The lethal brain tumor “Glioblastoma” has the propensity to grow over time. To improve patient outcomes, it is essential to classify GBM accurately and promptly in order to provide a focused and individualized treat...The lethal brain tumor “Glioblastoma” has the propensity to grow over time. To improve patient outcomes, it is essential to classify GBM accurately and promptly in order to provide a focused and individualized treatment plan. Despite this, deep learning methods, particularly Convolutional Neural Networks (CNNs), have demonstrated a high level of accuracy in a myriad of medical image analysis applications as a result of recent technical breakthroughs. The overall aim of the research is to investigate how CNNs can be used to classify GBMs using data from medical imaging, to improve prognosis precision and effectiveness. This research study will demonstrate a suggested methodology that makes use of the CNN architecture and is trained using a database of MRI pictures with this tumor. The constructed model will be assessed based on its overall performance. Extensive experiments and comparisons with conventional machine learning techniques and existing classification methods will also be made. It will be crucial to emphasize the possibility of early and accurate prediction in a clinical workflow because it can have a big impact on treatment planning and patient outcomes. The paramount objective is to not only address the classification challenge but also to outline a clear pathway towards enhancing prognosis precision and treatment effectiveness.展开更多
Early detection of lung nodule is of great importance for the successful diagnosis and treatment of lung cancer. Many researchers have tried with diverse methods, such as thresholding, computer-aided diagnosis system,...Early detection of lung nodule is of great importance for the successful diagnosis and treatment of lung cancer. Many researchers have tried with diverse methods, such as thresholding, computer-aided diagnosis system, pattern recognition technique, backpropagation algorithm, etc. Recently, convolutional neural network (CNN) finds promising applications in many areas. In this research, we investigated 3D CNN to detect early lung cancer using LUNA 16 dataset. At first, we preprocessed raw image using thresholding technique. Then we used Vanilla 3D CNN classifier to determine whether the image is cancerous or non-cancerous. The experimental results show that the proposed method can achieve a detection accuracy of about 80% and it is a satisfactory performance compared to the existing technique.展开更多
文摘The lethal brain tumor “Glioblastoma” has the propensity to grow over time. To improve patient outcomes, it is essential to classify GBM accurately and promptly in order to provide a focused and individualized treatment plan. Despite this, deep learning methods, particularly Convolutional Neural Networks (CNNs), have demonstrated a high level of accuracy in a myriad of medical image analysis applications as a result of recent technical breakthroughs. The overall aim of the research is to investigate how CNNs can be used to classify GBMs using data from medical imaging, to improve prognosis precision and effectiveness. This research study will demonstrate a suggested methodology that makes use of the CNN architecture and is trained using a database of MRI pictures with this tumor. The constructed model will be assessed based on its overall performance. Extensive experiments and comparisons with conventional machine learning techniques and existing classification methods will also be made. It will be crucial to emphasize the possibility of early and accurate prediction in a clinical workflow because it can have a big impact on treatment planning and patient outcomes. The paramount objective is to not only address the classification challenge but also to outline a clear pathway towards enhancing prognosis precision and treatment effectiveness.
文摘Early detection of lung nodule is of great importance for the successful diagnosis and treatment of lung cancer. Many researchers have tried with diverse methods, such as thresholding, computer-aided diagnosis system, pattern recognition technique, backpropagation algorithm, etc. Recently, convolutional neural network (CNN) finds promising applications in many areas. In this research, we investigated 3D CNN to detect early lung cancer using LUNA 16 dataset. At first, we preprocessed raw image using thresholding technique. Then we used Vanilla 3D CNN classifier to determine whether the image is cancerous or non-cancerous. The experimental results show that the proposed method can achieve a detection accuracy of about 80% and it is a satisfactory performance compared to the existing technique.