Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian Univers...Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian University of Technology,Dalian 116024,Liaoning Province,China.展开更多
Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular st...Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular structure and luminescence properties,TADF molecules are far from meeting the needs of practical applications in terms of variety and number.In this paper,three twisted TADF molecules are studied and their photophysical properties are theoretically predicted based on the thermal vibrational correlation function method combined with multiscale calculations.The results show that all the molecules exhibit fast reverse intersystem crossing(RISC)rates(kRISC),predicting their TADF luminescence properties.In addition,the binding of DHPAzSi as the donor unit with different acceptors can change the dihedral angle between the ground and excited states,and the planarity of the acceptors is positively correlated with the reorganization energy,a property that has a strong influence on the non-radiative process.Furthermore,a decrease in the energy of the molecular charge transfer state and an increase in the kRISC were observed in the films.This study not only provides a reliable explanation for the observed experimental results,but also offers valuable insights that can guide the design of future TADF molecules.展开更多
It has been experimentally observed that,in the perforation of metal plates by a flat-nosed projectile,there exists a plateau phenomenon where the ballistic limit increases slightly with increasing plate thickness,whi...It has been experimentally observed that,in the perforation of metal plates by a flat-nosed projectile,there exists a plateau phenomenon where the ballistic limit increases slightly with increasing plate thickness,which is related to a change in the mode of failure.No theoretical model has so far explained this phenomenon satisfactorily.This paper presents a combined numerical and theoretical study on the perforation of 2024-T351 aluminum plates struck by flat-nosed projectiles.First,numerical simulations are performed to investigate the failure mechanisms/deformation modes of the aluminum plates.Then,a theoretical model is proposed based on the numerical results and the experimental observations within a unified framework.The model takes into account the main energy absorbing mechanisms and the corresponding energies absorbed are determined analytically.In particular,a dimensionless equation is suggested to describe the relationship between global deformations and impact velocity.It transpires that the model predictions are in good agreement with the test data and the numerical results for the perforation of 2024-T351 aluminum plates struck by rigid flat-nosed projectiles in terms of residual velocity,ballistic limit,relationship between global deformations and impact velocity,and transition of failure modes.It also transpires that the present model can predict the“plateau”phenomenon,which shows a slight increase in ballistic limit as plate thickness increases.Furthermore,the energy absorption mechanisms are discussed on the basis of the theoretical analysis.展开更多
Objective:To explore the obstructive factors in the behavior of medical staff during the implementation of respiratory rehabilitation process,and to provide a basis for the rehabilitation management intervention of CO...Objective:To explore the obstructive factors in the behavior of medical staff during the implementation of respiratory rehabilitation process,and to provide a basis for the rehabilitation management intervention of COPD.Methods:A descriptive nature research method was adopted.An interview outline was formulated based on the theoretical domain framework.From October to December 2024,15 medical staff from the respiratory department of a tertiary hospital in Shaanxi Province were selected for semi-structured interviews.The interview data were analyzed using the Colaizzi 7-step analysis method.Result:The analysis of this study found that the obstructive factors for medical staff to implement respiratory rehabilitation include five theoretical domains.The problems are respectively the lack of knowledge about respiratory rehabilitation and insufficient training intensity,the insufficient self-recognition of implementing respiratory rehabilitation,the low awareness rate of patients and the low cooperation degree,the insufficient provision of instruments and facilities,the lack of rehabilitation training venues and respiratory rehabilitation clinics,and the lack of scientific and standardized respiratory rehabilitation management processes.Conclusion:There are many obstructive factors affecting the implementation of respiratory rehabilitation by medical staff.Clinical managers should take corresponding measures,continuously improve the rehabilitation management strategies for COPD,and promote the clinical application of the best evidence for respiratory rehabilitation.展开更多
The double-sided lapping process is extensively employed in the manufacturing of wafers,optical windows,and seal rings due to its high efficiency and ability to achieve precise flatness.However,limited research has ex...The double-sided lapping process is extensively employed in the manufacturing of wafers,optical windows,and seal rings due to its high efficiency and ability to achieve precise flatness.However,limited research has explored the thickness uniformity among different workpieces after double-sided lapping,and the underlying mechanism remains unclear.To address the demand for higher precision,this paper first analyzed the relative kinematic model between the workpiece and the lapping plate to clarify the causes of thickness variations among workpieces after double-sided lapping.Subsequently,a finite element method(FEM)model was developed to account for the pressure distribution on the workpiece surfaces at the initial stage of the process.The results indicate that the number of workpieces influences the final thickness variation.Then,various sets of thin copper plates with different thicknesses were lapped,and the findings revealed that five copper plates processed simultaneously exhibited more uniform thickness compared to the three plates.The experimental results align well with the theoretical analysis.Ultimately,a thickness variation of less than 6μm was achieved on five copper plates measuringΦ100×2.9 mm.This study presents a comprehensive analysis of the mechanisms influencing thickness uniformity in the double-sided lapping process and provides practical guidelines for optimizing the process to achieve stringent precision standards in industrial applications.展开更多
Marx scientifically summarized the experience and lessons of the Paris Commune,deeply exposed the root causes of bourgeois corruption,and emphasized the purity and advancement of the construction of proletarian politi...Marx scientifically summarized the experience and lessons of the Paris Commune,deeply exposed the root causes of bourgeois corruption,and emphasized the purity and advancement of the construction of proletarian political parties and political power.The dictatorship of the proletariat puts forward the ideas of cheap government that eradicate corruption,realizes that the people are the masters of the country,implements democratic supervision of elections,simplifies the construction of institutions,lowers governance costs,and achieves higher efficiency.A deep understanding of the theoretical characteristics of Marx’s thoughts on integrity,democracy,and honor,and a profound clarification of the practical significance of Marx’s ideology on clean governance,combined with practical practice,will help promote the construction of a new system of anti-corruption and incorruption in our country,and will benefit our contemporary services.The construction of a type-oriented government system is conducive to deepening the construction of China’s national legal system.展开更多
