A complex geological environment with faults can be encountered in the process of coal mining.Fault activation can cause instantaneous structure slipping,releasing a significant amount of elastic strain energy during ...A complex geological environment with faults can be encountered in the process of coal mining.Fault activation can cause instantaneous structure slipping,releasing a significant amount of elastic strain energy during underground coal mining.This would trigger strong rockburst disasters.To understand the occurrence of fault-slip induced rockbursts,we developed a physical model test system for fault-slip induced rockbursts in coal mine drifts.The boundary energy storage(BES)loading apparatus and bottom rapid retraction(BRR)apparatus are designed to realize energy compensation and continuous boundary stress transfer of the surrounding rocks for instantaneous fault slip,as well as to provide space for the potential fault slip.Taking the typical fault-slip induced rockburst in the Xinjulong Coal Mine,China,as the background,we conducted a model test using the test system.The deformation and stress in the rock surrounding the drift and the support unit force during fault slip are analyzed.The deformation and failure characteristics and dynamic responses of drifts under fault-slip induced rockbursts are obtained.The test results illustrate the rationality and effectiveness of the test system.Finally,corresponding recommendations and prospects are proposed based on our findings.展开更多
As a major fault in the northeastern Qinghai-Xizang Plateau,the Haiyuan fault zone is important for understanding the regional deformation.Aiming at the differences in the slip rate and locking degree obtained from di...As a major fault in the northeastern Qinghai-Xizang Plateau,the Haiyuan fault zone is important for understanding the regional deformation.Aiming at the differences in the slip rate and locking degree obtained from different studies,this study constructs a refined block model(including Qilian,Alxa,Ordos,Xining,Haiyuan,and Lanzhou blocks)and uses the grid search and simulated annealing methods to invert GPS data for slip rate and locking degree of the Haiyuan fault zone.The results are as follows:(1)The sinistral slip rates in the western,middle,and eastern segments are 4.93-5.22 mm/a,1.52-4.94 mm/a,and 0.43-1.18 mm/a,decreasing eastward on the whole,while the compression rates are 0.45-1.26 mm/a,0.58-2.62 mm/a,and3.52-4.48 mm/a,increasing eastward on the whole.(2)The locking depth of the western segment increases from about 5 km to about 20 km eastward;the middle segment decreases and then increases eastward;the eastern segment concentrates at about 20 km(PHI is about 0.86).(3)The slip deficit is relatively higher in the Lenglongling,Jinqianghe,Maomaoshan,and Liupanshan faults(averaging about 3.42 mm/a,4.16 mm/a,4.23 mm/a,and 3.43 mm/a within 20 km).(4)The Qilian,Alxa,Xining,Lanzhou,and Haiyuan blocks rotate clockwise,while the Ordos block rotates counterclockwise.Additionally,by comparing different block models,the Haiyuan block should be considered independently.The Haiyuan fault zone adjusts surrounding block movements and uplifts Liupanshan mountain tectonically.The results can provide important references for understanding the regional earthquake risk and deformation mechanism.展开更多
This work investigates thermal enhancement in fluid flow over a nonlinear stretching sheet.The thickness of the sheet is variable and the flow of the fluid is affected by solar radiation energy with Thompson and Troia...This work investigates thermal enhancement in fluid flow over a nonlinear stretching sheet.The thickness of the sheet is variable and the flow of the fluid is affected by solar radiation energy with Thompson and Troian slip effects.The flow is magnetized by applying a magnetic field in the normal direction to the flow system.Moreover,thermal transport is controlled by incorporating the Cattaneo-Christov heat fluid model into the flow problem.The governing equations,initially framed in their dimensional form,are meticulously transformed into a dimensionless framework to simplify the analysis.These dimensionless equations are then solved using the homotopy analysis method(HAM).It is observed in this study that upsurges in the stagnation parameter,critical shear rate and velocity slip factor augment the velocity distribution while reducing the thermal profiles.The velocity distribution deteriorates while the thermal profiles are amplified with expansions in the magnetic factor and power law index.The thermal distribution also increases with rising Prandtl number and radiation factor.Augmentation of the power-law index,velocity slip parameter,critical shear rate,magnetic factor and stagnation parameter leads to an increased Nusselt number.The modeled problem is validated by comparing the current results with established work for different values of nonlinear stretching factor n in terms of the drag force and thermal flow rate at η=0,and a good agreement is observed between the current and established results.展开更多
