In this paper,we established a class of parallel algorithm for solving low-rank tensor completion problem.The main idea is that N singular value decompositions are implemented in N different processors for each slice ...In this paper,we established a class of parallel algorithm for solving low-rank tensor completion problem.The main idea is that N singular value decompositions are implemented in N different processors for each slice matrix under unfold operator,and then the fold operator is used to form the next iteration tensor such that the computing time can be decreased.In theory,we analyze the global convergence of the algorithm.In numerical experiment,the simulation data and real image inpainting are carried out.Experiment results show the parallel algorithm outperform its original algorithm in CPU times under the same precision.展开更多
Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small targe...Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.展开更多
Large-scale and heavily jointed rocks have inherent planes of anisotropy and secondary structural planes,such as dominant joint sets and random fractures,which result in significant differences in their failure mechan...Large-scale and heavily jointed rocks have inherent planes of anisotropy and secondary structural planes,such as dominant joint sets and random fractures,which result in significant differences in their failure mechanism and deformation behavior compared to other rock types.To address this issue,inherent anisotropic rocks with large-scale and dense joints are considered to be composed of the rock matrix,inherent planes of anisotropy,and secondary structural planes.Then a new implicit continuum model called LayerDFN is developed based on the crack tensor and damage tensor theories to characterize the mechanical properties of inherent anisotropic rocks.Furthermore,the LayerDFN model is implemented in the FLAC3D software,and a series of numerical results for typical example problems is compared with those obtained from the 3DEC,the analytical solutions,similar classical models,laboratory uniaxial compression tests,and field rigid bearing plate tests.The results demonstrate that the LayerDFN model can effectively capture the anisotropic mechanical properties of inherent anisotropic rocks,and can quantitatively characterize the damaging effect of the secondary structural planes.Overall,the numerical method based on the LayerDFN model provides a comprehensive and reliable approach for describing and analyzing the behavior of inherent anisotropic rocks,which will provide valuable insights for engineering design and decision-making processes.展开更多
Dear Editor,This letter presents a novel latent factorization model for high dimensional and incomplete (HDI) tensor, namely the neural Tucker factorization (Neu Tuc F), which is a generic neural network-based latent-...Dear Editor,This letter presents a novel latent factorization model for high dimensional and incomplete (HDI) tensor, namely the neural Tucker factorization (Neu Tuc F), which is a generic neural network-based latent-factorization-of-tensors model under the Tucker decomposition framework.展开更多
In this paper,we investigate the method of compensating LTS SQUID Gradiometer Systems data.By matching the attitude changes of the pod in fl ight to the anomalies of the magnetic measurement data,we find that the yaw ...In this paper,we investigate the method of compensating LTS SQUID Gradiometer Systems data.By matching the attitude changes of the pod in fl ight to the anomalies of the magnetic measurement data,we find that the yaw attitude changes most dramatically and corresponds best to the magnetic data anomaly interval.Based on this finding,we solved the compensation model using least squares fitting and Huber's parametric fitting.By comparison,we found that the Huber parametric fit not only eliminates the interference introduced by attitude changes but also retains richer anomaly source information and therefore obtains a higher signal-to-noise ratio.The experimental results show that the quality of the magnetometry data obtained by using the compensation method proposed in this paper has been significantly improved,and the mean value of its improvement ratio can reach 118.93.展开更多
The monitoring signals of bearings from single-source sensor often contain limited information for characterizing various working condition,which may lead to instability and uncertainty of the class-imbalanced intelli...The monitoring signals of bearings from single-source sensor often contain limited information for characterizing various working condition,which may lead to instability and uncertainty of the class-imbalanced intelligent fault diagnosis.On the other hand,the vectorization of multi-source sensor signals may not only generate high-dimensional vectors,leading to increasing computational complexity and overfitting problems,but also lose the structural information and the coupling information.This paper proposes a new method for class-imbalanced fault diagnosis of bearing using support tensor machine(STM)driven by heterogeneous data fusion.The collected sound and vibration signals of bearings are successively decomposed into multiple frequency band components to extract various time-domain and frequency-domain statistical parameters.A third-order hetero-geneous feature tensor is designed based on multisensors,frequency band components,and statistical parameters.STM-based intelligent model is constructed to preserve the structural information of the third-order heterogeneous feature tensor for bearing fault diagnosis.A series of comparative experiments verify the advantages of the proposed method.展开更多
The quantum geometric tensor(QGT)is a fundamental quantity for characterizing the geometric properties of quantum states and plays an essential role in elucidating various physical phenomena.The traditional QGT,defned...The quantum geometric tensor(QGT)is a fundamental quantity for characterizing the geometric properties of quantum states and plays an essential role in elucidating various physical phenomena.The traditional QGT,defned only for pure states,has limited applicability in realistic scenarios where mixed states are common.To address this limitation,we generalize the defnition of the QGT to mixed states using the purifcation bundle and the covariant derivative.Notably,our proposed defnition reduces to the traditional QGT when mixed states approach pure states.In our framework,the real and imaginary parts of this generalized QGT correspond to the Bures metric and the mean gauge curvature,respectively,endowing it with a broad range of potential applications.Additionally,using our proposed mixed-state QGT,we derive the geodesic equation applicable to mixed states.This work establishes a unifed framework for the geometric analysis of both pure and mixed states,thereby deepening our understanding of the geometric properties of quantum states.展开更多