Heterostructures of organic semi-conductors and transition metal dichalcogenides(TMDs)are viable candidates for superior optoelec-tronic devices.Photoinduced inter-facial charge transfer is crucial for the performance...Heterostructures of organic semi-conductors and transition metal dichalcogenides(TMDs)are viable candidates for superior optoelec-tronic devices.Photoinduced inter-facial charge transfer is crucial for the performance efficiency of such devices,yet the underlying mecha-nism,especially the roles of optical-ly dark triplets and spatially sepa-rated charge transfer states,is poorly understood.In the present work,we obtain the struc-tures of distinct excited states and investigate how they are involved in the charge transfer process at the Pd-octaethylporphyrin(PdOEP)and WS_(2) interface in terms of their energies and couplings.The results show that electron transfer from the triplet PdOEP formed via intersystem crossing prevails over direct electron transfer from the singlet(two orders of magnitude faster).Further analysis reveals that the relatively higher rate of triplet electron transfer compared to singlet electron transfer is mainly attributed to a smaller reorganization energy,which is dominated by the out-of-plane vibrations of the organic component.The work emphasizes the important roles of the optically dark triplets in the electron transfer of the PdOEP@WS_(2) heterostructure,and provides valuable theoretical insights for further improv-ing the optoelectronic performance of TMD-based devices.展开更多
This study investigates the intersystem crossing(ISC)mechanism in donor-acceptor(D-A)type distyryl-BODIPY photosensitizers,including previously reported M1(benzene donor),M2,M3(phenothiazine donors),and newly predicte...This study investigates the intersystem crossing(ISC)mechanism in donor-acceptor(D-A)type distyryl-BODIPY photosensitizers,including previously reported M1(benzene donor),M2,M3(phenothiazine donors),and newly predicted M4(triphenylamine donor),M5-M7(nitrogen-containing aliphatic rings with thiophene donors).Using computational chemistry,we analyzed their geometric configurations,spectral properties,spin-orbit coupling,and electron-hole orbitals.We found that S_(2) is a charge transfer singlet state(^(1)CT),T2is a locally excited triplet state(^(3)LE),and the S_(2)→T_(2)transition is the main ISC pathway in M2-M7,following the ^(1)CT→^(3)LE mechanism.M5-M7 show near-vertical dihedral angles between donor and acceptor in the S_(2) state relative to M2-M4,facilitating charge transfer.The strain energies in the nitrogen-containing rings of M5-M7 affect oxidation potentials and ISC.M5,with the highest strain energy,shows the lowest oxidation potential,smaller△_(ES2-T2),highest SOC,and fastest kisc,making it the most efficient predicted singlet oxygen producer.This research clarifies the structure-performance relationships of near-infrared D-A type distyryl-BODIPY photosensitizers and provides a theoretical foundation for developing heavy-atom-free photosensitizers with tuned fluorescence quantum yield and singlet oxygen quantum yield.展开更多
Hydraulic fracture growth is significantly influenced by the minimum horizontal principal stress gradient and the fracturing fluid pressure gradient.However,these gradients are often neglected in scaled physical model...Hydraulic fracture growth is significantly influenced by the minimum horizontal principal stress gradient and the fracturing fluid pressure gradient.However,these gradients are often neglected in scaled physical modeling experiments due to difficulties in reproducing them.This study uses centrifugal hypergravity to simulate both gradients and investigate their effects on fracture propagation.Artificial mortar specimens(ϕ200 mm×400 mm)are fractured under 1g(normal gravity),50g,and 100g.Results show that compared to 1g,fractures under 50g and 100g exhibit increasingly uneven propagation,with higher g-values leading to greater asymmetry.To interpret this,a theoretical analysis based on fracture mechanics is conducted.When the fluid pressure gradient exceeds the stress gradient,a positive net gradient is generated,increasing net pressure at the lower fracture tip.This raises the stress intensity factor at the lower tip,promoting downward growth.As g increases,the disparity becomes more significant,resulting in greater fracture deviation.In conclusion,this study,for the first time,has verified and explained that the net gradient can change the propagation of hydraulic fractures,providing important guidance for wellbore placement under stress gradients.展开更多
This study proposes a framework for the concept of“new quality productive forces”in the ice and snow economy(ISE)as a strategic response to global climate change and the demands of technological and industrial trans...This study proposes a framework for the concept of“new quality productive forces”in the ice and snow economy(ISE)as a strategic response to global climate change and the demands of technological and industrial transformation for high-quality development.These new quality productive forces in the ISE have developed alongside the zonal distribution of natural resources,strictly adhere to ecological principles,and integrate value transformation mechanisms specific to ice and snow resources.Their development is projected to generate multiple benefits across ecological,economic,and social dimensions.The new quality productive forces in the ISE are characterized by technology-driven resource development,synergistic integration across the entire ice and snow industry value chain,and a focus on high-quality,green growth.Grounded in geography and economics,the new quality productive forces in the ISE link scientific innovation,the reallocation of productive factors,and industrial upgrading within the context of resource constraints.Furthermore,they expand the growth potential of the ISE by fostering new production relations through digital,intelligent,and green integration,while advancing low-carbon,sustainable development under the guiding principle that“ice and snow landscapes are also mountains of gold and silver.”For China's ISE,these new quality productive forces emphasize rigorous resource protection,balanced human-environment relationships,a resilient integrated supply chain framework,and an efficient“dual circulation”economic model.Practical strategies include integrating production factors,optimizing spatial resource allocation,fostering industrial synergy,and adapting production relations,all aimed at advancing the sustainable and high-quality development of China's ISE.展开更多