With the growing demand for the fabrication of microminiaturized components,a comprehensive understanding of material removal behavior during ultra-precision cutting has become increasingly significant.Single-crystal ...With the growing demand for the fabrication of microminiaturized components,a comprehensive understanding of material removal behavior during ultra-precision cutting has become increasingly significant.Single-crystal sapphire stands out as a promising material for microelectronic components,ultra-precision lenses,and semiconductor structures owing to its exceptional characteristics,such as high hardness,chemical stability,and optical properties.This paper focuses on understanding the mechanism responsible for generating anisotropic crack morphologies along various cutting orientations on four crystal planes(C-,R-,A-,and M-planes)of sapphire during ultra-precision orthogonal cutting.By employing a scanning electric microscope to examine the machined surfaces,the crack morphologies can be categorized into three distinct types on the basis of their distinctive features:layered,sculptured,and lateral.To understand the mechanism determining crack morphology,visualized parameters related to the plastic deformation and cleavage fracture parameters are utilized.These parameters provide insight into both the likelihood and direction of plastic deformation and fracture system activations.Analysis of the results shows that the formation of crack morphology is predominantly influenced by the directionality of crystallographic fracture system activation and by the interplay between fracture and plastic deformation system activations.展开更多
Shear strain energy is a pivotal physical quantity in the occurrence of earthquakes and rockbursts during deep mining operations.This research is focused on understanding the changes in shear strain energy in the cont...Shear strain energy is a pivotal physical quantity in the occurrence of earthquakes and rockbursts during deep mining operations.This research is focused on understanding the changes in shear strain energy in the context of retreating longwall mining,which is essential for the optimized design and mitigation of rockbursts and seismic events.Through the application of innovative analytical models,this study expands its analytical range to include the variations in shear strain energy caused by fault coseismic slip.An integrated methodology is utilized,taking into account the changes in coseismic and fault friction parameters as well as enhancements in mining-induced stress and existing background stresses.Our numerical investigation highlights the significance of mining location and fault characteristics as key determinants of shear strain energy modifications.The analysis demonstrates significant spatial variability in shear strain energy,especially noting that fault slip near the mining face greatly increases the likelihood of rockburst.This finding emphasizes the need to integrate fault coseismic slip dynamics into the triggering factors of rock(coal)bursts,thus broadening the theoretical foundation for addressing geological hazards in deep mining operations.The results are further corroborated by observational data from the vicinity of the F16 fault zone,introducing the concept of mining-induced fault coseismic slip as an essential element in the theoretical framework for understanding rockburst triggers.展开更多
Two long-term slow slip events(SSEs) in Lower Cook Inlet, Alaska, were identified by Li SS et al.(2016). The earlier SSE lasted at least 9 years with M_(w) ~7.8 and had an average slip rate of ~82 mm/year. The latter ...Two long-term slow slip events(SSEs) in Lower Cook Inlet, Alaska, were identified by Li SS et al.(2016). The earlier SSE lasted at least 9 years with M_(w) ~7.8 and had an average slip rate of ~82 mm/year. The latter SSE, occurring in a similar area, lasted approximately 2 years with M_(w) ~7.2 and an average slip rate of ~91 mm/year. To test whether these SSEs triggered earthquakes near the slow slip area, we calculated the Coulomb stressing rate changes on receiver faults by using two fault geometry definitions: nodal planes of focal mechanism solutions of past earthquakes, and optimally oriented fault planes. Regions in the shallow slab(30–60 km) that experienced a significant increase in the Coulomb stressing rate due to slip by the SSEs showed an increase in seismicity rates during SSE periods. No correlation was found in the volumes that underwent a significant increase in the Coulomb stressing rate during the SSE within the crust and the intermediate slab. We modeled variations in seismicity rates by using a combination of the Coulomb stress transfer model and the framework of rate-and-state friction. Our model indicated that the SSEs increased the Coulomb stress changes on adjacent faults,thereby increasing the seismicity rates even though the ratio of the SSE stressing rate to the background stressing rate was small. Each long-term SSE in Alaska brought the megathrust updip of the SSE areas closer to failure by up to 0.1–0.15 MPa. The volumes of significant Coulomb stress changes caused by the Upper and Lower Cook Inlet SSEs did not overlap.展开更多