This paper proposed a moment tensor regression prediction technology based on ResNet for microseismic events.Taking the great advantages of deep networks in classification and regression tasks,it can realize the great...This paper proposed a moment tensor regression prediction technology based on ResNet for microseismic events.Taking the great advantages of deep networks in classification and regression tasks,it can realize the great potential of fast and accurate inversion of microseismic moment tensors after the network trained.This ResNet-based moment tensor prediction technology,whose input is raw recordings,does not require the extraction of data features in advance.First,we tested the network using synthetic data and performed a quantitative assessment of the errors.The results demonstrate that the network exhibits high accuracy and efficiency during the prediction phase.Next,we tested the network using real microseismic data and compared the results with those from traditional inversion methods.The error in the results was relatively small compared to traditional methods.However,the network operates more efficiently without requiring manual intervention,making it highly valuable for near-real-time monitoring applications.展开更多
Absorption compensation is a process involving the exponential amplification of reflection amplitudes.This process amplifies the seismic signal and noise,thereby substantially reducing the signal-tonoise ratio of seis...Absorption compensation is a process involving the exponential amplification of reflection amplitudes.This process amplifies the seismic signal and noise,thereby substantially reducing the signal-tonoise ratio of seismic data.Therefore,this paper proposes a multichannel inversion absorption compensation method based on structure tensor regularization.First,the structure tensor is utilized to extract the spatial inclination of seismic signals,and the spatial prediction filter is designed along the inclination direction.The spatial prediction filter is then introduced into the regularization condition of multichannel inversion absorption compensation,and the absorption compensation is realized under the framework of multichannel inversion theory.The spatial predictability of seismic signals is also introduced into the objective function of absorption compensation inversion.Thus,the inversion system can effectively suppress the noise amplification effect during absorption compensation and improve the recovery accuracy of high-frequency signals.Synthetic and field data tests are conducted to demonstrate the accuracy and effectiveness of the proposed method.展开更多
The era of big data brings new challenges for information network systems(INS),simultaneously offering unprecedented opportunities for advancing intelligent intrusion detection systems.In this work,we propose a data-d...The era of big data brings new challenges for information network systems(INS),simultaneously offering unprecedented opportunities for advancing intelligent intrusion detection systems.In this work,we propose a data-driven intrusion detection system for Distributed Denial of Service(DDoS)attack detection.The system focuses on intrusion detection from a big data perceptive.As intelligent information processing methods,big data and artificial intelligence have been widely used in information systems.The INS system is an important information system in cyberspace.In advanced INS systems,the network architectures have become more complex.And the smart devices in INS systems collect a large scale of network data.How to improve the performance of a complex intrusion detection system with big data and artificial intelligence is a big challenge.To address the problem,we design a novel intrusion detection system(IDS)from a big data perspective.The IDS system uses tensors to represent large-scale and complex multi-source network data in a unified tensor.Then,a novel tensor decomposition(TD)method is developed to complete big data mining.The TD method seamlessly collaborates with the XGBoost(eXtreme Gradient Boosting)method to complete the intrusion detection.To verify the proposed IDS system,a series of experiments is conducted on two real network datasets.The results revealed that the proposed IDS system attained an impressive accuracy rate over 98%.Additionally,by altering the scale of the datasets,the proposed IDS system still maintains excellent detection performance,which demonstrates the proposed IDS system’s robustness.展开更多
The multiscale computational method with asymptotic analysis and reduced-order homogenization(ROH)gives a practical numerical solution for engineering problems,especially composite materials.Under the ROH framework,a ...The multiscale computational method with asymptotic analysis and reduced-order homogenization(ROH)gives a practical numerical solution for engineering problems,especially composite materials.Under the ROH framework,a partition-based unitcell structure at the mesoscale is utilized to give a mechanical state at the macro-scale quadrature point with pre-evaluated influence functions.In the past,the“1-phase,1-partition”rule was usually adopted in numerical analysis,where one constituent phase at the mesoscale formed one partition.The numerical cost then is significantly reduced by introducing an assumption that the mechanical responses are the same all the time at the same constituent,while it also introduces numerical inaccuracy.This study proposes a new partitioning method for fibrous unitcells under a reduced-order homogenization methodology.In this method,the fiber phase remains 1 partition,but the matrix phase is divided into 2 partitions,which refers to the“12”partitioning scheme.Analytical elastic influence+functions are derived by introducing the elastic strain energy equivalence(Hill-Mandel condition).This research also obtains the analytical eigenstrain influence functions by alleviating the so-called“inclusion-locking”phenomenon.In addition,a numerical approach to minimize the error of strain energy density is introduced to determine the partitioning of the matrix phase.Several numerical examples are presented to compare the differences among direct numerical simulation(DNS),“11”,and“12”partitioning schemes.The numerical simulations show improved++numerical accuracy by the“12”partitioning scheme.展开更多
Constraint satisfaction problems(CSPs)are a class of problems that are ubiquitous in science and engineering.They feature a collection of constraints specified over subsets of variables.A CSP can be solved either dire...Constraint satisfaction problems(CSPs)are a class of problems that are ubiquitous in science and engineering.They feature a collection of constraints specified over subsets of variables.A CSP can be solved either directly or by reducing it to other problems.This paper introduces the Julia ecosystem for solving and analyzing CSPs with a focus on the programming practices.We introduce some important CSPs and show how these problems are reduced to each other.We also show how to transform CSPs into tensor networks,how to optimize the tensor network contraction orders,and how to extract the solution space properties by contracting the tensor networks with generic element types.Examples are given,which include computing the entropy constant,analyzing the overlap gap property,and the reduction between CSPs.展开更多
