A new tetraphenylethylene-cyclodextrin (TPE-CD) conjugate with a linkage composed of long triethylene glycol chain and triazole ring on the CD rim has been designed and synthesized. The TPE-CD conjugate exists in a st...A new tetraphenylethylene-cyclodextrin (TPE-CD) conjugate with a linkage composed of long triethylene glycol chain and triazole ring on the CD rim has been designed and synthesized. The TPE-CD conjugate exists in a stretched form in DMSO and enhances its fluorescence after addition of a small amount of water due to aggregation-induced emission (AIE) effect. However, in the presence of a large amount of water, the TPE unit will enter the cyclodextrin cavity to form a folded self-inclusion compound. In the self-inclusion compound, not only nitrogen-containing pseudo-crown ether is formed but also arouses photo-induced electron transfer (PET) process from nitrogen atoms of triazole ring to TPE unit and quenches the fluorescence although more aggregation occurs in more water. This is the first finding that TPE-macrocycle conjugate can form pseudo-crown ether and has both the AIE phenomenon and the PET effect. Interestingly, only mercury ion arouses the fluorescence recover of the self-inclusion compound by entering the pseudo-crown ether cavity and blocking the PET process by binding to the nitrogen atoms, while other tested metal ions almost have no effect on the fluorescence. Therefore, the TPE-CD conjugate can be used for the highly selective fluorescence "Turn-On" detection of Hg^(2+).展开更多
基金National Natural Science Foundation of China(Nos. 91856125 and 21673089)HUST Graduate Innovation Fund for financial support。
文摘A new tetraphenylethylene-cyclodextrin (TPE-CD) conjugate with a linkage composed of long triethylene glycol chain and triazole ring on the CD rim has been designed and synthesized. The TPE-CD conjugate exists in a stretched form in DMSO and enhances its fluorescence after addition of a small amount of water due to aggregation-induced emission (AIE) effect. However, in the presence of a large amount of water, the TPE unit will enter the cyclodextrin cavity to form a folded self-inclusion compound. In the self-inclusion compound, not only nitrogen-containing pseudo-crown ether is formed but also arouses photo-induced electron transfer (PET) process from nitrogen atoms of triazole ring to TPE unit and quenches the fluorescence although more aggregation occurs in more water. This is the first finding that TPE-macrocycle conjugate can form pseudo-crown ether and has both the AIE phenomenon and the PET effect. Interestingly, only mercury ion arouses the fluorescence recover of the self-inclusion compound by entering the pseudo-crown ether cavity and blocking the PET process by binding to the nitrogen atoms, while other tested metal ions almost have no effect on the fluorescence. Therefore, the TPE-CD conjugate can be used for the highly selective fluorescence "Turn-On" detection of Hg^(2+).