This paper presents a study on the process engineering aspects of relevance to the industrial implementation of ThO2 and (Th, U)O2 mixed oxide (MOX) pellet type fuel manufacturing. The paper in particular focuses on t...This paper presents a study on the process engineering aspects of relevance to the industrial implementation of ThO2 and (Th, U)O2 mixed oxide (MOX) pellet type fuel manufacturing. The paper in particular focuses on the recycling of thoria based fuel production scrap which is an economically important component in the fuel manufacturing process. The thoria based fuels are envisaged for Advanced Heavy Water Reactor (AHWR) and other reactors important to the Indian Nuclear Power Programme. A process was developed for recycling the chemically clean, off-specification and defective sintered ThO2 and (Th, U)O2 MOX nuclear fuel pellets. ThO2 doesn’t undergo oxidation or reduction and thus, more traditional methods of recycling are impractical. The integrated process was developed by combining three basic approaches of recycling namely mechanical micronisation, air oxidation (for MOX) and microwave dissolution-denitration. A thorough investigation of the influence of several variables as heating method, UO2 content, fluoride and polyvinyl alcohol (PVA) addition during microwave dissolution-denitration was recorded on the product characteristics. The suitability evaluation of the recycled powder for re-fabrication of the fuel was carried out by analyzing the particle size, BET specific surface area, phase using XRD, bulk density and impurities. The physical and chemical properties of recycled powder obtained from the sintered (Th1-y, Uy)O2 (y;0 - 30 wt%) pellets advocate 100% utilisation for fuel re-fabrication. Recycled ThO2 by integrated process showed distinctly high sinterability compared to standard powder evaluated in terms of surface area and particle size.展开更多
This work is aimed at running the first IRIS reactor core with mixed thorium dioxide fuel(ThO2-UO2 and ThO2-PuO2).Calculations are performed by using Dragon 4.0.4 and Citation codes.The results show the multiplicati...This work is aimed at running the first IRIS reactor core with mixed thorium dioxide fuel(ThO2-UO2 and ThO2-PuO2).Calculations are performed by using Dragon 4.0.4 and Citation codes.The results show the multiplication factor(Keff) for central and peripheral assemblies as a function of burnup.To ensure the proliferation resistance,the value of 235U enrichment is < 20%.The Keff is calculated using Dragon 4.0.4 for a single fuel rod and the model developed to fuel assembly,while the whole core was calculated using Citation code.For a fuel burnup,the use of increased enrichment fuel in the IRIS core leads to high reserve of reactivity,which is compensated with an integral fuel burnable absorber.The self-shielding of boron is in an IRIS reactor fuel.The effect of increased enrichment to the burn-up rates,and burnable poison distribution on the reactor performance,are evaluated.The equipment used in traditional light water reactors is evaluated for designing a small unit IRIS reactor.展开更多
Thorium as a suitable fertile with higher natural resources in comparison with uranium resources has been remarkably considered by different nuclear energy user countries in the last decades. Its prominent features su...Thorium as a suitable fertile with higher natural resources in comparison with uranium resources has been remarkably considered by different nuclear energy user countries in the last decades. Its prominent features such as suitable possibility for power flattening of a nuclear reactor, applicable breeder blanket to produce^(233)U fissile as well as neutron leakage prevention from a nuclear core has caused its application as power flatter, breeder material or other aimed utilizations be evaluated by the researches. In the present study, neutronics of a modeled CANDU 6loaded with Th O_2 and UO_2fuel rods have been computationally studied. The study aimed at reprocessing of burned Th O_2 seeds at CANDU 6 reactor to recover the total produced uranium, which is to be going under another compound fuel cycle. The obtained results showed all the core reactivity coefficients are sufficiently negative. The modeled core 949 GWd burn-up concluding in 99.99 %depletion of^(235)U initial loads. 18.38 kg of^(233) U was produced in the burnt Th O_2 fuel after 1-year burn-up time. In addition, 31.84 kg of^(239) Pu was produced in the UO_2 spent fuel rods after the burn-up time. After a proposed cooling time, about 50.01 kg of^(233)U will be available in the spent Th O_2 fuel.展开更多
文摘This paper presents a study on the process engineering aspects of relevance to the industrial implementation of ThO2 and (Th, U)O2 mixed oxide (MOX) pellet type fuel manufacturing. The paper in particular focuses on the recycling of thoria based fuel production scrap which is an economically important component in the fuel manufacturing process. The thoria based fuels are envisaged for Advanced Heavy Water Reactor (AHWR) and other reactors important to the Indian Nuclear Power Programme. A process was developed for recycling the chemically clean, off-specification and defective sintered ThO2 and (Th, U)O2 MOX nuclear fuel pellets. ThO2 doesn’t undergo oxidation or reduction and thus, more traditional methods of recycling are impractical. The integrated process was developed by combining three basic approaches of recycling namely mechanical micronisation, air oxidation (for MOX) and microwave dissolution-denitration. A thorough investigation of the influence of several variables as heating method, UO2 content, fluoride and polyvinyl alcohol (PVA) addition during microwave dissolution-denitration was recorded on the product characteristics. The suitability evaluation of the recycled powder for re-fabrication of the fuel was carried out by analyzing the particle size, BET specific surface area, phase using XRD, bulk density and impurities. The physical and chemical properties of recycled powder obtained from the sintered (Th1-y, Uy)O2 (y;0 - 30 wt%) pellets advocate 100% utilisation for fuel re-fabrication. Recycled ThO2 by integrated process showed distinctly high sinterability compared to standard powder evaluated in terms of surface area and particle size.
文摘This work is aimed at running the first IRIS reactor core with mixed thorium dioxide fuel(ThO2-UO2 and ThO2-PuO2).Calculations are performed by using Dragon 4.0.4 and Citation codes.The results show the multiplication factor(Keff) for central and peripheral assemblies as a function of burnup.To ensure the proliferation resistance,the value of 235U enrichment is < 20%.The Keff is calculated using Dragon 4.0.4 for a single fuel rod and the model developed to fuel assembly,while the whole core was calculated using Citation code.For a fuel burnup,the use of increased enrichment fuel in the IRIS core leads to high reserve of reactivity,which is compensated with an integral fuel burnable absorber.The self-shielding of boron is in an IRIS reactor fuel.The effect of increased enrichment to the burn-up rates,and burnable poison distribution on the reactor performance,are evaluated.The equipment used in traditional light water reactors is evaluated for designing a small unit IRIS reactor.
文摘Thorium as a suitable fertile with higher natural resources in comparison with uranium resources has been remarkably considered by different nuclear energy user countries in the last decades. Its prominent features such as suitable possibility for power flattening of a nuclear reactor, applicable breeder blanket to produce^(233)U fissile as well as neutron leakage prevention from a nuclear core has caused its application as power flatter, breeder material or other aimed utilizations be evaluated by the researches. In the present study, neutronics of a modeled CANDU 6loaded with Th O_2 and UO_2fuel rods have been computationally studied. The study aimed at reprocessing of burned Th O_2 seeds at CANDU 6 reactor to recover the total produced uranium, which is to be going under another compound fuel cycle. The obtained results showed all the core reactivity coefficients are sufficiently negative. The modeled core 949 GWd burn-up concluding in 99.99 %depletion of^(235)U initial loads. 18.38 kg of^(233) U was produced in the burnt Th O_2 fuel after 1-year burn-up time. In addition, 31.84 kg of^(239) Pu was produced in the UO_2 spent fuel rods after the burn-up time. After a proposed cooling time, about 50.01 kg of^(233)U will be available in the spent Th O_2 fuel.