In this speculative analysis, our main focused is to address the neurotic condition that occurs due to accumulation of blood components on the wall of the artery that results in blood coagulation. Specifically, to per...In this speculative analysis, our main focused is to address the neurotic condition that occurs due to accumulation of blood components on the wall of the artery that results in blood coagulation. Specifically, to perceive this phenomena clot model is considered. To discuss this analysis mathematical model is formed in the presence of the effective thermal conductivity and variable viscosity of base fluid. Appropriate slip conditions are employed to obtain the close form solutions of temperature and velocity profile. The graphical illustrations have been presented for the assessment of pressure rise, pressure gradient and velocity profile. The effects of several parameters on the flow quantities for theoretical observation are investigated. At the end, the results confirmed that the impulsion of copper and silver nanoparticles as drug agent enlarges the amplitude of the velocity and hence nanoparticles play an important role in engineering and biomedical applications such as drug delivery system.展开更多
The complex micromechanical response among grains remains a persistent challenge to understand the deformation mechanism of titanium alloys during cold rolling.Therefore,in this work,a multiscale crystal plasticity fi...The complex micromechanical response among grains remains a persistent challenge to understand the deformation mechanism of titanium alloys during cold rolling.Therefore,in this work,a multiscale crystal plasticity finite element method of dual-phase alloy was proposed and secondarily developed based on LS-DYNA software.Afterward,the texture evolution and slip mode of a Ti-5.5Mo-7.2Al-4.5Zr-2.6Sn-2.1Cr alloy,based on the realistic 3D microstructure,during cold rolling(20%thickness reduction)were systematically investigated.The relative activity of the■slip system in theαphase gradually increased,and then served as the main slip mode at lower Schmid factor(<0.2).In contrast,the contribution of the■slip system to the overall plastic deformation was relatively limited.For theβphase,the relative activity of the<111>{110}slip system showed an upward tendency,indicating the important role of the critical resolved shear stress relationship in the relative activity evolutions.Furthermore,the abnormally high strain of very fewβgrains was found,which was attributed to their severe rotations compelled by the neighboring pre-deformedαgrains.The calculated pole figures,rotation axes,and compelled rotation behavior exhibited good agreement to the experimental results.展开更多
On August 8,2017,an M_(W)6.5 earthquake occurred in Jiuzhaigou County,Sichuan Province,China,on the eastern margin of the Qinghai-Tibet Plateau.This study investigates the coseismic deformation field and fault model w...On August 8,2017,an M_(W)6.5 earthquake occurred in Jiuzhaigou County,Sichuan Province,China,on the eastern margin of the Qinghai-Tibet Plateau.This study investigates the coseismic deformation field and fault model with ascending and descending Sentinel-1 synthetic aperture radar(SAR)images,aftershock distribution,and elastic half-space dislocation model.The regional fault slip pattern is then quantita-tively examined using the boundary element method.The results show that the ascending and descending interferometric synthetic aperture radar(InSAR)coseismic deformation fields display an overall NNW-SSE trend,with more significant deformation on the southwest side of the fault.The coseismic fault geometry is divided into NW and SE sub-faults with strikes of 162.1°and 149.3°,respectively.The coseismic fault slip is dominated by a left-lateral strike-slip movement with an average rake of-2.31°,mainly occurring at a depth of 0-13.04 km with a shape of an approximately inverted triangle.The fault slip features two peak slip zones,with a maximum of 1.39 m.The total seismic moment is 6.34×10^(18) N·m(M_(W)6.47).The boundary element calculation quantitatively indicates that the regional fault slip pattern may be mainly attributable to the changing strike and dip.The strike changes from NNWeSSE to nearly NS direction,and the dip gradually decreases from the Jiuzhaigou earthquake fault in the north to the Huya fault in the south.With these characteristics,the Huya and the Jiuzhaigou earthquake faults form the eastern boundary of the Minshan uplift zone and accommodate the accumulated deformation.展开更多
