In this study, we carried out model tests to investigate the ice failure process and the resistance experienced by a transport vessel navigating in the Arctic region in pack ice conditions. We tested different navigat...In this study, we carried out model tests to investigate the ice failure process and the resistance experienced by a transport vessel navigating in the Arctic region in pack ice conditions. We tested different navigation velocities, ice plate sizes, and ice concentrations. During the tests, we closely observed several phenomena, including the modes of interaction of the ice ship and the moving and failure modes of ice. We also measured the vessel resistances under different conditions. The test results indicate that the navigation velocity is a significant determinant of the moving and failure modes of ice. Moreover, vessel resistance is remarkably dependent on the ice concentration and navigation velocity. The variances of the mean and maximum resistance are also compared and discussed in detail.展开更多
Selecting bridging agents properly is a critical factor in designing non-damaging or low-damaging drill-in fluids. Historically, Abrams' rule has been used for this purpose. However, Abrams' rule only addresses the ...Selecting bridging agents properly is a critical factor in designing non-damaging or low-damaging drill-in fluids. Historically, Abrams' rule has been used for this purpose. However, Abrams' rule only addresses the size of particle required to initiate a bridge. The rule does not give an optimum size nor an ideal packing sequence for minimizing fluid invasion and optimizing sealing. This paper elaborates an ideal packing approach to solving the sealing problem by sealing pores with different sizes, especially those large pores which usually make dominant contribution to permeability and thereby effectively preventing the solids and filtrate of drill-in fluids from invading into formations, compared with the conventionally used techniques. Practical software has been developed to optimize the blending proportion of several bridging agents, so as to achieve ideal packing effectiveness. The method and its use in selecting the best blending proportion of several bridging agents are also discussed in this paper. A carefully designed drill-in fluid by using the ideal packing technique (named the IPT fluid) for offshore drilling operations at the Weizhou Oilfield, Nanhai West Company, CNOOC is presented. The near 100% return permeabilities from the dynamic damage tests using reservoir cores demonstrated the excellent bridging effect provided by this drill-in fluid.展开更多
基金Supported by the National Nature Science Foundation of China, under Grant No. 51179123 and No. 51279131 and the Special Research Program of Ministry of Industry and Information Technology of China
文摘In this study, we carried out model tests to investigate the ice failure process and the resistance experienced by a transport vessel navigating in the Arctic region in pack ice conditions. We tested different navigation velocities, ice plate sizes, and ice concentrations. During the tests, we closely observed several phenomena, including the modes of interaction of the ice ship and the moving and failure modes of ice. We also measured the vessel resistances under different conditions. The test results indicate that the navigation velocity is a significant determinant of the moving and failure modes of ice. Moreover, vessel resistance is remarkably dependent on the ice concentration and navigation velocity. The variances of the mean and maximum resistance are also compared and discussed in detail.
基金supported by the National Natural Science Foundation(Project No.50574061)the Changjiang Scholars and Innovative Research Team(No.IRT0411),Ministry of Education
文摘Selecting bridging agents properly is a critical factor in designing non-damaging or low-damaging drill-in fluids. Historically, Abrams' rule has been used for this purpose. However, Abrams' rule only addresses the size of particle required to initiate a bridge. The rule does not give an optimum size nor an ideal packing sequence for minimizing fluid invasion and optimizing sealing. This paper elaborates an ideal packing approach to solving the sealing problem by sealing pores with different sizes, especially those large pores which usually make dominant contribution to permeability and thereby effectively preventing the solids and filtrate of drill-in fluids from invading into formations, compared with the conventionally used techniques. Practical software has been developed to optimize the blending proportion of several bridging agents, so as to achieve ideal packing effectiveness. The method and its use in selecting the best blending proportion of several bridging agents are also discussed in this paper. A carefully designed drill-in fluid by using the ideal packing technique (named the IPT fluid) for offshore drilling operations at the Weizhou Oilfield, Nanhai West Company, CNOOC is presented. The near 100% return permeabilities from the dynamic damage tests using reservoir cores demonstrated the excellent bridging effect provided by this drill-in fluid.