The pursuit of sustainable energy has driven a significant interest in hydrogen(H_(2))as a clean fuel alternative.A critical challenge is the efficient storage of H_(2),which this study addresses by examining the pote...The pursuit of sustainable energy has driven a significant interest in hydrogen(H_(2))as a clean fuel alternative.A critical challenge is the efficient storage of H_(2),which this study addresses by examining the potential of tricycloquinazoline-based monolayer metal-organic frameworks(MMOFs with the first“M”representing metal species).Using density functional theory,we optimized the structures of MMOFs and calculated H_(2)adsorption energies above the open metal sites,identifying ScMOF,TiMOF,NiMOF,and MgMOF for further validation of their thermodynamic stability via ab-initio molecular dynamics(AIMD)simulations.Force field parameters were fitted via the Morse potential,providing a solid foundation for subsequent grand canonical Monte Carlo simulations.These simulations revealed that the maximum of saturated excess gravimetric H_(2)uptake exceeds 14.16 wt%at 77 K,surpassing other reported MOFs,whether they possess open metal sites or not.At 298 K and 100 bar,both the planar and distorted structures derived from our AIMD simulations demonstrated comparable excess gravimetric H_(2)uptake within the range of 3.05 wt%to 3.94 wt%,once again outperforming other MOFs.Furthermore,lithium(Li)doping significantly enhanced the excess H_(2)uptake,with Li-TiMOF achieving an impressive 6.83 wt%at 298 K and 100 bar,exceeding the ultimate target set by the U.S.Department of Energy.The exceptional H_(2)adsorption capacities of these monolayer MOFs highlight their potential in H_(2)storage,contributing to the design of more efficient hydrogen storage materials and propelling the sustainable hydrogen economy forward.展开更多
During strike-slip fault dislocation,multiple fault planes are commonly observed.The resulting permanent ground deformation can lead to profound structural damage to tunnels.However,existing analytical models do not c...During strike-slip fault dislocation,multiple fault planes are commonly observed.The resulting permanent ground deformation can lead to profound structural damage to tunnels.However,existing analytical models do not consider multiple fault planes.Instead,they concentrate the entire fault displacement onto a single fault plane for analysis,thereby giving rise to notable errors in the calculated results.To address this issue,a refined nonlinear theoretical model was established to analyze the mechanical responses of the tunnels subjected to multiple strike-slip fault dislocations.The analytical model considers the number of fault planes,nonlinear soil‒tunnel interactions,geometric nonlinearity,and fault zone width,leading to a significant improvement in its range of applicability and calculation accuracy.The results of the analytical model are in agreement,both qualitatively and quantitatively,with the model test and numerical results.Then,based on the proposed theoretical model,a sensitivity analysis of parameters was conducted,focusing on the variables such as the number of fault planes,fault plane distance(d),fault displacement ratio(η),burial depth(C),crossing angle(β),tunnel diameter(D),fault zone width(Wf),and strike-slip fault displacement(Δfs).The results show that the peak shear force(Vmax),bending moment(Mmax),and axial force(Nmax)decrease with increasing d.The Vmax of the tunnel is found at the fault plane with the largest fault displacement.C,D,andΔfs contribute to the increases in Vmax,Mmax,and Nmax.Additionally,increasing the number of fault planes reduces Vmax and Mmax,whereas the variation in Nmax remains minimal.展开更多
Steel-concrete composite beams,due to their superior mechanical properties,are widely utilized in engineering structures.This study systematically investigates the calculation methods for internal forces and load-bear...Steel-concrete composite beams,due to their superior mechanical properties,are widely utilized in engineering structures.This study systematically investigates the calculation methods for internal forces and load-bearing capacity of composite beams based on elastic theory,with a focus on the transformed section method and its application under varying neutral axis positions.By deriving the geometric characteristics of the transformed section and incorporating a reduction factor accounting for slip effects,a computational model for sectional stress and ultimate load-bearing capacity is established.The results demonstrate that the slip effect significantly influences the flexural load-bearing capacity of composite beams.The proposed reduction factor,which considers the influence of the steel beam’s top flange thickness,offers higher accuracy compared to traditional methods.These findings provide a theoretical foundation for the design and analysis of composite beams,with significant practical engineering value.展开更多
Steel tube slab (STS) structure, a novel pipe-roof structure, of which steel tubes are connected with flange plates, bolts and concrete, is an increasingly popular supporting structure for underground space developmen...Steel tube slab (STS) structure, a novel pipe-roof structure, of which steel tubes are connected with flange plates, bolts and concrete, is an increasingly popular supporting structure for underground space development. Whilst the load-bearing of pipe-roof structures has been the subject of much research, uncertainties of deformation mechanism and the derivation of reliable calculation methods remain a challenge. For efficient design and wider deployment, this paper presents a bidirectional bending test to investigate the bending stiffnesses, load capacities and deformation mechanisms. The results show that the STS specimens exhibit good ductility and experience bending failure, and their deformation curves follow a half-sine wave upon loading. On this basis, the development of an STS composite slab deformation prediction model is proposed, along with the estimation for its bending stiffness. Theoretical predictions are shown to be in good agreement with the experimental measurements, with a maximum error of less than 15%. The outcomes of this investigation can provide references for the design and application of STS structures.展开更多
Reconstruction during the oxygen evolution reaction(OER)significantly transforms the geometric structure of transition metal compounds,leading to enhanced catalytic performance.However,the resulting structural disorde...Reconstruction during the oxygen evolution reaction(OER)significantly transforms the geometric structure of transition metal compounds,leading to enhanced catalytic performance.However,the resulting structural disorder complicates the development of accurate theoretical models.In this study,CoS2 is used as a model system to establish a framework for rationally modeling reconstructed OER catalysts based on density functional theory(DFT).In the reconstruction process,sulfur atoms are likely to be substituted by oxygen atoms,leading to the formation of the CoOOH phase.Based on the difference in reconstruction degree,we constructed three types of models:doping,heterostructure,and fully reconstructed,representing the reconstruction degree from minimal to full phase transition,respectively.Fully reconstructed models,which account for strain and vacancy effects,effectively simulate the unique coordination environments of reconstructed catalysts.Model e-CoOOH achieves a theoretical overpotential of 0.38 V,outperforming pristine CoOOH(0.56 V),demonstrating that the unique structural features resulting from reconstruction improve OER performance.The doping model and the heterostructure model are helpful to explain the electronic structure and performance transformation of the reconstruction process.This work provides a rational theoretical modeling approach,which is conducive to improving the reliability of the theoretical OER performance of the reconstructed catalyst.展开更多