Different slip models were used for prediction of r value of BCC metal sheets from ODF coefficients.According to the maximum plastic work theory developed by Bishop and Hill,it is expected that the higher of Taylor fa...Different slip models were used for prediction of r value of BCC metal sheets from ODF coefficients.According to the maximum plastic work theory developed by Bishop and Hill,it is expected that the higher of Taylor factors given by a slip’ model,the better prediction obtained based on the model.From this point of view,a composed slip model of BCC metals was presented.Based on the model,the agreement of predicted r values for deep drawing steels with experimental ones is excellent.展开更多
A polymeric gel is an aggregate of polymers and solvent molecules, which can retain its shape after a large deformation. The deformation behavior of polymeric gels was often described based on the Flory-Rehner free en...A polymeric gel is an aggregate of polymers and solvent molecules, which can retain its shape after a large deformation. The deformation behavior of polymeric gels was often described based on the Flory-Rehner free energy function without considering the influence of chain entanglements on the mechanical behavior of gels. In this paper,a new hybrid free energy function for gels is formulated by combining the EdwardsVilgis slip-link model and the Flory-Huggins mixing model to quantify the time-dependent concurrent process of large deformation and mass transport. The finite element method is developed to analyze examples of swelling-induced deformation. Simulation results are compared with available experimental data and show good agreement. The influence of entanglements on the time-dependent deformation behavior of gels is also demonstrated.The study of large deformation kinetics of polymeric gel is useful for diverse applications.展开更多
Nanoparticle(drug particle) dispersion is an important phenomenon during nanodrug delivery in the bloodstream by using multifunctional carrier particles. The aim of this study is to understand the dispersion of drug p...Nanoparticle(drug particle) dispersion is an important phenomenon during nanodrug delivery in the bloodstream by using multifunctional carrier particles. The aim of this study is to understand the dispersion of drug particle(nanoparticle) transport during steady blood flow through a microvessel. A two-phase fluid model is considered to define blood flow through a microvessel. Plug and intermediate regions are defined by a non-Newtonian Herschel-Bulkley fluid model where the plug region appears due to the aggregation of red blood cells at the axis in the vessel. The peripheral(porous in nature)region is defined by the Newtonian fluids. The wall of the microvessel is considered to be permeable and characterized by the Darcy model. Stress-jump and velocity slip conditions are incorporated respectively at the interface of the intermediate and peripheral regions and at the inner surface of the microvessel. The effects of the rheological parameter, the pressure constant, the particle volume fraction, the stress jump constant, the slip constant,and the yield stress on the dispersion are analyzed and discussed. It is observed that the non-dimensional pressure gradient and the yield stress enhance the dispersion rate of the nanoparticle, while the opposite trends are observed for the velocity slip constant, the nanoparticle volume fraction, the rheological parameter, and the stress-jump constant.展开更多
The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In th...The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In this process, source parameters were treated as normal random variables, and the Fortran code of hybrid slip model was modified by adding a random number generator so that the code could generate many finite fault models with different dimensions and slip distributions for a given magnitude.Furth...展开更多
Most of the earthquake faults in North-East India, China, mid Atlantic-ridge, the Pacific seismic belt and Japan are found to be predominantly dip-slip in nature. In the present paper a dip-slip fault is taken situate...Most of the earthquake faults in North-East India, China, mid Atlantic-ridge, the Pacific seismic belt and Japan are found to be predominantly dip-slip in nature. In the present paper a dip-slip fault is taken situated in an elastic layer over a viscoelastic half space representing the lithosphere-asthenosphere system. A movement of the dip-slip nature across the fault occurs when the accumulated stress due to various tectonic reasons e.g. mantle convection etc., exceeds the local friction and cohesive forces across the fault. The movement is assumed to be slipping in nature, expressions for displacements, stresses and strains are obtained by solving associated boundary value problem with the help of integral transformation and Green’s function method and a suitable numerical methods is used for computation. A detailed study of these expressions may give some ideas about the nature of stress accumulation in the system, which in turn will be helpful in formulating an earthquake prediction programme.展开更多
基金support from the National Natural Science Foundation of China (Grant Nos.51927807,42077267 and 42277174).