When plants respond to drought stress,dynamic cellular changes occur,accompanied by alterations in gene expression,which often act through trans-regulation.However,the detection of trans-acting genetic variants and ne...When plants respond to drought stress,dynamic cellular changes occur,accompanied by alterations in gene expression,which often act through trans-regulation.However,the detection of trans-acting genetic variants and networks of genes is challenged by the large number of genes and markers.Using a tensor decomposition method,we identify trans-acting expression quantitative trait loci(trans-eQTLs)linked to gene modules,rather than individual genes,which were associated with maize drought response.Module-to-trait association analysis demonstrates that half of the modules are relevant to drought-related traits.Genome-wide association studies of the expression patterns of each module identify 286 trans-eQTLs linked to drought-responsive modules,the majority of which cannot be detected based on individual gene expression.Notably,the trans-eQTLs located in the regions selected during maize improvement tend towards relatively strong selection.We further prioritize the genes that affect the transcriptional regulation of multiple genes in trans,as exemplified by two transcription factor genes.Our analyses highlight that multidimensional reduction could facilitate the identification of trans-acting variations in gene expression in response to dynamic environments and serve as a promising technique for high-order data processing in future crop breeding.展开更多
Computing free energy is a fundamental problem in statistical physics.Recently,two distinct methods have been developed and have demonstrated remarkable success:the tensor-network-based contraction method and the neur...Computing free energy is a fundamental problem in statistical physics.Recently,two distinct methods have been developed and have demonstrated remarkable success:the tensor-network-based contraction method and the neural-network-based variational method.Tensor networks are accurate,but their application is often limited to low-dimensional systems due to the high computational complexity in high-dimensional systems.The neural network method applies to systems with general topology.However,as a variational method,it is not as accurate as tensor networks.In this work,we propose an integrated approach,tensor-network-based variational autoregressive networks(TNVAN),that leverages the strengths of both tensor networks and neural networks:combining the variational autoregressive neural network’s ability to compute an upper bound on free energy and perform unbiased sampling from the variational distribution with the tensor network’s power to accurately compute the partition function for small sub-systems,resulting in a robust method for precisely estimating free energy.To evaluate the proposed approach,we conducted numerical experiments on spin glass systems with various topologies,including two-dimensional lattices,fully connected graphs,and random graphs.Our numerical results demonstrate the superior accuracy of our method compared to existing approaches.In particular,it effectively handles systems with longrange interactions and leverages GPU efficiency without requiring singular value decomposition,indicating great potential in tackling statistical mechanics problems and simulating high-dimensional complex systems through both tensor networks and neural networks.展开更多
In this study,we employed Bayesian inversion coupled with the summation-by-parts and simultaneousapproximation-term(SBP-SAT)forward simulation method to elucidate the mechanisms behind mininginduced seismic events cau...In this study,we employed Bayesian inversion coupled with the summation-by-parts and simultaneousapproximation-term(SBP-SAT)forward simulation method to elucidate the mechanisms behind mininginduced seismic events caused by fault slip and their potential effects on rockbursts.Through Bayesian inversion,it is determined that the sources near fault FQ14 have a significant shear component.Additionally,we analyzed the stress and displacement fields of high-energy events,along with the hypocenter distribution of aftershocks,which aided in identifying the slip direction of the critically stressed fault FQ14.We also performed forward modeling to capture the complex dynamics of fault slip under varying friction laws and shear fracture modes.The selection of specific friction laws for fault slip models was based on their ability to accurately replicate observed slip behavior under various external loading conditions,thereby enhancing the applicability of our findings.Our results suggest that the slip behavior of fault FQ14 can be effectively understood by comparing different scenarios.展开更多
Background:Platinum can cause chemotherapy-related cognitive impairment.Low-intensity focused ultrasound(LIFUS)is a promising noninvasive physical stimulation method with a unique advantage in neurological rehabilitat...Background:Platinum can cause chemotherapy-related cognitive impairment.Low-intensity focused ultrasound(LIFUS)is a promising noninvasive physical stimulation method with a unique advantage in neurological rehabilitation.We aimed to investigate whether LIFUS can alleviate cisplatin-induced cognitive impairment in rats and explore the related neuropatho-logical mechanisms.Methods:After confirming the target position for LIFUS treatment in 18 rats,64 rats were randomly divided into four groups:control,model,sham,and LIFUS groups.Before and after LIFUS treatment,detailed biological behavioral assessments and magnetic resonance imaging were performed.Finally,the rats were euthanized,and relevant histopathological and molecular biological experiments were conducted and analyzed.Results:In the Morris water maze,the model group showed fewer platform crossings(1.250.93 vs.5.691.58),a longer escape latency(41.6536.55 s vs.6.382.11 s),and a lower novel object recognition index(29.7711.83 vs.83.695.67)than the control group.LIFUS treatment improved these metrics,with more platform crossings(3.130.34),a higher recognition index(65.588.71),and a shorter escape latency(6.452.27 s).Longitudinal analysis of the LIFUS group further confirmed these improvements.Neuroimaging revealed significant differences in diffusion tensor imaging metrics of specific brain regions pre-and post-LIFUS.Moreover,neuropathology showed higher dendritic spine density,less myelin loss,fewer apoptotic cells,more synapses,and less mitochondrial autophagy after LIFUS treatment.The neuroimaging indicators were correlated with behavioral improvements,highlighting the potential of LIFUS for alleviating cognitive impairment(as demonstrated through imaging and analysis).Our investigation of the molecular biological mechanisms revealed distinct protein expression patterns in the hippocampus and its subregions.In