In the context of the new era,the construction and improvement of a theoretical system for ideological and political education in universities is a core proposition for fulfilling the fundamental task of cultivating m...In the context of the new era,the construction and improvement of a theoretical system for ideological and political education in universities is a core proposition for fulfilling the fundamental task of cultivating morality and educating people.Guided by Xi Jinping Thought on Socialism with Chinese Characteristics for a New Era and informed by the realities of social transformation,technological revolution,and educational reform in the new era,this article systematically analyzes the current status and prominent issues of the theoretical system for ideological and political education in universities.It analyzes the causes from the perspectives of concepts,mechanisms,and resources,and ultimately proposes a“three-dimensional collaborative”framework for system construction and specific strategies for improvement.This research aims to provide theoretical support and practical paths for theoretical innovation in ideological and political education in universities in the new era,helping to cultivate new generations of people who will shoulder the great responsibility of national rejuvenation.展开更多
As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this r...As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this review,the design and engineering progress of perovskite materials for supercapacitors(SCs)in recent years is summarized.Specifically,the review will focus on four types of perovskites,perovskite oxides,halide perovskites,fluoride perovskites,and multi-perovskites,within the context of their intrinsic structure and corresponding electrochemical performance.A series of experimental variables,such as synthesis,crystal structure,and electrochemical reaction mechanism,will be carefully analyzed by combining various advanced characterization techniques and theoretical calculations.The applications of these materials as electrodes are then featured for various SCs.Finally,we look forward to the prospects and challenges of perovskite-type SCs electrodes,as well as the future research direction.展开更多
The deep understanding of 4f-correlated electron motion behavior is experimentally limited due to similar physicochemical properties of rare earth elements(REEs).While the solvent extraction behavior originating from ...The deep understanding of 4f-correlated electron motion behavior is experimentally limited due to similar physicochemical properties of rare earth elements(REEs).While the solvent extraction behavior originating from the continuous occupation of 4f electrons along the lanthanide family provides a particular platform to probe the 4f electrons motion behavior and its correlations to their versatile functions.Herein,the complexation between REEs and the prototypical extractant of diethyl phosphoric acid(DEP)was substantially studied based on quantum mechanical calculation.The results firstly show that the average bond lengths between Ln and six coordinated oxygen atoms are consistent with lanthanide contraction phenomenon,and gadolinium break effect is also obviously observed.Secondly,the"tetrad effect"is figured out based on the subtle discrepancy of 4f electrons occupation,namely La-Nd,Sm-Eu,Gd-Dy and Ho-Lu.Specifically,the main composition is 4f5d6p for La-Nd,while the discrepancy is due to the increasing electrons in the 5d shell,while it is 4f5d for Pm-Eu.For Gd-Dy,their 4f orbitals accept little electrons and the donating electrons flow into 6s5d subshells due to the half-filled stability and the enhancement of shielding effect.The electrons donate into 5d6p subshells due to multiply electrons occupation of 4f orbitals for Ho-Lu.These detailed analyses obviously clarify the"tetrad effect"along the lanthanide family due to the different variation of 4f orbital occupation.It is expected that these microscopic understandings provide important guidance for the separation of REEs and the design of new extractants.展开更多
Because of its high mobility and difficult capture,gaseous arsenic pollution control has become the focus of arsenic pollution control.It mainly exists in the form of highly toxic As_(2)O_(3)in the flue gas.Therefore,...Because of its high mobility and difficult capture,gaseous arsenic pollution control has become the focus of arsenic pollution control.It mainly exists in the form of highly toxic As_(2)O_(3)in the flue gas.Therefore,removing gaseous As_(2)O_(3)from flue gas is of great practical significance for arsenic pollution control.Stabilizing gaseous As_(2)O_(3)on the surface of adsorbents by physical or chemical adsorption is an effective way to reduce the content of arsenic in the flue gas and alleviate arsenic pollution.Over the past few decades,various adsorbents have been developed to capture gaseous As_(2)O_(3)in the flue gas,and their adsorption mechanisms have been studied in detail.Thus,it is necessary to review the strategies of arsenic removal from flue gas by adsorption,which can inspire further research.Based on summarizing the morphological distribution of gaseous As_(2)O_(3)in the flue gas,this review further summarizes the removal of gaseous As_(2)O_(3)by several adsorbents and the effect of temperature and the main components of the flue gas on arsenic adsorption.In addition,the mechanism of arsenic removal based on adsorption in the flue gas is discussed in depth through theoretical calculations,which is the particular focus of this review.Finally,prospects based on the present research state of arsenic removal by adsorption are proposed to provide ideas for developing effective and stable adsorbents for arsenic removal from flue gas.展开更多
Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface te...Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface textures is of great significance for the design,fabrication and application of functional textured surfaces.In this paper,based on the kinematic analysis of cutter teeth,the discretization of ultrasonic machining process,transformation method of coordinate systems and the cubic spline data interpolation,an integrated theoretical model was established to characterize the distribution and geometric features of micro textures on the surfaces machined by different types of ultrasonic vibration-assisted milling(UVAM).Based on the theoretical model,the effect of key process parameters(vibration directions,vibration dimensions,cutting parameters and vibration parameters)on tool trajectories and microtextured surface morphology in UVAM is investigated.Besides,the effect of phase difference on the elliptical shape in 2D/3D ultrasonic elliptical vibration-assisted milling(UEVAM)was analyzed.Compared to conventional numerical models,the method of the cubic spline data interpolation is applied to the simulation of microtextured surface morphology in UVAM,which is more suitable for characterizing the morphological features of microtextured surfaces than traditional methods due to the presence of numerous micro textures.The prediction of surface roughness indicates that the magnitude of ultrasonic amplitude in z-direction should be strictly limited in 1D rotary UVAM,2D and 3D UEVAM due to the unfavorable effect of axial ultrasonic vibration on the surface quality.This study can provide theoretical guidance for the design and fabrication of microtextured surfaces in UVAM.展开更多
文摘Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian University of Technology,Dalian 116024,Liaoning Province,China.