文摘A complex geological environment with faults can be encountered in the process of coal mining.Fault activation can cause instantaneous structure slipping,releasing a significant amount of elastic strain energy during underground coal mining.This would trigger strong rockburst disasters.To understand the occurrence of fault-slip induced rockbursts,we developed a physical model test system for fault-slip induced rockbursts in coal mine drifts.The boundary energy storage(BES)loading apparatus and bottom rapid retraction(BRR)apparatus are designed to realize energy compensation and continuous boundary stress transfer of the surrounding rocks for instantaneous fault slip,as well as to provide space for the potential fault slip.Taking the typical fault-slip induced rockburst in the Xinjulong Coal Mine,China,as the background,we conducted a model test using the test system.The deformation and stress in the rock surrounding the drift and the support unit force during fault slip are analyzed.The deformation and failure characteristics and dynamic responses of drifts under fault-slip induced rockbursts are obtained.The test results illustrate the rationality and effectiveness of the test system.Finally,corresponding recommendations and prospects are proposed based on our findings.
基金supported by the National Natural Science Foundation of China(42474003,42074007)the Fundamental Research Funds for the Central Universities(2042023kfyq01)。
文摘As a major fault in the northeastern Qinghai-Xizang Plateau,the Haiyuan fault zone is important for understanding the regional deformation.Aiming at the differences in the slip rate and locking degree obtained from different studies,this study constructs a refined block model(including Qilian,Alxa,Ordos,Xining,Haiyuan,and Lanzhou blocks)and uses the grid search and simulated annealing methods to invert GPS data for slip rate and locking degree of the Haiyuan fault zone.The results are as follows:(1)The sinistral slip rates in the western,middle,and eastern segments are 4.93-5.22 mm/a,1.52-4.94 mm/a,and 0.43-1.18 mm/a,decreasing eastward on the whole,while the compression rates are 0.45-1.26 mm/a,0.58-2.62 mm/a,and3.52-4.48 mm/a,increasing eastward on the whole.(2)The locking depth of the western segment increases from about 5 km to about 20 km eastward;the middle segment decreases and then increases eastward;the eastern segment concentrates at about 20 km(PHI is about 0.86).(3)The slip deficit is relatively higher in the Lenglongling,Jinqianghe,Maomaoshan,and Liupanshan faults(averaging about 3.42 mm/a,4.16 mm/a,4.23 mm/a,and 3.43 mm/a within 20 km).(4)The Qilian,Alxa,Xining,Lanzhou,and Haiyuan blocks rotate clockwise,while the Ordos block rotates counterclockwise.Additionally,by comparing different block models,the Haiyuan block should be considered independently.The Haiyuan fault zone adjusts surrounding block movements and uplifts Liupanshan mountain tectonically.The results can provide important references for understanding the regional earthquake risk and deformation mechanism.
基金supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2025/R/1446)。
文摘This work investigates thermal enhancement in fluid flow over a nonlinear stretching sheet.The thickness of the sheet is variable and the flow of the fluid is affected by solar radiation energy with Thompson and Troian slip effects.The flow is magnetized by applying a magnetic field in the normal direction to the flow system.Moreover,thermal transport is controlled by incorporating the Cattaneo-Christov heat fluid model into the flow problem.The governing equations,initially framed in their dimensional form,are meticulously transformed into a dimensionless framework to simplify the analysis.These dimensionless equations are then solved using the homotopy analysis method(HAM).It is observed in this study that upsurges in the stagnation parameter,critical shear rate and velocity slip factor augment the velocity distribution while reducing the thermal profiles.The velocity distribution deteriorates while the thermal profiles are amplified with expansions in the magnetic factor and power law index.The thermal distribution also increases with rising Prandtl number and radiation factor.Augmentation of the power-law index,velocity slip parameter,critical shear rate,magnetic factor and stagnation parameter leads to an increased Nusselt number.The modeled problem is validated by comparing the current results with established work for different values of nonlinear stretching factor n in terms of the drag force and thermal flow rate at η=0,and a good agreement is observed between the current and established results.