the model group,glial fibrillary acidic protein(GFAP)and ionized calcium-binding adaptor molecule 1(IBA1)expression levels were elevated across the hippocampus,whereas neuronal nuclei(NeuN)expression was reduced.Subregional analysis revealed higher GFAP and IBA1 and lower NeuN,especially in the dentate gyrus subregion.Moreover,positive cell areas were larger in the cornu ammonis(CA)1,CA2,CA3,and dentate gyrus regions.In the CA2 and CA3,significant differences among the groups were observed in GFAP-positive cell counts and areas,and there were variations in NeuN expression.Conclusions:Our results suggest that LIFUS can reverse cisplatin-induced cognitive impairments.The neuroimaging findings were consistent with the behavioral and histological results and suggest a neuropathological basis that supports further research into the clinical applications of LIFUS.Furthermore,LIFUS appeared to enhance the plasticity of neuronal synapses in the rat hippocampus and reduce hippocampal inflammation.These findings highlight the clinical potential of LIFUS as an effective,noninvasive therapeutic strategy and monitoring tool for chemotherapy-induced cognitive deficits.展开更多
Heterogeneous graphs generally refer to graphs with different types of nodes and edges.A common approach for extracting useful information from heterogeneous graphs is to use meta-graphs,which can be seen as a special...Heterogeneous graphs generally refer to graphs with different types of nodes and edges.A common approach for extracting useful information from heterogeneous graphs is to use meta-graphs,which can be seen as a special kind of directed acyclic graph with same node and edge types as the heterogeneous graph.However,how to design proper metagraphs is challenging.Recently,there have been many works on learning suitable metagraphs from a heterogeneous graph.Existing methods generally introduce continuous weights for edges that are independent of each other,which ignores the topological structures of meta-graphs and can be ineffective.To address this issue,the authors propose a new viewpoint from tensor on learning meta-graphs.Such a viewpoint not only helps interpret the limitation of existing works by CANDECOMP/PARAFAC(CP)decomposition,but also inspires us to propose a topology-aware tensor decomposition,called TENSUS,that reflects the structure of DAGs.The proposed topology-aware tensor decomposition is easy to use and simple to implement,and it can be taken as a plug-in part to upgrade many existing works,including node classification and recommendation on heterogeneous graphs.Experimental results on different tasks demonstrate that the proposed method can significantly improve the state-of-the-arts for all these tasks.展开更多
Background While Nordic hamstring exercise(NHE)training has been shown to reduce hamstring strains,the muscle-specific adaptations to NHE across the 4 hamstrings remain unclear.This study investigates architectural an...Background While Nordic hamstring exercise(NHE)training has been shown to reduce hamstring strains,the muscle-specific adaptations to NHE across the 4 hamstrings remain unclear.This study investigates architectural and microstructural adaptations of the biceps femoris short head(BFsh),biceps femoris long head(BFlh),semitendinosus(ST),and semimembranosus(SM)in response to an NHE intervention.Methods Eleven subjects completed 9 weeks of supervised NHE training followed by 3 weeks of detraining.Magnetic resonance imaging was performed at pre-training,post-training,and detraining to assess architectural(volume,fiber tract length,and fiber tract angle)and microstructural(axial(AD),mean(MD),radial(RD)diffusivities,and fractional anisotropy(FA))parameters of the 4 hamstrings.Results NHE training induced significant but non-uniform hamstring muscle hypertrophy(BFsh:22%,BFlh:9%,ST:26%,SM:6%)and fiber tract length increase(BFsh:11%,BFlh:7%,ST:18%,SM:10%).AD(5%),MD(4%),and RD(5%)showed significant increases,but fiber tract angle and FA remained unchanged.After detraining,only ST showed a significant reduction(8%)in volume,which remained higher than the pre-training value.While fiber tract lengths returned to baseline,AD,MD,and RD remained higher than pre-training levels for all hamstrings.Conclusion The 9-week NHE training substantially increased hamstring muscle volume with greater hypertrophy in ST and BFsh.Hypertrophy was accompanied by increases in fiber tract lengths and cross-sections(increased RD).After 3 weeks of detraining,fiber tract length gains across all hamstrings declined,emphasizing the importance of sustained training to maintain all the protective adaptations.展开更多
The mechanical properties of stratified rocks are closely related not only to the stress state but also to the inherent structural anisotropy,which can be represented by the occurrence of bedding planes.This research ...The mechanical properties of stratified rocks are closely related not only to the stress state but also to the inherent structural anisotropy,which can be represented by the occurrence of bedding planes.This research aims to enhance the understanding of the anisotropic deformation and failure behaviors of stratified rocks by proposing a novel coupled elastoplastic-damage constitutive model.In this constitutive model,a scalar anisotropic parameter(stress-structure mixed invariant)based on the Pietruszczak–Mroz anisotropic theory is incorporated into a nonlinear yield surface,which accounts for the combined effects of the stress state and bedding structure on the anisotropic strength behaviors of stratified rocks.A damage-driven function governs the expansion and contraction of the anisotropic yield surface in the pre-peak strain hardening and post-peak strain-softening regions.The strength and deformation characteristics under multiaxial stress conditions are represented by incorporating the Lode's angle into the yield and plastic potential functions.Numerical simulations are conducted to facilitate a comparison with the conventional and true triaxial compression test data for several stratified rocks.The simulation results demonstrate good agreement with the test data,validating the effectiveness of the proposed constitutive model.This study provides theoretical and technical support for addressing engineering challenges involving stratified rocks.展开更多
基金Supported by National Nature Science Foundation(12371381)Nature Science Foundation of Shanxi(202403021222270)。
文摘In this paper,we established a class of parallel algorithm for solving low-rank tensor completion problem.The main idea is that N singular value decompositions are implemented in N different processors for each slice matrix under unfold operator,and then the fold operator is used to form the next iteration tensor such that the computing time can be decreased.In theory,we analyze the global convergence of the algorithm.In numerical experiment,the simulation data and real image inpainting are carried out.Experiment results show the parallel algorithm outperform its original algorithm in CPU times under the same precision.
