期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合TextRank算法的中文短文本相似度计算
被引量:
5
1
作者
卢佳伟
陈玮
尹钟
《电子科技》
2020年第10期51-56,共6页
传统的VSM向量空间模型忽略了文本语义,构建的文本特征矩阵具有稀疏性。基于深度学习词向量技术,文中提出一种融合改进TextRank算法的相似度计算方法。该方法利用词向量嵌入的技术来构建文本向量空间,使得构建的向量空间模型具有了语义...
传统的VSM向量空间模型忽略了文本语义,构建的文本特征矩阵具有稀疏性。基于深度学习词向量技术,文中提出一种融合改进TextRank算法的相似度计算方法。该方法利用词向量嵌入的技术来构建文本向量空间,使得构建的向量空间模型具有了语义相关性,同时采用改进的TextRank算法提取文本关键字,增强了文本特征的表达并消除了大量冗余信息,降低了文本特征矩阵的稀疏性,使文本相似度的计算更加高效。不同模型的仿真实验结果表明,融合改进的TextRank算法与Bert词向量技术的方法具有更好的文本相似度计算性能。
展开更多
关键词
文本相似度
关键字提取
textrank
算法
Bert
词向量技术
向量空间模型
在线阅读
下载PDF
职称材料
题名
融合TextRank算法的中文短文本相似度计算
被引量:
5
1
作者
卢佳伟
陈玮
尹钟
机构
上海理工大学光电信息与计算机工程学院
出处
《电子科技》
2020年第10期51-56,共6页
基金
国家自然科学基金(61703277)。
文摘
传统的VSM向量空间模型忽略了文本语义,构建的文本特征矩阵具有稀疏性。基于深度学习词向量技术,文中提出一种融合改进TextRank算法的相似度计算方法。该方法利用词向量嵌入的技术来构建文本向量空间,使得构建的向量空间模型具有了语义相关性,同时采用改进的TextRank算法提取文本关键字,增强了文本特征的表达并消除了大量冗余信息,降低了文本特征矩阵的稀疏性,使文本相似度的计算更加高效。不同模型的仿真实验结果表明,融合改进的TextRank算法与Bert词向量技术的方法具有更好的文本相似度计算性能。
关键词
文本相似度
关键字提取
textrank
算法
Bert
词向量技术
向量空间模型
Keywords
text similarity
keyword extraction
textrank slgorithm
Bert
word vector technique
vector space model
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合TextRank算法的中文短文本相似度计算
卢佳伟
陈玮
尹钟
《电子科技》
2020
5
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部