文摘Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular structure and luminescence properties,TADF molecules are far from meeting the needs of practical applications in terms of variety and number.In this paper,three twisted TADF molecules are studied and their photophysical properties are theoretically predicted based on the thermal vibrational correlation function method combined with multiscale calculations.The results show that all the molecules exhibit fast reverse intersystem crossing(RISC)rates(kRISC),predicting their TADF luminescence properties.In addition,the binding of DHPAzSi as the donor unit with different acceptors can change the dihedral angle between the ground and excited states,and the planarity of the acceptors is positively correlated with the reorganization energy,a property that has a strong influence on the non-radiative process.Furthermore,a decrease in the energy of the molecular charge transfer state and an increase in the kRISC were observed in the films.This study not only provides a reliable explanation for the observed experimental results,but also offers valuable insights that can guide the design of future TADF molecules.
文摘It has been experimentally observed that,in the perforation of metal plates by a flat-nosed projectile,there exists a plateau phenomenon where the ballistic limit increases slightly with increasing plate thickness,which is related to a change in the mode of failure.No theoretical model has so far explained this phenomenon satisfactorily.This paper presents a combined numerical and theoretical study on the perforation of 2024-T351 aluminum plates struck by flat-nosed projectiles.First,numerical simulations are performed to investigate the failure mechanisms/deformation modes of the aluminum plates.Then,a theoretical model is proposed based on the numerical results and the experimental observations within a unified framework.The model takes into account the main energy absorbing mechanisms and the corresponding energies absorbed are determined analytically.In particular,a dimensionless equation is suggested to describe the relationship between global deformations and impact velocity.It transpires that the model predictions are in good agreement with the test data and the numerical results for the perforation of 2024-T351 aluminum plates struck by rigid flat-nosed projectiles in terms of residual velocity,ballistic limit,relationship between global deformations and impact velocity,and transition of failure modes.It also transpires that the present model can predict the“plateau”phenomenon,which shows a slight increase in ballistic limit as plate thickness increases.Furthermore,the energy absorption mechanisms are discussed on the basis of the theoretical analysis.
基金Shaanxi Provincial People’s Hospital Science and Technology Development Incubation Fund Program 2023(Project No.:2023HL-12)。
文摘Objective:To explore the obstructive factors in the behavior of medical staff during the implementation of respiratory rehabilitation process,and to provide a basis for the rehabilitation management intervention of COPD.Methods:A descriptive nature research method was adopted.An interview outline was formulated based on the theoretical domain framework.From October to December 2024,15 medical staff from the respiratory department of a tertiary hospital in Shaanxi Province were selected for semi-structured interviews.The interview data were analyzed using the Colaizzi 7-step analysis method.Result:The analysis of this study found that the obstructive factors for medical staff to implement respiratory rehabilitation include five theoretical domains.The problems are respectively the lack of knowledge about respiratory rehabilitation and insufficient training intensity,the insufficient self-recognition of implementing respiratory rehabilitation,the low awareness rate of patients and the low cooperation degree,the insufficient provision of instruments and facilities,the lack of rehabilitation training venues and respiratory rehabilitation clinics,and the lack of scientific and standardized respiratory rehabilitation management processes.Conclusion:There are many obstructive factors affecting the implementation of respiratory rehabilitation by medical staff.Clinical managers should take corresponding measures,continuously improve the rehabilitation management strategies for COPD,and promote the clinical application of the best evidence for respiratory rehabilitation.
基金Supported by the Liaoning Provincial Natural Science Foundation(Grant No.2023-MSBA-008)Unveiling and Commanding Program of Liaoning Province(Grant No.2022JH1/10800080)the Fundamental Research Funds for the Central Universities(Grant No.DUT24MS008).
文摘The double-sided lapping process is extensively employed in the manufacturing of wafers,optical windows,and seal rings due to its high efficiency and ability to achieve precise flatness.However,limited research has explored the thickness uniformity among different workpieces after double-sided lapping,and the underlying mechanism remains unclear.To address the demand for higher precision,this paper first analyzed the relative kinematic model between the workpiece and the lapping plate to clarify the causes of thickness variations among workpieces after double-sided lapping.Subsequently,a finite element method(FEM)model was developed to account for the pressure distribution on the workpiece surfaces at the initial stage of the process.The results indicate that the number of workpieces influences the final thickness variation.Then,various sets of thin copper plates with different thicknesses were lapped,and the findings revealed that five copper plates processed simultaneously exhibited more uniform thickness compared to the three plates.The experimental results align well with the theoretical analysis.Ultimately,a thickness variation of less than 6μm was achieved on five copper plates measuringΦ100×2.9 mm.This study presents a comprehensive analysis of the mechanisms influencing thickness uniformity in the double-sided lapping process and provides practical guidelines for optimizing the process to achieve stringent precision standards in industrial applications.
基金Chongqing Social Science Planning Project“Research on the Practical Path of Leading and Cultivating Youth Responsibility and Commitment with the Spirit of Struggle”(2021YBCS24)。
文摘Marx scientifically summarized the experience and lessons of the Paris Commune,deeply exposed the root causes of bourgeois corruption,and emphasized the purity and advancement of the construction of proletarian political parties and political power.The dictatorship of the proletariat puts forward the ideas of cheap government that eradicate corruption,realizes that the people are the masters of the country,implements democratic supervision of elections,simplifies the construction of institutions,lowers governance costs,and achieves higher efficiency.A deep understanding of the theoretical characteristics of Marx’s thoughts on integrity,democracy,and honor,and a profound clarification of the practical significance of Marx’s ideology on clean governance,combined with practical practice,will help promote the construction of a new system of anti-corruption and incorruption in our country,and will benefit our contemporary services.The construction of a type-oriented government system is conducive to deepening the construction of China’s national legal system.
基金supported by the Fundamental Re-search Funds for the Central Universities(Ganglong Cui)and National Key Research and Development Pro-gram of China(No.2021YFA1500703 to Ganglong Cui)National Natural Science Foundation of China(No.22103067 to Xiao-Ying Xie)and Natural Science Foundation of Shandong Province(No.ZR2021QB105 to Xiao-Ying Xie).