基金Supported by the Key Laboratory Fund for Equipment Pre-Research(6142207210202)。
文摘Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.
基金supported by financial support from the National Natural Science Foundation of China(Grant Nos.52309122 and U2340229)the Innovation Team of Changjiang River Scientific Research Institute(Grant No.CKSF2024329/YT).
文摘Large-scale and heavily jointed rocks have inherent planes of anisotropy and secondary structural planes,such as dominant joint sets and random fractures,which result in significant differences in their failure mechanism and deformation behavior compared to other rock types.To address this issue,inherent anisotropic rocks with large-scale and dense joints are considered to be composed of the rock matrix,inherent planes of anisotropy,and secondary structural planes.Then a new implicit continuum model called LayerDFN is developed based on the crack tensor and damage tensor theories to characterize the mechanical properties of inherent anisotropic rocks.Furthermore,the LayerDFN model is implemented in the FLAC3D software,and a series of numerical results for typical example problems is compared with those obtained from the 3DEC,the analytical solutions,similar classical models,laboratory uniaxial compression tests,and field rigid bearing plate tests.The results demonstrate that the LayerDFN model can effectively capture the anisotropic mechanical properties of inherent anisotropic rocks,and can quantitatively characterize the damaging effect of the secondary structural planes.Overall,the numerical method based on the LayerDFN model provides a comprehensive and reliable approach for describing and analyzing the behavior of inherent anisotropic rocks,which will provide valuable insights for engineering design and decision-making processes.
基金supported by the National Natural Science Foundation of China(62272078)Chongqing Natural Science Foundation(CSTB2023NSCQ-LZX0069)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300210)
文摘Dear Editor,This letter presents a novel latent factorization model for high dimensional and incomplete (HDI) tensor, namely the neural Tucker factorization (Neu Tuc F), which is a generic neural network-based latent-factorization-of-tensors model under the Tucker decomposition framework.
基金Earth Observation and Navigation Special,Research on Low Temperature Superconducting Aeromagnetic Vector Gradient Observation Technology(2021YFB3900201)projectState Key Laboratory of Remote Sensing Science project.
文摘In this paper,we investigate the method of compensating LTS SQUID Gradiometer Systems data.By matching the attitude changes of the pod in fl ight to the anomalies of the magnetic measurement data,we find that the yaw attitude changes most dramatically and corresponds best to the magnetic data anomaly interval.Based on this finding,we solved the compensation model using least squares fitting and Huber's parametric fitting.By comparison,we found that the Huber parametric fit not only eliminates the interference introduced by attitude changes but also retains richer anomaly source information and therefore obtains a higher signal-to-noise ratio.The experimental results show that the quality of the magnetometry data obtained by using the compensation method proposed in this paper has been significantly improved,and the mean value of its improvement ratio can reach 118.93.
基金supported by the National Natural Science Foundation of China(No.52275104)the Science and Technology Innovation Program of Hunan Province(No.2023RC3097).
文摘The monitoring signals of bearings from single-source sensor often contain limited information for characterizing various working condition,which may lead to instability and uncertainty of the class-imbalanced intelligent fault diagnosis.On the other hand,the vectorization of multi-source sensor signals may not only generate high-dimensional vectors,leading to increasing computational complexity and overfitting problems,but also lose the structural information and the coupling information.This paper proposes a new method for class-imbalanced fault diagnosis of bearing using support tensor machine(STM)driven by heterogeneous data fusion.The collected sound and vibration signals of bearings are successively decomposed into multiple frequency band components to extract various time-domain and frequency-domain statistical parameters.A third-order hetero-geneous feature tensor is designed based on multisensors,frequency band components,and statistical parameters.STM-based intelligent model is constructed to preserve the structural information of the third-order heterogeneous feature tensor for bearing fault diagnosis.A series of comparative experiments verify the advantages of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant Nos.12347104,U24A2017,12461160276,and 12175075)the National Key Research and Development Program of China(Grant No.2023YFC2205802)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20243060 and BK20233001)in part by the State Key Laboratory of Advanced Optical Communication Systems and Networks,China。
文摘The quantum geometric tensor(QGT)is a fundamental quantity for characterizing the geometric properties of quantum states and plays an essential role in elucidating various physical phenomena.The traditional QGT,defned only for pure states,has limited applicability in realistic scenarios where mixed states are common.To address this limitation,we generalize the defnition of the QGT to mixed states using the purifcation bundle and the covariant derivative.Notably,our proposed defnition reduces to the traditional QGT when mixed states approach pure states.In our framework,the real and imaginary parts of this generalized QGT correspond to the Bures metric and the mean gauge curvature,respectively,endowing it with a broad range of potential applications.Additionally,using our proposed mixed-state QGT,we derive the geodesic equation applicable to mixed states.This work establishes a unifed framework for the geometric analysis of both pure and mixed states,thereby deepening our understanding of the geometric properties of quantum states.
基金supported by the National Natural Science dation Foun-of China(Grant Number 42272204)Key Laboratory of Coal sources Re-Exploration and Comprehensive Utilization,Ministry of Natural Resources,Canada(SMDZ-KF2024-4)+1 种基金the Fundamental Research Funds for the Central Universities,China(Grant No.2024JCCXDC06)supported in part by open fund project of State Key Laboratory for Fine Exploration and Intelligent Development of Coal Research(SKLCRSM23KFA04)。
文摘This paper proposed a moment tensor regression prediction technology based on ResNet for microseismic events.Taking the great advantages of deep networks in classification and regression tasks,it can realize the great potential of fast and accurate inversion of microseismic moment tensors after the network trained.This ResNet-based moment tensor prediction technology,whose input is raw recordings,does not require the extraction of data features in advance.First,we tested the network using synthetic data and performed a quantitative assessment of the errors.The results demonstrate that the network exhibits high accuracy and efficiency during the prediction phase.Next,we tested the network using real microseismic data and compared the results with those from traditional inversion methods.The error in the results was relatively small compared to traditional methods.However,the network operates more efficiently without requiring manual intervention,making it highly valuable for near-real-time monitoring applications.
