期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Text2Vec_AE_KMeans的微博话题聚类分析方法
1
作者 万文桐 黄润才 《智能计算机与应用》 2025年第5期82-89,共8页
传统的话题聚类分析方法使用静态词向量对微博文本进行建模,对微博文本不规范表达、一词多义等特点应对不佳,从而影响聚类效果与话题表述。针对此,提出了一种基于Text2Vec_AE_KMeans的深度文本特征提取与聚类的微博话题聚类分析方法。首... 传统的话题聚类分析方法使用静态词向量对微博文本进行建模,对微博文本不规范表达、一词多义等特点应对不佳,从而影响聚类效果与话题表述。针对此,提出了一种基于Text2Vec_AE_KMeans的深度文本特征提取与聚类的微博话题聚类分析方法。首先,使用基于MacBert预训练模型与CoSENT文本语句建模方法设计的Text2Vec预训练模型,对微博话题文本进行文本语义表示,从而改进静态词向量在文本特征建模方面的不足;然后,通过带有非线性激活函数的AutoEncoder降维网络对高维非线性文本特征进行降维;最后,在话题聚类分析的过程中采用KMeans_C-TF-IDF算法进行面向微博文本的聚类分析,从聚类簇的角度把握话题分布信息。在真实微博话题数据集上,相较于传统静态词向量建模方法,本文提出的方法在聚类评价指标上表现优异,生成的话题信息可识别性较好。 展开更多
关键词 话题聚类分析 CoSENT text2vec 自编码器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部