Clustering text data streams is an important issue in data mining community and has a number of applications such as news group filtering, text crawling, document organization and topic detection and tracing etc. Howe...Clustering text data streams is an important issue in data mining community and has a number of applications such as news group filtering, text crawling, document organization and topic detection and tracing etc. However, most methods are similarity-based approaches and only use the TF,IDF scheme to represent the semantics of text data and often lead to poor clustering quality. Recently, researchers argue that semantic smoothing model is more efficient than the existing TF,IDF scheme for improving text clustering quality. However, the existing semantic smoothing model is not suitable for dynamic text data context. In this paper, we extend the semantic smoothing model into text data streams context firstly. Based on the extended model, we then present two online clustering algorithms OCTS and OCTSM for the clustering of massive text data streams. In both algorithms, we also present a new cluster statistics structure named cluster profile which can capture the semantics of text data streams dynamically and at the same time speed up the clustering process. Some efficient implementations for our algorithms are also given. Finally, we present a series of experimental results illustrating the effectiveness of our technique.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.60573097,60703111,60773198the Natural Science Foundation of Guangdong Province under Grant No.06104916+1 种基金the Specialized Research Foundation for the Doctoral Program of Higher Education under Grant No.20050558017the Program for New Century Excellent Talents in University of China under Grant No.NCET-06-0727.
文摘Clustering text data streams is an important issue in data mining community and has a number of applications such as news group filtering, text crawling, document organization and topic detection and tracing etc. However, most methods are similarity-based approaches and only use the TF,IDF scheme to represent the semantics of text data and often lead to poor clustering quality. Recently, researchers argue that semantic smoothing model is more efficient than the existing TF,IDF scheme for improving text clustering quality. However, the existing semantic smoothing model is not suitable for dynamic text data context. In this paper, we extend the semantic smoothing model into text data streams context firstly. Based on the extended model, we then present two online clustering algorithms OCTS and OCTSM for the clustering of massive text data streams. In both algorithms, we also present a new cluster statistics structure named cluster profile which can capture the semantics of text data streams dynamically and at the same time speed up the clustering process. Some efficient implementations for our algorithms are also given. Finally, we present a series of experimental results illustrating the effectiveness of our technique.