基金funded by the National Key R&D Program of China(Grant no.2018YFA0702504)the Sinopec research project(P22162).
文摘Absorption compensation is a process involving the exponential amplification of reflection amplitudes.This process amplifies the seismic signal and noise,thereby substantially reducing the signal-tonoise ratio of seismic data.Therefore,this paper proposes a multichannel inversion absorption compensation method based on structure tensor regularization.First,the structure tensor is utilized to extract the spatial inclination of seismic signals,and the spatial prediction filter is designed along the inclination direction.The spatial prediction filter is then introduced into the regularization condition of multichannel inversion absorption compensation,and the absorption compensation is realized under the framework of multichannel inversion theory.The spatial predictability of seismic signals is also introduced into the objective function of absorption compensation inversion.Thus,the inversion system can effectively suppress the noise amplification effect during absorption compensation and improve the recovery accuracy of high-frequency signals.Synthetic and field data tests are conducted to demonstrate the accuracy and effectiveness of the proposed method.
基金supported in part by the National Nature Science Foundation of China under Project 62166047in part by the Yunnan International Joint Laboratory of Natural Rubber Intelligent Monitor and Digital Applications under Grant 202403AP140001in part by the Xingdian Talent Support Program under Grant YNWR-QNBJ-2019-270.
文摘The era of big data brings new challenges for information network systems(INS),simultaneously offering unprecedented opportunities for advancing intelligent intrusion detection systems.In this work,we propose a data-driven intrusion detection system for Distributed Denial of Service(DDoS)attack detection.The system focuses on intrusion detection from a big data perceptive.As intelligent information processing methods,big data and artificial intelligence have been widely used in information systems.The INS system is an important information system in cyberspace.In advanced INS systems,the network architectures have become more complex.And the smart devices in INS systems collect a large scale of network data.How to improve the performance of a complex intrusion detection system with big data and artificial intelligence is a big challenge.To address the problem,we design a novel intrusion detection system(IDS)from a big data perspective.The IDS system uses tensors to represent large-scale and complex multi-source network data in a unified tensor.Then,a novel tensor decomposition(TD)method is developed to complete big data mining.The TD method seamlessly collaborates with the XGBoost(eXtreme Gradient Boosting)method to complete the intrusion detection.To verify the proposed IDS system,a series of experiments is conducted on two real network datasets.The results revealed that the proposed IDS system attained an impressive accuracy rate over 98%.Additionally,by altering the scale of the datasets,the proposed IDS system still maintains excellent detection performance,which demonstrates the proposed IDS system’s robustness.
基金funded by the National Key R&D Program of China(Grant No.2023YFA1008901)the National Natural Science Foundation of China(Grant Nos.11988102,12172009)“The Fundamental Research Funds for the Central Universities,Peking University”.
文摘The multiscale computational method with asymptotic analysis and reduced-order homogenization(ROH)gives a practical numerical solution for engineering problems,especially composite materials.Under the ROH framework,a partition-based unitcell structure at the mesoscale is utilized to give a mechanical state at the macro-scale quadrature point with pre-evaluated influence functions.In the past,the“1-phase,1-partition”rule was usually adopted in numerical analysis,where one constituent phase at the mesoscale formed one partition.The numerical cost then is significantly reduced by introducing an assumption that the mechanical responses are the same all the time at the same constituent,while it also introduces numerical inaccuracy.This study proposes a new partitioning method for fibrous unitcells under a reduced-order homogenization methodology.In this method,the fiber phase remains 1 partition,but the matrix phase is divided into 2 partitions,which refers to the“12”partitioning scheme.Analytical elastic influence+functions are derived by introducing the elastic strain energy equivalence(Hill-Mandel condition).This research also obtains the analytical eigenstrain influence functions by alleviating the so-called“inclusion-locking”phenomenon.In addition,a numerical approach to minimize the error of strain energy density is introduced to determine the partitioning of the matrix phase.Several numerical examples are presented to compare the differences among direct numerical simulation(DNS),“11”,and“12”partitioning schemes.The numerical simulations show improved++numerical accuracy by the“12”partitioning scheme.
基金funded by the National Key R&D Program of China(Grant No.2024YFE0102500)the National Natural Science Foundation of China(Grant No.12404568)+1 种基金the Guangzhou Municipal Science and Technology Project(Grant No.2023A03J00904)the Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area,China and the Undergraduate Research Project from HKUST(Guangzhou).
文摘Constraint satisfaction problems(CSPs)are a class of problems that are ubiquitous in science and engineering.They feature a collection of constraints specified over subsets of variables.A CSP can be solved either directly or by reducing it to other problems.This paper introduces the Julia ecosystem for solving and analyzing CSPs with a focus on the programming practices.We introduce some important CSPs and show how these problems are reduced to each other.We also show how to transform CSPs into tensor networks,how to optimize the tensor network contraction orders,and how to extract the solution space properties by contracting the tensor networks with generic element types.Examples are given,which include computing the entropy constant,analyzing the overlap gap property,and the reduction between CSPs.
基金supported by the Biological Breeding-National Science and Technology Major Project(2023ZD04076)the Guangxi Key Research and Development Projects of China(GuikeAB21238004)the Agricultural Science and Technology Innovation Program.