基金supported by the National Science Foundation under Grant No.CMMI-1844821supported by the NSF through the University of Wisconsin Materials Research Science Center(Grant No.DMR-1720415).
文摘With the growing demand for the fabrication of microminiaturized components,a comprehensive understanding of material removal behavior during ultra-precision cutting has become increasingly significant.Single-crystal sapphire stands out as a promising material for microelectronic components,ultra-precision lenses,and semiconductor structures owing to its exceptional characteristics,such as high hardness,chemical stability,and optical properties.This paper focuses on understanding the mechanism responsible for generating anisotropic crack morphologies along various cutting orientations on four crystal planes(C-,R-,A-,and M-planes)of sapphire during ultra-precision orthogonal cutting.By employing a scanning electric microscope to examine the machined surfaces,the crack morphologies can be categorized into three distinct types on the basis of their distinctive features:layered,sculptured,and lateral.To understand the mechanism determining crack morphology,visualized parameters related to the plastic deformation and cleavage fracture parameters are utilized.These parameters provide insight into both the likelihood and direction of plastic deformation and fracture system activations.Analysis of the results shows that the formation of crack morphology is predominantly influenced by the directionality of crystallographic fracture system activation and by the interplay between fracture and plastic deformation system activations.
文摘Shear strain energy is a pivotal physical quantity in the occurrence of earthquakes and rockbursts during deep mining operations.This research is focused on understanding the changes in shear strain energy in the context of retreating longwall mining,which is essential for the optimized design and mitigation of rockbursts and seismic events.Through the application of innovative analytical models,this study expands its analytical range to include the variations in shear strain energy caused by fault coseismic slip.An integrated methodology is utilized,taking into account the changes in coseismic and fault friction parameters as well as enhancements in mining-induced stress and existing background stresses.Our numerical investigation highlights the significance of mining location and fault characteristics as key determinants of shear strain energy modifications.The analysis demonstrates significant spatial variability in shear strain energy,especially noting that fault slip near the mining face greatly increases the likelihood of rockburst.This finding emphasizes the need to integrate fault coseismic slip dynamics into the triggering factors of rock(coal)bursts,thus broadening the theoretical foundation for addressing geological hazards in deep mining operations.The results are further corroborated by observational data from the vicinity of the F16 fault zone,introducing the concept of mining-induced fault coseismic slip as an essential element in the theoretical framework for understanding rockburst triggers.
基金supported by the National Natural Science Foundation of China (Grant No. 42104001)。
文摘Two long-term slow slip events(SSEs) in Lower Cook Inlet, Alaska, were identified by Li SS et al.(2016). The earlier SSE lasted at least 9 years with M_(w) ~7.8 and had an average slip rate of ~82 mm/year. The latter SSE, occurring in a similar area, lasted approximately 2 years with M_(w) ~7.2 and an average slip rate of ~91 mm/year. To test whether these SSEs triggered earthquakes near the slow slip area, we calculated the Coulomb stressing rate changes on receiver faults by using two fault geometry definitions: nodal planes of focal mechanism solutions of past earthquakes, and optimally oriented fault planes. Regions in the shallow slab(30–60 km) that experienced a significant increase in the Coulomb stressing rate due to slip by the SSEs showed an increase in seismicity rates during SSE periods. No correlation was found in the volumes that underwent a significant increase in the Coulomb stressing rate during the SSE within the crust and the intermediate slab. We modeled variations in seismicity rates by using a combination of the Coulomb stress transfer model and the framework of rate-and-state friction. Our model indicated that the SSEs increased the Coulomb stress changes on adjacent faults,thereby increasing the seismicity rates even though the ratio of the SSE stressing rate to the background stressing rate was small. Each long-term SSE in Alaska brought the megathrust updip of the SSE areas closer to failure by up to 0.1–0.15 MPa. The volumes of significant Coulomb stress changes caused by the Upper and Lower Cook Inlet SSEs did not overlap.