文摘Heterostructures of organic semi-conductors and transition metal dichalcogenides(TMDs)are viable candidates for superior optoelec-tronic devices.Photoinduced inter-facial charge transfer is crucial for the performance efficiency of such devices,yet the underlying mecha-nism,especially the roles of optical-ly dark triplets and spatially sepa-rated charge transfer states,is poorly understood.In the present work,we obtain the struc-tures of distinct excited states and investigate how they are involved in the charge transfer process at the Pd-octaethylporphyrin(PdOEP)and WS_(2) interface in terms of their energies and couplings.The results show that electron transfer from the triplet PdOEP formed via intersystem crossing prevails over direct electron transfer from the singlet(two orders of magnitude faster).Further analysis reveals that the relatively higher rate of triplet electron transfer compared to singlet electron transfer is mainly attributed to a smaller reorganization energy,which is dominated by the out-of-plane vibrations of the organic component.The work emphasizes the important roles of the optically dark triplets in the electron transfer of the PdOEP@WS_(2) heterostructure,and provides valuable theoretical insights for further improv-ing the optoelectronic performance of TMD-based devices.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.DUT20RC(3)076)Natural Science Foundation of Liaoning Province(No.2020-MS293)。
文摘This study investigates the intersystem crossing(ISC)mechanism in donor-acceptor(D-A)type distyryl-BODIPY photosensitizers,including previously reported M1(benzene donor),M2,M3(phenothiazine donors),and newly predicted M4(triphenylamine donor),M5-M7(nitrogen-containing aliphatic rings with thiophene donors).Using computational chemistry,we analyzed their geometric configurations,spectral properties,spin-orbit coupling,and electron-hole orbitals.We found that S_(2) is a charge transfer singlet state(^(1)CT),T2is a locally excited triplet state(^(3)LE),and the S_(2)→T_(2)transition is the main ISC pathway in M2-M7,following the ^(1)CT→^(3)LE mechanism.M5-M7 show near-vertical dihedral angles between donor and acceptor in the S_(2) state relative to M2-M4,facilitating charge transfer.The strain energies in the nitrogen-containing rings of M5-M7 affect oxidation potentials and ISC.M5,with the highest strain energy,shows the lowest oxidation potential,smaller△_(ES2-T2),highest SOC,and fastest kisc,making it the most efficient predicted singlet oxygen producer.This research clarifies the structure-performance relationships of near-infrared D-A type distyryl-BODIPY photosensitizers and provides a theoretical foundation for developing heavy-atom-free photosensitizers with tuned fluorescence quantum yield and singlet oxygen quantum yield.
基金supports of Basic Science Center Program for Multiphase Evolution in Hyper-gravity of the National Natural Science Foundation of China(No.51988101)National Natural Science Foundation of China(Nos.52109138 and 52122403)Young Elite Scientists Sponsorship Program by CAST(No.2023QNRC001).
文摘Hydraulic fracture growth is significantly influenced by the minimum horizontal principal stress gradient and the fracturing fluid pressure gradient.However,these gradients are often neglected in scaled physical modeling experiments due to difficulties in reproducing them.This study uses centrifugal hypergravity to simulate both gradients and investigate their effects on fracture propagation.Artificial mortar specimens(ϕ200 mm×400 mm)are fractured under 1g(normal gravity),50g,and 100g.Results show that compared to 1g,fractures under 50g and 100g exhibit increasingly uneven propagation,with higher g-values leading to greater asymmetry.To interpret this,a theoretical analysis based on fracture mechanics is conducted.When the fluid pressure gradient exceeds the stress gradient,a positive net gradient is generated,increasing net pressure at the lower fracture tip.This raises the stress intensity factor at the lower tip,promoting downward growth.As g increases,the disparity becomes more significant,resulting in greater fracture deviation.In conclusion,this study,for the first time,has verified and explained that the net gradient can change the propagation of hydraulic fractures,providing important guidance for wellbore placement under stress gradients.
基金The Third Scientific Expedition Project in Xinjiang,No.2022xjkk0905Project Commissioned by the General Administration of Sport of ChinaProject Commissioned by the Ministry of Culture and Tourism of the People’s Republic of China。
文摘This study proposes a framework for the concept of“new quality productive forces”in the ice and snow economy(ISE)as a strategic response to global climate change and the demands of technological and industrial transformation for high-quality development.These new quality productive forces in the ISE have developed alongside the zonal distribution of natural resources,strictly adhere to ecological principles,and integrate value transformation mechanisms specific to ice and snow resources.Their development is projected to generate multiple benefits across ecological,economic,and social dimensions.The new quality productive forces in the ISE are characterized by technology-driven resource development,synergistic integration across the entire ice and snow industry value chain,and a focus on high-quality,green growth.Grounded in geography and economics,the new quality productive forces in the ISE link scientific innovation,the reallocation of productive factors,and industrial upgrading within the context of resource constraints.Furthermore,they expand the growth potential of the ISE by fostering new production relations through digital,intelligent,and green integration,while advancing low-carbon,sustainable development under the guiding principle that“ice and snow landscapes are also mountains of gold and silver.”For China's ISE,these new quality productive forces emphasize rigorous resource protection,balanced human-environment relationships,a resilient integrated supply chain framework,and an efficient“dual circulation”economic model.Practical strategies include integrating production factors,optimizing spatial resource allocation,fostering industrial synergy,and adapting production relations,all aimed at advancing the sustainable and high-quality development of China's ISE.
基金supported by National Natural Science Foundation of China(Grant No.12104237)Scientific Research Foundation of Nanjing University of Posts and Telecommunications(No.NY219031).