文摘When plants respond to drought stress,dynamic cellular changes occur,accompanied by alterations in gene expression,which often act through trans-regulation.However,the detection of trans-acting genetic variants and networks of genes is challenged by the large number of genes and markers.Using a tensor decomposition method,we identify trans-acting expression quantitative trait loci(trans-eQTLs)linked to gene modules,rather than individual genes,which were associated with maize drought response.Module-to-trait association analysis demonstrates that half of the modules are relevant to drought-related traits.Genome-wide association studies of the expression patterns of each module identify 286 trans-eQTLs linked to drought-responsive modules,the majority of which cannot be detected based on individual gene expression.Notably,the trans-eQTLs located in the regions selected during maize improvement tend towards relatively strong selection.We further prioritize the genes that affect the transcriptional regulation of multiple genes in trans,as exemplified by two transcription factor genes.Our analyses highlight that multidimensional reduction could facilitate the identification of trans-acting variations in gene expression in response to dynamic environments and serve as a promising technique for high-order data processing in future crop breeding.
基金supported by Projects 12325501,12047503,and 12247104 of the National Natural Science Foundation of ChinaProject ZDRW-XX-2022-3-02 of the Chinese Academy of Sciencessupported by the Innovation Program for Quantum Science and Technology project 2021ZD0301900。
文摘Computing free energy is a fundamental problem in statistical physics.Recently,two distinct methods have been developed and have demonstrated remarkable success:the tensor-network-based contraction method and the neural-network-based variational method.Tensor networks are accurate,but their application is often limited to low-dimensional systems due to the high computational complexity in high-dimensional systems.The neural network method applies to systems with general topology.However,as a variational method,it is not as accurate as tensor networks.In this work,we propose an integrated approach,tensor-network-based variational autoregressive networks(TNVAN),that leverages the strengths of both tensor networks and neural networks:combining the variational autoregressive neural network’s ability to compute an upper bound on free energy and perform unbiased sampling from the variational distribution with the tensor network’s power to accurately compute the partition function for small sub-systems,resulting in a robust method for precisely estimating free energy.To evaluate the proposed approach,we conducted numerical experiments on spin glass systems with various topologies,including two-dimensional lattices,fully connected graphs,and random graphs.Our numerical results demonstrate the superior accuracy of our method compared to existing approaches.In particular,it effectively handles systems with longrange interactions and leverages GPU efficiency without requiring singular value decomposition,indicating great potential in tackling statistical mechanics problems and simulating high-dimensional complex systems through both tensor networks and neural networks.
基金the Graduate Innovation Program of China University of Mining and Technology,the Fundamental Research Funds for the Central Universities(Grant No.2023WLKXJ017)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX23_2776)the Shandong Energy Group(Grant No.SNKJ2022BJ03-R28)。
文摘In this study,we employed Bayesian inversion coupled with the summation-by-parts and simultaneousapproximation-term(SBP-SAT)forward simulation method to elucidate the mechanisms behind mininginduced seismic events caused by fault slip and their potential effects on rockbursts.Through Bayesian inversion,it is determined that the sources near fault FQ14 have a significant shear component.Additionally,we analyzed the stress and displacement fields of high-energy events,along with the hypocenter distribution of aftershocks,which aided in identifying the slip direction of the critically stressed fault FQ14.We also performed forward modeling to capture the complex dynamics of fault slip under varying friction laws and shear fracture modes.The selection of specific friction laws for fault slip models was based on their ability to accurately replicate observed slip behavior under various external loading conditions,thereby enhancing the applicability of our findings.Our results suggest that the slip behavior of fault FQ14 can be effectively understood by comparing different scenarios.
基金supported by the National Natural Science Foundation of China(82171908 and 82102015)the General Project of the Nanjing Medical Science and Technology Development Program(YKK21075)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515140030).
文摘Background:Platinum can cause chemotherapy-related cognitive impairment.Low-intensity focused ultrasound(LIFUS)is a promising noninvasive physical stimulation method with a unique advantage in neurological rehabilitation.We aimed to investigate whether LIFUS can alleviate cisplatin-induced cognitive impairment in rats and explore the related neuropatho-logical mechanisms.Methods:After confirming the target position for LIFUS treatment in 18 rats,64 rats were randomly divided into four groups:control,model,sham,and LIFUS groups.Before and after LIFUS treatment,detailed biological behavioral assessments and magnetic resonance imaging were performed.Finally,the rats were euthanized,and relevant histopathological and molecular biological experiments were conducted and analyzed.Results:In the Morris water maze,the model group showed fewer platform crossings(1.250.93 vs.5.691.58),a longer escape latency(41.6536.55 s vs.6.382.11 s),and a lower novel object recognition index(29.7711.83 vs.83.695.67)than the control group.LIFUS treatment improved these metrics,with more platform crossings(3.130.34),a higher recognition index(65.588.71),and a shorter escape latency(6.452.27 s).Longitudinal analysis of the LIFUS group further confirmed these improvements.Neuroimaging revealed significant differences in diffusion tensor imaging metrics of specific brain regions pre-and post-LIFUS.Moreover,neuropathology showed higher dendritic spine density,less myelin loss,fewer apoptotic cells,more synapses,and less mitochondrial autophagy after LIFUS treatment.The neuroimaging indicators were correlated with behavioral improvements,highlighting the potential of LIFUS for alleviating cognitive impairment(as demonstrated through imaging and analysis).Our investigation of the molecular biological mechanisms revealed distinct protein expression patterns in the hippocampus and its subregions.In the model group,glial fibrillary acidic protein(GFAP)and ionized calcium-binding adaptor molecule 1(IBA1)expression levels were elevated across the hippocampus,whereas neuronal nuclei(NeuN)expression was reduced.Subregional analysis revealed higher GFAP and IBA1 and lower NeuN,especially in the dentate gyrus subregion.Moreover,positive cell areas were larger in the cornu ammonis(CA)1,CA2,CA3,and dentate gyrus regions.In the CA2 and CA3,significant differences among the groups were observed in GFAP-positive cell counts and areas,and there were variations in NeuN expression.Conclusions:Our results suggest that LIFUS can reverse cisplatin-induced cognitive impairments.The neuroimaging findings were consistent with the behavioral and histological results and suggest a neuropathological basis that supports further research into the clinical applications of LIFUS.Furthermore,LIFUS appeared to enhance the plasticity of neuronal synapses in the rat hippocampus and reduce hippocampal inflammation.These findings highlight the clinical potential of LIFUS as an effective,noninvasive therapeutic strategy and monitoring tool for chemotherapy-induced cognitive deficits.
