There has been a large increase in the number of days per year with numerous EF1-EF5 tornadoes.Given the significant damage incurred by tornadoes upon communities,community resilience analyses for tornado-stricken com...There has been a large increase in the number of days per year with numerous EF1-EF5 tornadoes.Given the significant damage incurred by tornadoes upon communities,community resilience analyses for tornado-stricken communities have been gaining momentum.As the community resilience analysis aims to guide how to lay out effective hazard mitigation strategies to decrease damage and improve recovery,a comprehensive and accurate approach is necessary.Agent-based modeling,an analysis approach in which different types of agents are created with their properties and behavior clearly defined to simulate the processes of those agents in an external environ-ment,is the most comprehensive and accurate approach so far to conducting community resilience simulations and investigating the decision-making for mitigation and recovery under natural hazards.In this paper,agent-based models(ABMs)are created to simulate the recovery process of a virtual testbed based on the real-world community in Joplin City,MO.The tornado path associated with the real-world tornado event that occurred in May 2011 is adopted in the tornado hazard modeling for the Joplin testbed.In addition,agent-based models are created for another virtual community in the Midwest United States named Centerville using an assumed tornado scenario of the same EF-scale as that in Joplin.The effects of hazard mitigation strategies on the two communities are also explored.A comparison between the analysis results of these two testbeds can indicate the influence of the characteristics of a tornado-prone community on the resilience of the community as well as on the effects of hazard mitigation strategies.It is observed that a community’s level of development significantly impacts the tornado resilience.In addition,the effects of a specific type of hazard mitigation strategy on the recovery process are contingent upon testbed characteristics.展开更多
提出采用LDRA(Liverpool Data Research Associates Ltd.)TESTBED测试工具辅助完成高可靠性的军用软件测试工作,并通过测试实例阐述了该工具在航天软件测试中的应用方案。结果证明,合理使用该工具,能够有效避免人为失误,提高软件测试的...提出采用LDRA(Liverpool Data Research Associates Ltd.)TESTBED测试工具辅助完成高可靠性的军用软件测试工作,并通过测试实例阐述了该工具在航天软件测试中的应用方案。结果证明,合理使用该工具,能够有效避免人为失误,提高软件测试的效率和信息采集的准确度。展开更多
To solve the problem of robust servo performance of Flight Environment Testbed(FET)of Altitude Ground Test Facilities(AGTF) over the whole operational envelope, a two-degree-offreedom μ synthesis method based on Line...To solve the problem of robust servo performance of Flight Environment Testbed(FET)of Altitude Ground Test Facilities(AGTF) over the whole operational envelope, a two-degree-offreedom μ synthesis method based on Linear Parameter Varying(LPV) schematic is proposed, and meanwhile a new structure frame of μ synthesis control on two degrees of freedom with double integral and weighting functions is presented, which constitutes a core support part of the paper. Aimed at the problem of reference command's rapid change, one freedom feed forward is adopted, while another freedom output feedback is used to meet good servo tracking as well as disturbance and noise rejection; furthermore, to overcome the overshoot problem and acquire dynamic tuning,the integral is introduced in inner loop, and another integral controller is used in outer loop in order to guarantee steady errors; additionally, two performance weighting functions are designed to achieve robust specialty and control energy limit considering the uncertainties in system. As the schedule parameters change over large flight envelope, the stability of closed-loop LPV system is proved using Lyapunov inequalities. The simulation results show that the relative tracking errors of temperature and pressure are less than 0.5% with LPV μ synthesis controller. Meanwhile, compared with non-LPV μ synthesis controller in large uncertainty range, the proposed approach in this research can ensure robust servo performance of FET over the whole operational envelope.展开更多
Various distributed cooperative control schemes have been widely utilized for cyber-physical power system(CPPS),which only require local communications among geographic neighbors to fulfill certain goals.However,the p...Various distributed cooperative control schemes have been widely utilized for cyber-physical power system(CPPS),which only require local communications among geographic neighbors to fulfill certain goals.However,the process of evaluating the performance of an algorithm for a CPPS can be affected by the physical target characteristics and real communication conditions.To address this potential problem,a testbed with controller hardware-in-the-loop(CHIL)is proposed in this paper.On the basis of a power grid simulation conducted using the real-time simulator RT-LAB developed by the company OPAL-RT,along with a communication network simulation developed with OPNET,multiple distributed controllers were developed with hardware devices to directly collect the real-time operating data of the power system model in RT-LAB and provide local control.Furthermore,the communication between neighboring controllers was realized using the cyber system modelin OPNET with an Ethernet interface.The hardware controllers produced a real-world control behavior instead of a digital simulation,and precisely simulated the dynamic features of a CPPS with high speed.A classic cooperative control case for active power output was studied to explain the integrated simulation process and validate the effectiveness of the co-simulation testbed.展开更多
基金Financial support for this work was provided by the US Department of Commerce,the National Institute of Standards and Technology(NIST)under the Financial Assistance Award Number#70NANB20H008the US National Science Foundation(NSF)under Award Number 2052930.
