期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of Icosahedral Phase on Crystallographic Texture and Mechanical Anisotropy of Mg–4%Li Based Alloys 被引量:19
1
作者 C.Q.Li D.K.Xu +2 位作者 S.Yu L.Y.Sheng E.H.Han 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第5期475-480,共6页
Through investigating and comparing the microstructure and mechanical properties of the as-extruded Mg alloys Mg-4%Li and Mg-4%Li-6%Zn-l.2%Y (in wt%), it demonstrates that although the formation of I-phase (Mg3Zn6Y... Through investigating and comparing the microstructure and mechanical properties of the as-extruded Mg alloys Mg-4%Li and Mg-4%Li-6%Zn-l.2%Y (in wt%), it demonstrates that although the formation of I-phase (Mg3Zn6Y, icosahedral structure) could weaken the crystallographic texture and improve the me- chanical strength, the mechanical anisotropy in terms of strength remains in Mg-4%Li-6%Zn-1.2%Y alloy. Failure analysis indicates that for the Mg-4%Li alloy, the fracture surfaces of the tensile samples tested along transverse direction (TD) contain a large number of plastic dimples, whereas the fracture surface exhibits quasi-cleavage characteristic when tensile samples were tested along extrusion direction (ED). For the Mg-4%Li-6%Zn-I.2%Y alloy, typical ductile fracture surfaces can be observed in both "TD" and "ED" samples. Moreover, due to the zonal distribution of broken l-phase particles, the fracture surface of "TD" samples is characterized by the typical "woody fracture". 展开更多
关键词 Mg-Li alloy texture Mechanical anisotropy Fracture
原文传递
Weakened anisotropy of mechanical properties in rolled ZK60 magnesium alloy sheets with elevated deformation temperature 被引量:7
2
作者 Wenke Wang Wenzhen Chen +2 位作者 Wencong Zhang Guorong Cui Erde Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第11期2042-2050,共9页
The rolling direction(RD) and the transverse direction(TD) samples were obtained from an as-rolled ZK60 magnesium alloy sheet with strong anisotropy of initial texture and their mechanical properties were tested a... The rolling direction(RD) and the transverse direction(TD) samples were obtained from an as-rolled ZK60 magnesium alloy sheet with strong anisotropy of initial texture and their mechanical properties were tested at various deformation temperatures. Meanwhile, the microstructure and texture of these samples after fracture were investigated. Results revealed that a higher flow stress along the RD than that along the TD at room temperature were ascribed to the strong anisotropy of transitional texture, and this texture effect was remarkably weakened with the increase of deformation temperature. Deformation structure was dominant at 100℃, and was replaced by dynamic recrystallization structure when the deformation temperature increased to 200℃ and 300℃. The texture presented a strong texture(transitional texture in the RD sample and basal texture in the TD sample) at 100℃, but its intensity visibly decreased and texture components became more disperse at 200℃ and 300℃. These microstructure and texture results were employed in conjunction with calculated results to argue that raising deformation temperature could increase the activity of non-basal slip by tailoring the relative critical resolved shear stress of each deformation mode and finally result in low texture effect on mechanical anisotropy. 展开更多
关键词 ZK60 magnesium alloy Deformation temperature texture anisotropy Dynamic recrystallization Non-basal slip
原文传递
Effects of Rolling Processes on Yield Ratio and Formability of Hot Rolled Gas Cylinder Steel 被引量:2
3
作者 JIA Yue-cai1, GUO Hai-rong1, LI Ran2, LI Hua-long1 (1. Institute of Research of Iron and Steel, Jiangsu Shagang Group, Zhangjiagang 215625, Jiangsu, China 2. Chief Engineering Offices, Jiangsu Shagang Group, Zhangjiagang 215625, Jiangsu, China) 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2012年第3期52-55,共4页
Deep drawing properties of hot rolled gas cylinder steel was investigated by using HP295 steel in terms of microstructure, texture, yield ratio, plastic strain ratio (r value) and plastic anisotropy (Ar). The grai... Deep drawing properties of hot rolled gas cylinder steel was investigated by using HP295 steel in terms of microstructure, texture, yield ratio, plastic strain ratio (r value) and plastic anisotropy (Ar). The grains in the hot strip were largely equiaxed, and the texture was weak, containing a- and ?'fibre. Reheating temperature, finish roll ing temperature and cooling rate after rolling influenced the ferrite-pearlite band formation significantly, and the yield ratio increased steeply with decreasing coiling temperature below 630 ~C. The anisotropy is relatively high due to re- tained severe ferrite-pearlite band. A mechanism of the band formation due to manganese segregation is elaborated and confirmed validly, from which the measures to avoid the band formation are worked out. Rolling parameters have been optimized by the measures, and industrial production of the gas cylinder steel has been made possible with much improved r-and △r-values, while meeting other specifications. 展开更多
关键词 yield ratio formability ferrite pearlite band texture plastic anisotropy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部