文摘The pursuit of sustainable energy has driven a significant interest in hydrogen(H_(2))as a clean fuel alternative.A critical challenge is the efficient storage of H_(2),which this study addresses by examining the potential of tricycloquinazoline-based monolayer metal-organic frameworks(MMOFs with the first“M”representing metal species).Using density functional theory,we optimized the structures of MMOFs and calculated H_(2)adsorption energies above the open metal sites,identifying ScMOF,TiMOF,NiMOF,and MgMOF for further validation of their thermodynamic stability via ab-initio molecular dynamics(AIMD)simulations.Force field parameters were fitted via the Morse potential,providing a solid foundation for subsequent grand canonical Monte Carlo simulations.These simulations revealed that the maximum of saturated excess gravimetric H_(2)uptake exceeds 14.16 wt%at 77 K,surpassing other reported MOFs,whether they possess open metal sites or not.At 298 K and 100 bar,both the planar and distorted structures derived from our AIMD simulations demonstrated comparable excess gravimetric H_(2)uptake within the range of 3.05 wt%to 3.94 wt%,once again outperforming other MOFs.Furthermore,lithium(Li)doping significantly enhanced the excess H_(2)uptake,with Li-TiMOF achieving an impressive 6.83 wt%at 298 K and 100 bar,exceeding the ultimate target set by the U.S.Department of Energy.The exceptional H_(2)adsorption capacities of these monolayer MOFs highlight their potential in H_(2)storage,contributing to the design of more efficient hydrogen storage materials and propelling the sustainable hydrogen economy forward.
基金support from the National Natural Science Foundation of China(Grant Nos.52378411,52208404)China National Railway Group Limited Science and Technology Research and Development Program(Grant No.K2023G041).
文摘During strike-slip fault dislocation,multiple fault planes are commonly observed.The resulting permanent ground deformation can lead to profound structural damage to tunnels.However,existing analytical models do not consider multiple fault planes.Instead,they concentrate the entire fault displacement onto a single fault plane for analysis,thereby giving rise to notable errors in the calculated results.To address this issue,a refined nonlinear theoretical model was established to analyze the mechanical responses of the tunnels subjected to multiple strike-slip fault dislocations.The analytical model considers the number of fault planes,nonlinear soil‒tunnel interactions,geometric nonlinearity,and fault zone width,leading to a significant improvement in its range of applicability and calculation accuracy.The results of the analytical model are in agreement,both qualitatively and quantitatively,with the model test and numerical results.Then,based on the proposed theoretical model,a sensitivity analysis of parameters was conducted,focusing on the variables such as the number of fault planes,fault plane distance(d),fault displacement ratio(η),burial depth(C),crossing angle(β),tunnel diameter(D),fault zone width(Wf),and strike-slip fault displacement(Δfs).The results show that the peak shear force(Vmax),bending moment(Mmax),and axial force(Nmax)decrease with increasing d.The Vmax of the tunnel is found at the fault plane with the largest fault displacement.C,D,andΔfs contribute to the increases in Vmax,Mmax,and Nmax.Additionally,increasing the number of fault planes reduces Vmax and Mmax,whereas the variation in Nmax remains minimal.
文摘Steel-concrete composite beams,due to their superior mechanical properties,are widely utilized in engineering structures.This study systematically investigates the calculation methods for internal forces and load-bearing capacity of composite beams based on elastic theory,with a focus on the transformed section method and its application under varying neutral axis positions.By deriving the geometric characteristics of the transformed section and incorporating a reduction factor accounting for slip effects,a computational model for sectional stress and ultimate load-bearing capacity is established.The results demonstrate that the slip effect significantly influences the flexural load-bearing capacity of composite beams.The proposed reduction factor,which considers the influence of the steel beam’s top flange thickness,offers higher accuracy compared to traditional methods.These findings provide a theoretical foundation for the design and analysis of composite beams,with significant practical engineering value.
基金Project(BK20210721) supported by the Natural Science Foundation of Jiangsu Province,ChinaProjects(52108380,52078506) supported by the National Natural Science Foundation of ChinaProject(2023A1515012159) supported by the Guangdong Basic and Applied Basic Research Foundation,China。
文摘Steel tube slab (STS) structure, a novel pipe-roof structure, of which steel tubes are connected with flange plates, bolts and concrete, is an increasingly popular supporting structure for underground space development. Whilst the load-bearing of pipe-roof structures has been the subject of much research, uncertainties of deformation mechanism and the derivation of reliable calculation methods remain a challenge. For efficient design and wider deployment, this paper presents a bidirectional bending test to investigate the bending stiffnesses, load capacities and deformation mechanisms. The results show that the STS specimens exhibit good ductility and experience bending failure, and their deformation curves follow a half-sine wave upon loading. On this basis, the development of an STS composite slab deformation prediction model is proposed, along with the estimation for its bending stiffness. Theoretical predictions are shown to be in good agreement with the experimental measurements, with a maximum error of less than 15%. The outcomes of this investigation can provide references for the design and application of STS structures.
基金supported by the National Key Research and Development program(2022YFA1504000)the National Natural Science Foundation of China(22302101)+4 种基金the Fundamental Research Funds for the Central Universities(63185015)Shenzhen Science and Technology Program(JCYJ20210324121002007,JCYJ20230807151503007)Yunnan Provincial Science and Technology Project at Southwest United Graduate School(202402AO370001)China Postdoctoral Science Foundation(2022M721699)Guangdong Basic and Applied Basic Research Foundation(2024A1515010347).
文摘Reconstruction during the oxygen evolution reaction(OER)significantly transforms the geometric structure of transition metal compounds,leading to enhanced catalytic performance.However,the resulting structural disorder complicates the development of accurate theoretical models.In this study,CoS2 is used as a model system to establish a framework for rationally modeling reconstructed OER catalysts based on density functional theory(DFT).In the reconstruction process,sulfur atoms are likely to be substituted by oxygen atoms,leading to the formation of the CoOOH phase.Based on the difference in reconstruction degree,we constructed three types of models:doping,heterostructure,and fully reconstructed,representing the reconstruction degree from minimal to full phase transition,respectively.Fully reconstructed models,which account for strain and vacancy effects,effectively simulate the unique coordination environments of reconstructed catalysts.Model e-CoOOH achieves a theoretical overpotential of 0.38 V,outperforming pristine CoOOH(0.56 V),demonstrating that the unique structural features resulting from reconstruction improve OER performance.The doping model and the heterostructure model are helpful to explain the electronic structure and performance transformation of the reconstruction process.This work provides a rational theoretical modeling approach,which is conducive to improving the reliability of the theoretical OER performance of the reconstructed catalyst.