文摘There has been a large increase in the number of days per year with numerous EF1-EF5 tornadoes.Given the significant damage incurred by tornadoes upon communities,community resilience analyses for tornado-stricken communities have been gaining momentum.As the community resilience analysis aims to guide how to lay out effective hazard mitigation strategies to decrease damage and improve recovery,a comprehensive and accurate approach is necessary.Agent-based modeling,an analysis approach in which different types of agents are created with their properties and behavior clearly defined to simulate the processes of those agents in an external environ-ment,is the most comprehensive and accurate approach so far to conducting community resilience simulations and investigating the decision-making for mitigation and recovery under natural hazards.In this paper,agent-based models(ABMs)are created to simulate the recovery process of a virtual testbed based on the real-world community in Joplin City,MO.The tornado path associated with the real-world tornado event that occurred in May 2011 is adopted in the tornado hazard modeling for the Joplin testbed.In addition,agent-based models are created for another virtual community in the Midwest United States named Centerville using an assumed tornado scenario of the same EF-scale as that in Joplin.The effects of hazard mitigation strategies on the two communities are also explored.A comparison between the analysis results of these two testbeds can indicate the influence of the characteristics of a tornado-prone community on the resilience of the community as well as on the effects of hazard mitigation strategies.It is observed that a community’s level of development significantly impacts the tornado resilience.In addition,the effects of a specific type of hazard mitigation strategy on the recovery process are contingent upon testbed characteristics.
文摘To solve the problem of robust servo performance of Flight Environment Testbed(FET)of Altitude Ground Test Facilities(AGTF) over the whole operational envelope, a two-degree-offreedom μ synthesis method based on Linear Parameter Varying(LPV) schematic is proposed, and meanwhile a new structure frame of μ synthesis control on two degrees of freedom with double integral and weighting functions is presented, which constitutes a core support part of the paper. Aimed at the problem of reference command's rapid change, one freedom feed forward is adopted, while another freedom output feedback is used to meet good servo tracking as well as disturbance and noise rejection; furthermore, to overcome the overshoot problem and acquire dynamic tuning,the integral is introduced in inner loop, and another integral controller is used in outer loop in order to guarantee steady errors; additionally, two performance weighting functions are designed to achieve robust specialty and control energy limit considering the uncertainties in system. As the schedule parameters change over large flight envelope, the stability of closed-loop LPV system is proved using Lyapunov inequalities. The simulation results show that the relative tracking errors of temperature and pressure are less than 0.5% with LPV μ synthesis controller. Meanwhile, compared with non-LPV μ synthesis controller in large uncertainty range, the proposed approach in this research can ensure robust servo performance of FET over the whole operational envelope.
基金the National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201).
文摘Various distributed cooperative control schemes have been widely utilized for cyber-physical power system(CPPS),which only require local communications among geographic neighbors to fulfill certain goals.However,the process of evaluating the performance of an algorithm for a CPPS can be affected by the physical target characteristics and real communication conditions.To address this potential problem,a testbed with controller hardware-in-the-loop(CHIL)is proposed in this paper.On the basis of a power grid simulation conducted using the real-time simulator RT-LAB developed by the company OPAL-RT,along with a communication network simulation developed with OPNET,multiple distributed controllers were developed with hardware devices to directly collect the real-time operating data of the power system model in RT-LAB and provide local control.Furthermore,the communication between neighboring controllers was realized using the cyber system modelin OPNET with an Ethernet interface.The hardware controllers produced a real-world control behavior instead of a digital simulation,and precisely simulated the dynamic features of a CPPS with high speed.A classic cooperative control case for active power output was studied to explain the integrated simulation process and validate the effectiveness of the co-simulation testbed.