It has been suggested that text-based computer-mediated communication can help learners to use target language both in classrooms and in social contexts.It’s necessary to investigate the effect of text-based CMC on l...It has been suggested that text-based computer-mediated communication can help learners to use target language both in classrooms and in social contexts.It’s necessary to investigate the effect of text-based CMC on learners’communicative competence by conducting the method of systematic review.The findings implied that text-based CMC settings allowed learners to interact.The interaction provided learners with more opportunities to develop their communicative competence of target language.展开更多
The development of science and technology has made it not only possible but very convenient for people living in different parts of the world to communicate with each other, thus bringing forth a new form of communica...The development of science and technology has made it not only possible but very convenient for people living in different parts of the world to communicate with each other, thus bringing forth a new form of communication: computer-mediated communication (CMC). Text-based CMC is one of the most popular forms of CMC in which people send instant messages to others in different settings. Since this mode of interaction combines features of both the written and spoken language (Greenfield & Subrahmanyam, 2003), it's of great interest whether it follows the same sequential rule as the telephone conversation. However, compared to telephone conversations, computer-mediated communication has received much less attention, let alone text-based CMC. The existing body of literature mostly focuses on content analysis and linguistic features but neglects the sequential organization of such interaction (Paolillo, 1999; Greenfield and Subrahmanyam, 2003; Herring, 1999). In light of this, this paper examines the opening moves of instant message exchanges among Chinese adults in an attempt to find out the unique features characterizing the way they open an online chat. The framework that was chosen for data analysis was the sequential model proposed by Schegloff for American telephone openings.展开更多
Questions can be classified from different perspectives: grammatical form, communicative value, content orientation and cognitive level. In language pedagogy, text-based questioning as both an attention drawing devic...Questions can be classified from different perspectives: grammatical form, communicative value, content orientation and cognitive level. In language pedagogy, text-based questioning as both an attention drawing device and a form of learning tasks serves text instruction. Therefore, language teachers preparing text-based questioning should take into consideration all dimensions of questions, especially cognitive requirement and communicative character. In addition, interaction between learner, text and the world can be achieved by the adoption of both about-the-text and beyond-the-text questions in teachers' text-based question construction.展开更多
Recently,with the spread of online services involving websites,attack-ers have the opportunity to expose these services to malicious actions.To protect these services,A Completely Automated Public Turing Test to Tell ...Recently,with the spread of online services involving websites,attack-ers have the opportunity to expose these services to malicious actions.To protect these services,A Completely Automated Public Turing Test to Tell Computers and Humans Apart(CAPTCHA)is a proposed technique.Since many Arabic countries have developed their online services in Arabic,Arabic text-based CAPTCHA has been introduced to improve the usability for their users.More-over,there exist a visual cryptography(VC)technique which can be exploited in order to enhance the security of text-based CAPTCHA by encrypting a CAPTCHA image into two shares and decrypting it by asking the user to stack them on each other.However,as yet,the implementation of this technique with regard to Arabic text-based CAPTCHA has not been carried out.Therefore,this paper aims to implement an Arabic printed and handwritten text-based CAPTCHA scheme based on the VC technique.To evaluate this scheme,experi-mental studies are conducted,and the results show that the implemented scheme offers a reasonable security and usability levels with text-based CAPTCHA itself.展开更多
Improving website security to prevent malicious online activities is crucial,and CAPTCHA(Completely Automated Public Turing test to tell Computers and Humans Apart)has emerged as a key strategy for distinguishing huma...Improving website security to prevent malicious online activities is crucial,and CAPTCHA(Completely Automated Public Turing test to tell Computers and Humans Apart)has emerged as a key strategy for distinguishing human users from automated bots.Text-based CAPTCHAs,designed to be easily decipherable by humans yet challenging for machines,are a common form of this verification.However,advancements in deep learning have facilitated the creation of models adept at recognizing these text-based CAPTCHAs with surprising efficiency.In our comprehensive investigation into CAPTCHA recognition,we have tailored the renowned UpDown image captioning model specifically for this purpose.Our approach innovatively combines an encoder to extract both global and local features,significantly boosting the model’s capability to identify complex details within CAPTCHA images.For the decoding phase,we have adopted a refined attention mechanism,integrating enhanced visual attention with dual layers of Long Short-Term Memory(LSTM)networks to elevate CAPTCHA recognition accuracy.Our rigorous testing across four varied datasets,including those from Weibo,BoC,Gregwar,and Captcha 0.3,demonstrates the versatility and effectiveness of our method.The results not only highlight the efficiency of our approach but also offer profound insights into its applicability across different CAPTCHA types,contributing to a deeper understanding of CAPTCHA recognition technology.展开更多