文摘In the context of the new era,the construction and improvement of a theoretical system for ideological and political education in universities is a core proposition for fulfilling the fundamental task of cultivating morality and educating people.Guided by Xi Jinping Thought on Socialism with Chinese Characteristics for a New Era and informed by the realities of social transformation,technological revolution,and educational reform in the new era,this article systematically analyzes the current status and prominent issues of the theoretical system for ideological and political education in universities.It analyzes the causes from the perspectives of concepts,mechanisms,and resources,and ultimately proposes a“three-dimensional collaborative”framework for system construction and specific strategies for improvement.This research aims to provide theoretical support and practical paths for theoretical innovation in ideological and political education in universities in the new era,helping to cultivate new generations of people who will shoulder the great responsibility of national rejuvenation.
基金financial support from the National Natural Science Foundation of China(21676036)the Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0580)the Graduate Research and Innovation Foundation of Chongqing(CYS-20040)。
文摘As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this review,the design and engineering progress of perovskite materials for supercapacitors(SCs)in recent years is summarized.Specifically,the review will focus on four types of perovskites,perovskite oxides,halide perovskites,fluoride perovskites,and multi-perovskites,within the context of their intrinsic structure and corresponding electrochemical performance.A series of experimental variables,such as synthesis,crystal structure,and electrochemical reaction mechanism,will be carefully analyzed by combining various advanced characterization techniques and theoretical calculations.The applications of these materials as electrodes are then featured for various SCs.Finally,we look forward to the prospects and challenges of perovskite-type SCs electrodes,as well as the future research direction.
基金Project supported by the National Key Research and Development Project of China(2019YFC0605003)the StrategicPriority Research Program of Chinese Academy of Sciences(XDA02030100)。
文摘The deep understanding of 4f-correlated electron motion behavior is experimentally limited due to similar physicochemical properties of rare earth elements(REEs).While the solvent extraction behavior originating from the continuous occupation of 4f electrons along the lanthanide family provides a particular platform to probe the 4f electrons motion behavior and its correlations to their versatile functions.Herein,the complexation between REEs and the prototypical extractant of diethyl phosphoric acid(DEP)was substantially studied based on quantum mechanical calculation.The results firstly show that the average bond lengths between Ln and six coordinated oxygen atoms are consistent with lanthanide contraction phenomenon,and gadolinium break effect is also obviously observed.Secondly,the"tetrad effect"is figured out based on the subtle discrepancy of 4f electrons occupation,namely La-Nd,Sm-Eu,Gd-Dy and Ho-Lu.Specifically,the main composition is 4f5d6p for La-Nd,while the discrepancy is due to the increasing electrons in the 5d shell,while it is 4f5d for Pm-Eu.For Gd-Dy,their 4f orbitals accept little electrons and the donating electrons flow into 6s5d subshells due to the half-filled stability and the enhancement of shielding effect.The electrons donate into 5d6p subshells due to multiply electrons occupation of 4f orbitals for Ho-Lu.These detailed analyses obviously clarify the"tetrad effect"along the lanthanide family due to the different variation of 4f orbital occupation.It is expected that these microscopic understandings provide important guidance for the separation of REEs and the design of new extractants.
基金supported by the National Science Fund for Excellent Young Scholars of China (No.52022111)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No.52121004)+1 种基金the Hunan High Tech Industry Science and Technology Innovation Leading Plan Project (No.2020SK2006)the Huxiang Youth Talent Support Program (No.2020RC3012)。
文摘Because of its high mobility and difficult capture,gaseous arsenic pollution control has become the focus of arsenic pollution control.It mainly exists in the form of highly toxic As_(2)O_(3)in the flue gas.Therefore,removing gaseous As_(2)O_(3)from flue gas is of great practical significance for arsenic pollution control.Stabilizing gaseous As_(2)O_(3)on the surface of adsorbents by physical or chemical adsorption is an effective way to reduce the content of arsenic in the flue gas and alleviate arsenic pollution.Over the past few decades,various adsorbents have been developed to capture gaseous As_(2)O_(3)in the flue gas,and their adsorption mechanisms have been studied in detail.Thus,it is necessary to review the strategies of arsenic removal from flue gas by adsorption,which can inspire further research.Based on summarizing the morphological distribution of gaseous As_(2)O_(3)in the flue gas,this review further summarizes the removal of gaseous As_(2)O_(3)by several adsorbents and the effect of temperature and the main components of the flue gas on arsenic adsorption.In addition,the mechanism of arsenic removal based on adsorption in the flue gas is discussed in depth through theoretical calculations,which is the particular focus of this review.Finally,prospects based on the present research state of arsenic removal by adsorption are proposed to provide ideas for developing effective and stable adsorbents for arsenic removal from flue gas.
基金Supported by Shandong Provincial Natural Science Foundation of China(Grant No.ZR2023QE041)China Postdoctoral Science Foundation(Grant No.2023M731862)National Natural Science Foundation of China(Grant No.51975112).
文摘Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface textures is of great significance for the design,fabrication and application of functional textured surfaces.In this paper,based on the kinematic analysis of cutter teeth,the discretization of ultrasonic machining process,transformation method of coordinate systems and the cubic spline data interpolation,an integrated theoretical model was established to characterize the distribution and geometric features of micro textures on the surfaces machined by different types of ultrasonic vibration-assisted milling(UVAM).Based on the theoretical model,the effect of key process parameters(vibration directions,vibration dimensions,cutting parameters and vibration parameters)on tool trajectories and microtextured surface morphology in UVAM is investigated.Besides,the effect of phase difference on the elliptical shape in 2D/3D ultrasonic elliptical vibration-assisted milling(UEVAM)was analyzed.Compared to conventional numerical models,the method of the cubic spline data interpolation is applied to the simulation of microtextured surface morphology in UVAM,which is more suitable for characterizing the morphological features of microtextured surfaces than traditional methods due to the presence of numerous micro textures.The prediction of surface roughness indicates that the magnitude of ultrasonic amplitude in z-direction should be strictly limited in 1D rotary UVAM,2D and 3D UEVAM due to the unfavorable effect of axial ultrasonic vibration on the surface quality.This study can provide theoretical guidance for the design and fabrication of microtextured surfaces in UVAM.