基金the Higher Education Commission, Pakistan (HEC) for the financial support to complete this work under the research Grant No. 6170/Federal/NRPU/R&D/HEC/2016
文摘In this speculative analysis, our main focused is to address the neurotic condition that occurs due to accumulation of blood components on the wall of the artery that results in blood coagulation. Specifically, to perceive this phenomena clot model is considered. To discuss this analysis mathematical model is formed in the presence of the effective thermal conductivity and variable viscosity of base fluid. Appropriate slip conditions are employed to obtain the close form solutions of temperature and velocity profile. The graphical illustrations have been presented for the assessment of pressure rise, pressure gradient and velocity profile. The effects of several parameters on the flow quantities for theoretical observation are investigated. At the end, the results confirmed that the impulsion of copper and silver nanoparticles as drug agent enlarges the amplitude of the velocity and hence nanoparticles play an important role in engineering and biomedical applications such as drug delivery system.
基金financially supported by the Natural Science Foundation of Chongqing(No.Cstc2020jcyj-msxmX0094)the Joint Research Programs between Belarusian Republican Foundation for Fundamental Research and Beijing Institute of Technology"BRFFR-BIT-2020(No.BITBLR2020004)。
文摘The complex micromechanical response among grains remains a persistent challenge to understand the deformation mechanism of titanium alloys during cold rolling.Therefore,in this work,a multiscale crystal plasticity finite element method of dual-phase alloy was proposed and secondarily developed based on LS-DYNA software.Afterward,the texture evolution and slip mode of a Ti-5.5Mo-7.2Al-4.5Zr-2.6Sn-2.1Cr alloy,based on the realistic 3D microstructure,during cold rolling(20%thickness reduction)were systematically investigated.The relative activity of the■slip system in theαphase gradually increased,and then served as the main slip mode at lower Schmid factor(<0.2).In contrast,the contribution of the■slip system to the overall plastic deformation was relatively limited.For theβphase,the relative activity of the<111>{110}slip system showed an upward tendency,indicating the important role of the critical resolved shear stress relationship in the relative activity evolutions.Furthermore,the abnormally high strain of very fewβgrains was found,which was attributed to their severe rotations compelled by the neighboring pre-deformedαgrains.The calculated pole figures,rotation axes,and compelled rotation behavior exhibited good agreement to the experimental results.
基金This work was supported by the National Key Research and Development Program of China(2018YFC1503603,2016YFB0501405)the National Natural Science Foundation of China(41874011,41774011)。
文摘On August 8,2017,an M_(W)6.5 earthquake occurred in Jiuzhaigou County,Sichuan Province,China,on the eastern margin of the Qinghai-Tibet Plateau.This study investigates the coseismic deformation field and fault model with ascending and descending Sentinel-1 synthetic aperture radar(SAR)images,aftershock distribution,and elastic half-space dislocation model.The regional fault slip pattern is then quantita-tively examined using the boundary element method.The results show that the ascending and descending interferometric synthetic aperture radar(InSAR)coseismic deformation fields display an overall NNW-SSE trend,with more significant deformation on the southwest side of the fault.The coseismic fault geometry is divided into NW and SE sub-faults with strikes of 162.1°and 149.3°,respectively.The coseismic fault slip is dominated by a left-lateral strike-slip movement with an average rake of-2.31°,mainly occurring at a depth of 0-13.04 km with a shape of an approximately inverted triangle.The fault slip features two peak slip zones,with a maximum of 1.39 m.The total seismic moment is 6.34×10^(18) N·m(M_(W)6.47).The boundary element calculation quantitatively indicates that the regional fault slip pattern may be mainly attributable to the changing strike and dip.The strike changes from NNWeSSE to nearly NS direction,and the dip gradually decreases from the Jiuzhaigou earthquake fault in the north to the Huya fault in the south.With these characteristics,the Huya and the Jiuzhaigou earthquake faults form the eastern boundary of the Minshan uplift zone and accommodate the accumulated deformation.