Enhancing website security is crucial to combat malicious activities,and CAPTCHA(Completely Automated Public Turing tests to tell Computers and Humans Apart)has become a key method to distinguish humans from bots.Whil...Enhancing website security is crucial to combat malicious activities,and CAPTCHA(Completely Automated Public Turing tests to tell Computers and Humans Apart)has become a key method to distinguish humans from bots.While text-based CAPTCHAs are designed to challenge machines while remaining human-readable,recent advances in deep learning have enabled models to recognize them with remarkable efficiency.In this regard,we propose a novel two-layer visual attention framework for CAPTCHA recognition that builds on traditional attention mechanisms by incorporating Guided Visual Attention(GVA),which sharpens focus on relevant visual features.We have specifically adapted the well-established image captioning task to address this need.Our approach utilizes the first-level attention module as guidance to the second-level attention component,incorporating two LSTM(Long Short-Term Memory)layers to enhance CAPTCHA recognition.Our extensive evaluation across four diverse datasets—Weibo,BoC(Bank of China),Gregwar,and Captcha 0.3—shows the adaptability and efficacy of our method.Our approach demonstrated impressive performance,achieving an accuracy of 96.70%for BoC and 95.92%for Webo.These results underscore the effectiveness of our method in accurately recognizing and processing CAPTCHA datasets,showcasing its robustness,reliability,and ability to handle varied challenges in CAPTCHA recognition.展开更多
Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic...Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology,diglossia,and the scarcity of annotated datasets.This paper presents a hybrid approach to Arabic AES by combining text-based,vector-based,and embeddingbased similarity measures to improve essay scoring accuracy while minimizing the training data required.Using a large Arabic essay dataset categorized into thematic groups,the study conducted four experiments to evaluate the impact of feature selection,data size,and model performance.Experiment 1 established a baseline using a non-machine learning approach,selecting top-N correlated features to predict essay scores.The subsequent experiments employed 5-fold cross-validation.Experiment 2 showed that combining embedding-based,text-based,and vector-based features in a Random Forest(RF)model achieved an R2 of 88.92%and an accuracy of 83.3%within a 0.5-point tolerance.Experiment 3 further refined the feature selection process,demonstrating that 19 correlated features yielded optimal results,improving R2 to 88.95%.In Experiment 4,an optimal data efficiency training approach was introduced,where training data portions increased from 5%to 50%.The study found that using just 10%of the data achieved near-peak performance,with an R2 of 85.49%,emphasizing an effective trade-off between performance and computational costs.These findings highlight the potential of the hybrid approach for developing scalable Arabic AES systems,especially in low-resource environments,addressing linguistic challenges while ensuring efficient data usage.展开更多
Automated and accurate movie genre classification is crucial for content organization,recommendation systems,and audience targeting in the film industry.Although most existing approaches focus on audiovisual features ...Automated and accurate movie genre classification is crucial for content organization,recommendation systems,and audience targeting in the film industry.Although most existing approaches focus on audiovisual features such as trailers and posters,the text-based classification remains underexplored despite its accessibility and semantic richness.This paper introduces the Genre Attention Model(GAM),a deep learning architecture that integrates transformer models with a hierarchical attention mechanism to extract and leverage contextual information from movie plots formulti-label genre classification.In order to assess its effectiveness,we assessmultiple transformer-based models,including Bidirectional Encoder Representations fromTransformers(BERT),ALite BERT(ALBERT),Distilled BERT(DistilBERT),Robustly Optimized BERT Pretraining Approach(RoBERTa),Efficiently Learning an Encoder that Classifies Token Replacements Accurately(ELECTRA),eXtreme Learning Network(XLNet)and Decodingenhanced BERT with Disentangled Attention(DeBERTa).Experimental results demonstrate the superior performance of DeBERTa-based GAM,which employs a two-tier hierarchical attention mechanism:word-level attention highlights key terms,while sentence-level attention captures critical narrative segments,ensuring a refined and interpretable representation of movie plots.Evaluated on three benchmark datasets Trailers12K,Large Movie Trailer Dataset-9(LMTD-9),and MovieLens37K.GAM achieves micro-average precision scores of 83.63%,83.32%,and 83.34%,respectively,surpassing state-of-the-artmodels.Additionally,GAMis computationally efficient,requiring just 6.10Giga Floating Point Operations Per Second(GFLOPS),making it a scalable and cost-effective solution.These results highlight the growing potential of text-based deep learning models in genre classification and GAM’s effectiveness in improving predictive accuracy while maintaining computational efficiency.With its robust performance,GAM offers a versatile and scalable framework for content recommendation,film indexing,and media analytics,providing an interpretable alternative to traditional audiovisual-based classification techniques.展开更多
文摘It has been suggested that text-based computer-mediated communication can help learners to use target language both in classrooms and in social contexts.It’s necessary to investigate the effect of text-based CMC on learners’communicative competence by conducting the method of systematic review.The findings implied that text-based CMC settings allowed learners to interact.The interaction provided learners with more opportunities to develop their communicative competence of target language.
