKa) = 0.897 mm^-1, F(000) = 1384, S = 1.016 and (△/σ)max = 0.001. R = 0.0638 and wR = 0.0737 for all data; the final R = 0.0337 and wR = 0.0644. In this complex, four carboxylates are bidentate-or chelate-coordinated with the Cd(Ⅱ) centers to give the dinuclear structure. The other coordination positions of Cd(Ⅱ) are occupied by the lone pair electrons from N of four pyridines. Thermal analyses DSC and TG-DTG have been used to determine the thermal decomposition mechanism of the title complex.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51605355 and 52104381)the National Key R&D Program of China(No.2020YFA0714900)+2 种基金“111 Project”(No.B17034)the Innovative Research TeamDevelopment Program of Ministry of Education of China(No.IRT_17R83)the China Postdoctoral Science Foundation(No.2021M702539)and the State Key Laboratory for Advanced Metals and Materials.
文摘Quantitative prediction of phase content is of great importance to control and optimize the heat treat-ment process of steels.In this work,a model for predicting the phase content of tempered high carbon steels was proposed by taking a martensitic 100Cr6 bearing steel as a model case.The microstructural transformations during tempering were studied using thermal analysis,transmission electron microscopy(TEM),and X-ray diffraction(XRD).Kinetics analysis of thermal evolution by employing the isoconver-sional method,and assisted by TEM and XRD characterization,were performed to quantitatively estimate the volume fractions of different phases after tempering.A series of isothermal tempering experiments were designed to verify the model.The predicted results were in good agreement with the experimental results of XRD and electrolytic extraction measurements.
基金financially supported by the National Natural Science Foundation of China(Nos.51071085 and 51171079)Specialized Research Fund for the Doctoral Program of High Education(No.20093221110008)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The Mg-A1 hydrogen storage alloy was suc- cessfully prepared by combustion synthesis (CS) method. The formation of alloy phases during the CS process was studied using X-ray diffraction (XRD), scanning electron microscope (SEM), and differential scanning calorimetry (DSC). When the time increases from 0, 0.5, 1.0 to 2.0 h at 733 K, the products are Mg and A1; Mg2A13, Mg and A1; Mgl7All2, Mg2A13; and Mg; and eventually only MgI7A112, respectively. Combined with three peaks in the DSC traces, it is concluded that the formation of MglyAll2 during the CS includes three processes, namely, the formation of MgzA13 first; then the unsaturated solid solution, MglvAla2; and finally the complete MglvA112 alloy. The formation of MgzA13 prior to MglvA112 in this work is different from those prepared by mechanical alloying. This is thought to be related to the instant high temperature during the ther- mal explosion of CS.
基金It is gratefully acknowledged that the work presented in this paper has been supported by the Chair of Ferrous Metallurgy, Montanuniversitat Leoben, National Natural Science Foundation of China (No. 51704083), Education Department Foundation of Guizhou Province of China (No. [20171118) and Research Foundation for Talents of Guizhou University (No. 201628). The author would like to thank Prof. Christian Bernhard, Prof. Johannes Schenk, Dr. Peter Presoly, Dr. Susanne Michelic, Bernd Lederhaas and Gerhard Wieser for their support of the research.
文摘The liquidus temperature of the Fe-C-Mn-Si-Al alloy was investigated by using an improved differential thermal analysis method, which effectively tackles down the manganese evaporation in the course of differential thermal analysis experiments for high-manganese twinning-induced plasticity (TWIP) steels at high temperature. It was found that the liquidus temperature is more strongly dependent on the silicon content than expected. By considering the high manganese content in the Fe-C-Mn-Si-Al TWIP steels, the effect of carbon content on the depression coefficient of manganese should not be ignored, which has considerable impact on the liquidus temperature. An equation was summarized to effectively predict the liquidus temperature for a wide range of high-manganese steels. Meanwhile, the prediction results of the equation are consistent with the experimental results, as well as those results acquired from ThermoCalc.
基金Project(50876016) support by the National Natural Science Foundation of China
文摘An innovative flat heat pipe radiator was put forward, and it has the features of high efficiency of heat dissipation, compact construction, low thermal resistance, light weight, low cost, and anti-dust-deposition. The thermal analysis of the flat heat pipe radiator for cooling high-power light emitting diode (LED) array was conducted. The thermal characteristics of the flat heat pipe radiator under the different heat loads and incline angles were investigated experimentally in natural convection. An electro-thermal conversion method was used to measure the junction temperature of the LED chips. It is found that the integral temperature distribution of the flat heat pipe radiator is reasonable and uniform. The total thermal resistance of the flat heat pipe radiator varies in the range of 0.38-0.45 K/W. The junction temperatures of LED chips with the flat heat pipe radiator and with the aluminum board at the same forward current of 0.35 A are 52.5 and 75.2 ℃, respectively.
文摘Two sets of neutral beam injectors(NBI-1 and NBI-2) have been mounted on the EAST tokamak since 2014. NBI-1 and NBI-2 are co-direction and counter-direction, respectively. As with indepth physics and engineering study of EAST, the ability of long pulse beam injection should be required in the NBI system. For NBIs, the most important and difficult thing that should be overcome is heat removal capacity of heat loaded components for long-pulse beam extraction. In this article, the thermal state of the components of EAST NBI is investigated using water flow calorimetry and thermocouple temperatures. Results show that(1) operation parameters have an obvious influence on the heat deposited on the inner components of the beamline,(2) a suitable operation parameter can decrease the heat loading effectively and obtain longer beam pulse length, and(3) under the cooling water pressure of 0.25 MPa, the predicted maximum beam pulse length will be up to 260 s with 50 keV beam energy by a duty factor of 0.5. The results present that, in this regard, the EAST NBI-1 system has the ability of long-pulse beam injection.