文摘Different slip models were used for prediction of r value of BCC metal sheets from ODF coefficients.According to the maximum plastic work theory developed by Bishop and Hill,it is expected that the higher of Taylor factors given by a slip’ model,the better prediction obtained based on the model.From this point of view,a composed slip model of BCC metals was presented.Based on the model,the agreement of predicted r values for deep drawing steels with experimental ones is excellent.
基金Project supported by the National Natural Science Foundation of China(Nos.11272237 and11502131)the Natural Science Foundation of Fujian Province(No.2016J05019)the Foundation of the Higher Education Institutions of Fujian Education Department for Distinguished Young Scholar(No.[2016]23)
文摘A polymeric gel is an aggregate of polymers and solvent molecules, which can retain its shape after a large deformation. The deformation behavior of polymeric gels was often described based on the Flory-Rehner free energy function without considering the influence of chain entanglements on the mechanical behavior of gels. In this paper,a new hybrid free energy function for gels is formulated by combining the EdwardsVilgis slip-link model and the Flory-Huggins mixing model to quantify the time-dependent concurrent process of large deformation and mass transport. The finite element method is developed to analyze examples of swelling-induced deformation. Simulation results are compared with available experimental data and show good agreement. The influence of entanglements on the time-dependent deformation behavior of gels is also demonstrated.The study of large deformation kinetics of polymeric gel is useful for diverse applications.
基金Project supported by the Botswana International University of Science and Technology(No. DVC/RDI/2/1/161(35))。
文摘Nanoparticle(drug particle) dispersion is an important phenomenon during nanodrug delivery in the bloodstream by using multifunctional carrier particles. The aim of this study is to understand the dispersion of drug particle(nanoparticle) transport during steady blood flow through a microvessel. A two-phase fluid model is considered to define blood flow through a microvessel. Plug and intermediate regions are defined by a non-Newtonian Herschel-Bulkley fluid model where the plug region appears due to the aggregation of red blood cells at the axis in the vessel. The peripheral(porous in nature)region is defined by the Newtonian fluids. The wall of the microvessel is considered to be permeable and characterized by the Darcy model. Stress-jump and velocity slip conditions are incorporated respectively at the interface of the intermediate and peripheral regions and at the inner surface of the microvessel. The effects of the rheological parameter, the pressure constant, the particle volume fraction, the stress jump constant, the slip constant,and the yield stress on the dispersion are analyzed and discussed. It is observed that the non-dimensional pressure gradient and the yield stress enhance the dispersion rate of the nanoparticle, while the opposite trends are observed for the velocity slip constant, the nanoparticle volume fraction, the rheological parameter, and the stress-jump constant.
基金Supported by National Natural Science Foundation of China (No. 50778058 and No. 90715038)National Key Technology Research and Development Program of China (No. 2006BAC13B02)Major State Basic Research Development Program of China ("973" Program, No. 2008CB425802)
文摘The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In this process, source parameters were treated as normal random variables, and the Fortran code of hybrid slip model was modified by adding a random number generator so that the code could generate many finite fault models with different dimensions and slip distributions for a given magnitude.Furth...
文摘Most of the earthquake faults in North-East India, China, mid Atlantic-ridge, the Pacific seismic belt and Japan are found to be predominantly dip-slip in nature. In the present paper a dip-slip fault is taken situated in an elastic layer over a viscoelastic half space representing the lithosphere-asthenosphere system. A movement of the dip-slip nature across the fault occurs when the accumulated stress due to various tectonic reasons e.g. mantle convection etc., exceeds the local friction and cohesive forces across the fault. The movement is assumed to be slipping in nature, expressions for displacements, stresses and strains are obtained by solving associated boundary value problem with the help of integral transformation and Green’s function method and a suitable numerical methods is used for computation. A detailed study of these expressions may give some ideas about the nature of stress accumulation in the system, which in turn will be helpful in formulating an earthquake prediction programme.