文摘The development of science and technology has made it not only possible but very convenient for people living in different parts of the world to communicate with each other, thus bringing forth a new form of communication: computer-mediated communication (CMC). Text-based CMC is one of the most popular forms of CMC in which people send instant messages to others in different settings. Since this mode of interaction combines features of both the written and spoken language (Greenfield & Subrahmanyam, 2003), it's of great interest whether it follows the same sequential rule as the telephone conversation. However, compared to telephone conversations, computer-mediated communication has received much less attention, let alone text-based CMC. The existing body of literature mostly focuses on content analysis and linguistic features but neglects the sequential organization of such interaction (Paolillo, 1999; Greenfield and Subrahmanyam, 2003; Herring, 1999). In light of this, this paper examines the opening moves of instant message exchanges among Chinese adults in an attempt to find out the unique features characterizing the way they open an online chat. The framework that was chosen for data analysis was the sequential model proposed by Schegloff for American telephone openings.
文摘Questions can be classified from different perspectives: grammatical form, communicative value, content orientation and cognitive level. In language pedagogy, text-based questioning as both an attention drawing device and a form of learning tasks serves text instruction. Therefore, language teachers preparing text-based questioning should take into consideration all dimensions of questions, especially cognitive requirement and communicative character. In addition, interaction between learner, text and the world can be achieved by the adoption of both about-the-text and beyond-the-text questions in teachers' text-based question construction.
文摘Recently,with the spread of online services involving websites,attack-ers have the opportunity to expose these services to malicious actions.To protect these services,A Completely Automated Public Turing Test to Tell Computers and Humans Apart(CAPTCHA)is a proposed technique.Since many Arabic countries have developed their online services in Arabic,Arabic text-based CAPTCHA has been introduced to improve the usability for their users.More-over,there exist a visual cryptography(VC)technique which can be exploited in order to enhance the security of text-based CAPTCHA by encrypting a CAPTCHA image into two shares and decrypting it by asking the user to stack them on each other.However,as yet,the implementation of this technique with regard to Arabic text-based CAPTCHA has not been carried out.Therefore,this paper aims to implement an Arabic printed and handwritten text-based CAPTCHA scheme based on the VC technique.To evaluate this scheme,experi-mental studies are conducted,and the results show that the implemented scheme offers a reasonable security and usability levels with text-based CAPTCHA itself.
基金supported by the National Natural Science Foundation of China(Nos.U22A2034,62177047)High Caliber Foreign Experts Introduction Plan funded by MOST,and Central South University Research Programme of Advanced Interdisciplinary Studies(No.2023QYJC020).
文摘Improving website security to prevent malicious online activities is crucial,and CAPTCHA(Completely Automated Public Turing test to tell Computers and Humans Apart)has emerged as a key strategy for distinguishing human users from automated bots.Text-based CAPTCHAs,designed to be easily decipherable by humans yet challenging for machines,are a common form of this verification.However,advancements in deep learning have facilitated the creation of models adept at recognizing these text-based CAPTCHAs with surprising efficiency.In our comprehensive investigation into CAPTCHA recognition,we have tailored the renowned UpDown image captioning model specifically for this purpose.Our approach innovatively combines an encoder to extract both global and local features,significantly boosting the model’s capability to identify complex details within CAPTCHA images.For the decoding phase,we have adopted a refined attention mechanism,integrating enhanced visual attention with dual layers of Long Short-Term Memory(LSTM)networks to elevate CAPTCHA recognition accuracy.Our rigorous testing across four varied datasets,including those from Weibo,BoC,Gregwar,and Captcha 0.3,demonstrates the versatility and effectiveness of our method.The results not only highlight the efficiency of our approach but also offer profound insights into its applicability across different CAPTCHA types,contributing to a deeper understanding of CAPTCHA recognition technology.
基金supported by the National Natural Science Foundation of China(Nos.U22A2034,62177047)High Caliber Foreign Experts Introduction Plan funded by MOST,and Central South University Research Programme of Advanced Interdisciplinary Studies(No.2023QYJC020).