基金National Key Research and Development Program of China,Grant/Award Number:2023YFB2903904。
文摘Heterogeneous graphs generally refer to graphs with different types of nodes and edges.A common approach for extracting useful information from heterogeneous graphs is to use meta-graphs,which can be seen as a special kind of directed acyclic graph with same node and edge types as the heterogeneous graph.However,how to design proper metagraphs is challenging.Recently,there have been many works on learning suitable metagraphs from a heterogeneous graph.Existing methods generally introduce continuous weights for edges that are independent of each other,which ignores the topological structures of meta-graphs and can be ineffective.To address this issue,the authors propose a new viewpoint from tensor on learning meta-graphs.Such a viewpoint not only helps interpret the limitation of existing works by CANDECOMP/PARAFAC(CP)decomposition,but also inspires us to propose a topology-aware tensor decomposition,called TENSUS,that reflects the structure of DAGs.The proposed topology-aware tensor decomposition is easy to use and simple to implement,and it can be taken as a plug-in part to upgrade many existing works,including node classification and recommendation on heterogeneous graphs.Experimental results on different tasks demonstrate that the proposed method can significantly improve the state-of-the-arts for all these tasks.
基金financial support from the general electric (GE) healthcareAustralian Research Council Discovery Project (DP200101476)+5 种基金in parts by National Institutes of Health (NIH) grants (R01 AR077604, R01 EB002524, R01 AR079431, P41 EB02706)Stanford Graduate FellowshipThe University of Queensland Graduate ScholarshipNational Health and Medical Research Council of Australia Fellowship (#1194937)Wu Tsai Human Performance Alliance at Stanford Universitythe Joe and Clara Tsai Foundation
文摘Background While Nordic hamstring exercise(NHE)training has been shown to reduce hamstring strains,the muscle-specific adaptations to NHE across the 4 hamstrings remain unclear.This study investigates architectural and microstructural adaptations of the biceps femoris short head(BFsh),biceps femoris long head(BFlh),semitendinosus(ST),and semimembranosus(SM)in response to an NHE intervention.Methods Eleven subjects completed 9 weeks of supervised NHE training followed by 3 weeks of detraining.Magnetic resonance imaging was performed at pre-training,post-training,and detraining to assess architectural(volume,fiber tract length,and fiber tract angle)and microstructural(axial(AD),mean(MD),radial(RD)diffusivities,and fractional anisotropy(FA))parameters of the 4 hamstrings.Results NHE training induced significant but non-uniform hamstring muscle hypertrophy(BFsh:22%,BFlh:9%,ST:26%,SM:6%)and fiber tract length increase(BFsh:11%,BFlh:7%,ST:18%,SM:10%).AD(5%),MD(4%),and RD(5%)showed significant increases,but fiber tract angle and FA remained unchanged.After detraining,only ST showed a significant reduction(8%)in volume,which remained higher than the pre-training value.While fiber tract lengths returned to baseline,AD,MD,and RD remained higher than pre-training levels for all hamstrings.Conclusion The 9-week NHE training substantially increased hamstring muscle volume with greater hypertrophy in ST and BFsh.Hypertrophy was accompanied by increases in fiber tract lengths and cross-sections(increased RD).After 3 weeks of detraining,fiber tract length gains across all hamstrings declined,emphasizing the importance of sustained training to maintain all the protective adaptations.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52109143 and 12062026)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(China Institute of Water Resources and Hydropower Research)(Grant No.IWHRSKL-KF202305).
文摘The mechanical properties of stratified rocks are closely related not only to the stress state but also to the inherent structural anisotropy,which can be represented by the occurrence of bedding planes.This research aims to enhance the understanding of the anisotropic deformation and failure behaviors of stratified rocks by proposing a novel coupled elastoplastic-damage constitutive model.In this constitutive model,a scalar anisotropic parameter(stress-structure mixed invariant)based on the Pietruszczak–Mroz anisotropic theory is incorporated into a nonlinear yield surface,which accounts for the combined effects of the stress state and bedding structure on the anisotropic strength behaviors of stratified rocks.A damage-driven function governs the expansion and contraction of the anisotropic yield surface in the pre-peak strain hardening and post-peak strain-softening regions.The strength and deformation characteristics under multiaxial stress conditions are represented by incorporating the Lode's angle into the yield and plastic potential functions.Numerical simulations are conducted to facilitate a comparison with the conventional and true triaxial compression test data for several stratified rocks.The simulation results demonstrate good agreement with the test data,validating the effectiveness of the proposed constitutive model.This study provides theoretical and technical support for addressing engineering challenges involving stratified rocks.