Count data with excess zeros encountered in many applications often exhibit extra variation. There- fore, zero-inflated Poisson (ZIP) model may fail to fit such data. In this paper, a zero-inflated double Poisson mo...Count data with excess zeros encountered in many applications often exhibit extra variation. There- fore, zero-inflated Poisson (ZIP) model may fail to fit such data. In this paper, a zero-inflated double Poisson model (ZIDP), which is generalization of the ZIP model, is studied and the score tests for the significance of dis- persion and zero-inflation in ZIDP model are developed. Meanwhile, this work also develops homogeneous tests for dispersion and/or zero-inflation parameter, and corresponding score test statistics are obtained. One numer- ical example is given to illustrate our methodology and the properties of score test statistics are investigated through Monte Carlo simulations.展开更多
基金Supported in part by the National Natural Science Foundation of China under Grant No.11271193 and 11571073the Natural Science Foundation of Jiangsu Province under Grant No.BK20141326
文摘Count data with excess zeros encountered in many applications often exhibit extra variation. There- fore, zero-inflated Poisson (ZIP) model may fail to fit such data. In this paper, a zero-inflated double Poisson model (ZIDP), which is generalization of the ZIP model, is studied and the score tests for the significance of dis- persion and zero-inflation in ZIDP model are developed. Meanwhile, this work also develops homogeneous tests for dispersion and/or zero-inflation parameter, and corresponding score test statistics are obtained. One numer- ical example is given to illustrate our methodology and the properties of score test statistics are investigated through Monte Carlo simulations.