文摘Enhancing website security is crucial to combat malicious activities,and CAPTCHA(Completely Automated Public Turing tests to tell Computers and Humans Apart)has become a key method to distinguish humans from bots.While text-based CAPTCHAs are designed to challenge machines while remaining human-readable,recent advances in deep learning have enabled models to recognize them with remarkable efficiency.In this regard,we propose a novel two-layer visual attention framework for CAPTCHA recognition that builds on traditional attention mechanisms by incorporating Guided Visual Attention(GVA),which sharpens focus on relevant visual features.We have specifically adapted the well-established image captioning task to address this need.Our approach utilizes the first-level attention module as guidance to the second-level attention component,incorporating two LSTM(Long Short-Term Memory)layers to enhance CAPTCHA recognition.Our extensive evaluation across four diverse datasets—Weibo,BoC(Bank of China),Gregwar,and Captcha 0.3—shows the adaptability and efficacy of our method.Our approach demonstrated impressive performance,achieving an accuracy of 96.70%for BoC and 95.92%for Webo.These results underscore the effectiveness of our method in accurately recognizing and processing CAPTCHA datasets,showcasing its robustness,reliability,and ability to handle varied challenges in CAPTCHA recognition.
基金funded by Deanship of Graduate studies and Scientific Research at Jouf University under grant No.(DGSSR-2024-02-01264).
文摘Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology,diglossia,and the scarcity of annotated datasets.This paper presents a hybrid approach to Arabic AES by combining text-based,vector-based,and embeddingbased similarity measures to improve essay scoring accuracy while minimizing the training data required.Using a large Arabic essay dataset categorized into thematic groups,the study conducted four experiments to evaluate the impact of feature selection,data size,and model performance.Experiment 1 established a baseline using a non-machine learning approach,selecting top-N correlated features to predict essay scores.The subsequent experiments employed 5-fold cross-validation.Experiment 2 showed that combining embedding-based,text-based,and vector-based features in a Random Forest(RF)model achieved an R2 of 88.92%and an accuracy of 83.3%within a 0.5-point tolerance.Experiment 3 further refined the feature selection process,demonstrating that 19 correlated features yielded optimal results,improving R2 to 88.95%.In Experiment 4,an optimal data efficiency training approach was introduced,where training data portions increased from 5%to 50%.The study found that using just 10%of the data achieved near-peak performance,with an R2 of 85.49%,emphasizing an effective trade-off between performance and computational costs.These findings highlight the potential of the hybrid approach for developing scalable Arabic AES systems,especially in low-resource environments,addressing linguistic challenges while ensuring efficient data usage.
基金would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025).
文摘Automated and accurate movie genre classification is crucial for content organization,recommendation systems,and audience targeting in the film industry.Although most existing approaches focus on audiovisual features such as trailers and posters,the text-based classification remains underexplored despite its accessibility and semantic richness.This paper introduces the Genre Attention Model(GAM),a deep learning architecture that integrates transformer models with a hierarchical attention mechanism to extract and leverage contextual information from movie plots formulti-label genre classification.In order to assess its effectiveness,we assessmultiple transformer-based models,including Bidirectional Encoder Representations fromTransformers(BERT),ALite BERT(ALBERT),Distilled BERT(DistilBERT),Robustly Optimized BERT Pretraining Approach(RoBERTa),Efficiently Learning an Encoder that Classifies Token Replacements Accurately(ELECTRA),eXtreme Learning Network(XLNet)and Decodingenhanced BERT with Disentangled Attention(DeBERTa).Experimental results demonstrate the superior performance of DeBERTa-based GAM,which employs a two-tier hierarchical attention mechanism:word-level attention highlights key terms,while sentence-level attention captures critical narrative segments,ensuring a refined and interpretable representation of movie plots.Evaluated on three benchmark datasets Trailers12K,Large Movie Trailer Dataset-9(LMTD-9),and MovieLens37K.GAM achieves micro-average precision scores of 83.63%,83.32%,and 83.34%,respectively,surpassing state-of-the-artmodels.Additionally,GAMis computationally efficient,requiring just 6.10Giga Floating Point Operations Per Second(GFLOPS),making it a scalable and cost-effective solution.These results highlight the growing potential of text-based deep learning models in genre classification and GAM’s effectiveness in improving predictive accuracy while maintaining computational efficiency.With its robust performance,GAM offers a versatile and scalable framework for content recommendation,film indexing,and media analytics,providing an interpretable alternative to traditional audiovisual-based classification techniques.